
 1

Content Repository API
for Java™ Technology
Specification
Java Specification Request 170
version 1.0.1
1 March 2006

 2

CONTENT REPOSITORY API FOR JAVA™ TECHNOLOGY SPECIFICATION 1
1 PREFACE 10

1.1 Documents Included 10
2 INTRODUCTION 11

2.1 Motivation 11
2.2 Goals 11

3 USE CASES 13
3.1 Swappability 13
3.2 Resource Crunch (Personalization) 14

4 THE REPOSITORY MODEL 16
4.1 API Basics 17

4.1.1 Traversal Access 18
4.1.2 Direct Access 19
4.1.3 Writing to the Repository 19
4.1.4 Nodes, Properties and Items 23

4.2 Compliance Levels 23
4.3 Same–Name Siblings 24

4.3.1 Index Notation 24
4.3.2 Support for Same Name Siblings is Optional 25
4.3.3 Properties Cannot Have Same Name Siblings 25

4.4 Orderable Child Nodes 25
4.4.1 Orderable Same Name Siblings 26
4.4.2 Non-orderable Child Nodes 26
4.4.3 Orderable Child Node Support is Optional 26
4.4.4 Properties are Never Orderable 26

4.5 Namespaces 27
4.6 Path Syntax 27

4.6.1 Names vs. Paths 28
4.6.2 Current Item and Parent Item 28

4.7 Properties 28
4.7.1 Multi-Value Properties 29
4.7.2 Reference, Path and Name Property Types 29
4.7.3 No Null Values 30

4.8 Node Types 31
4.9 Referenceable Nodes 31
4.10 Workspaces 33

4.10.1 Single Workspace Repositories 33
4.10.2 Multiple Workspaces and Corresponding Nodes 34

4.11 Versioning 37
4.12 Metadata 40
4.13 Hierarchical versus Direct Access 40

5 EXAMPLE IMPLEMENTATIONS 42
5.1 A File System-backed Content Repository 42
5.2 A WebDAV-backed Content Repository 43
5.3 Database-backed Content Repository 43
5.4 XML-backed Content Repository 44
5.5 Namespace Prefixes in the Examples 46

6 LEVEL 1 REPOSITORY FEATURES 48
6.1 Accessing the Repository 49

6.1.1 Repository 49
6.1.2 Credentials 52

6.2 Reading Repository Content 54
6.2.1 Session Read Methods 54
6.2.2 Workspace Read Methods 57
6.2.3 Node Read Methods 58

 3

6.2.4 Property Read Methods 62
6.2.5 Property Types 66
6.2.6 Property Type Conversion 72
6.2.7 Value 73
6.2.8 Item Read Methods 76
6.2.9 Effect of Access Denial on Read 80
6.2.10 Example 80

6.3 Namespaces 83
6.3.1 Namespace Registry 83
6.3.2 Prefix Syntax 84
6.3.3 Session Namespace Remapping 85
6.3.4 Transactions and Namespaces 87

6.4 XML Mappings 88
6.4.1 System View XML Mapping 88
6.4.2 Document View XML Mapping 91
6.4.3 Escaping of Names 95
6.4.4 Escaping of Values 96

6.5 Exporting Repository Content 98
6.5.1 Encoding 101

6.6 Searching Repository Content 102
6.6.1 XPath over Document View 102
6.6.2 XPath and SQL 103
6.6.3 Structure of a Query 103
6.6.4 Adapting XPath to the Content Repository 111
6.6.5 XPath Extensions 115
6.6.6 XPath Grammar 119
6.6.7 Search Scope 124
6.6.8 Query API 124
6.6.9 QueryManager 124
6.6.10 The Query Object 125
6.6.11 Persistent vs. Transient Queries 128
6.6.12 Query Results 128
6.6.13 Permissions 130

6.7 Node Types 131
6.7.1 Node Type Configuration 131
6.7.2 What Constitutes a Node Type 131
6.7.3 Node Type Discovery in Level 1 132
6.7.4 Primary and Mixin Node Types 133
6.7.5 Special Properties jcr:primaryType and jcr:mixinTypes 133
6.7.6 Property Definitions 134
6.7.7 Child Node Definitions 134
6.7.8 Inheritance Among Node Types 135
6.7.9 Discovering available Node Types 137
6.7.10 Discovering the Node Types of a Node 138
6.7.11 Discovering the Definition of a Node Type 139
6.7.12 ItemDefinition 141
6.7.13 PropertyDefinition 143
6.7.14 NodeDefinition 144
6.7.15 Residual Definitions 145
6.7.16 Value Constraints 145
6.7.17 Automatic Item Creation 148
6.7.18 Discovery of Constraints on Existing Items 149
6.7.19 Predefined Node Types 150
6.7.20 Node Type Definitions in Content 151
6.7.21 Predefined Mixin Node Types 152
6.7.22 Predefined Primary Node Types 155

6.8 System Node 173
6.9 Access Control 174

6.9.1 JAAS 174
6.9.2 Checking Permissions 174

7 LEVEL 2 REPOSITORY FEATURES 176

 4

7.1 Writing Repository Content 177
7.1.2 Saving by UUID and Path 183
7.1.3 Reflecting Item State 183
7.1.4 Adding Nodes 187
7.1.5 Adding and Writing Properties 190
7.1.6 Removing Nodes and Properties 200
7.1.7 Moving and Copying 202
7.1.8 Updating and Cloning Nodes across Workspaces 208
7.1.9 Referenceable Nodes 211
7.1.10 Treatment of UUIDs 211
7.1.11 Ordering Child Nodes 213

7.2 Adding and Deleting Namespaces 215
7.2.1 Visibility of Namespace Registry Changes 217

7.3 Importing Repository Content 218
7.3.1 Import from System View 218
7.3.2 Import from Document View 218
7.3.3 Respecting Property Semantics 220
7.3.4 Determining Node Types 221
7.3.5 Determining Property Types 221
7.3.6 Workspace Import Methods 222
7.3.7 Session Import Methods 227
7.3.8 Importing jcr:root 231

7.4 Assigning Node Types 233
7.4.1 The Special Properties jcr:primaryType and jcr:mixinTypes 233
7.4.2 Assigning a Primary Node Type 233
7.4.3 Assigning Mixin Node Types 233
7.4.4 Automatic Addition and Removal of Mixins 236
7.4.5 Serialization and Node Types 236

7.5 Thread-Safety Requirements 238
8 OPTIONAL REPOSITORY FEATURES 239

8.1 Transactions 240
8.1.1 Container Managed Transactions: Sample Request Flow 241
8.1.2 User Managed Transactions: Sample Code 241
8.1.3 Save vs. Commit 242
8.1.4 Single Session Across Multiple Transactions 242
8.1.5 Mention of Transactions within this Specification 243

8.2 Versioning 244
8.2.1 Versionable Nodes 244
8.2.2 Version Storage 247
8.2.3 The Base Version 256
8.2.4 Initializing the Version History 256
8.2.5 Check In 257
8.2.6 Check Out 259
8.2.7 Restoring a Version 259
8.2.8 Restoring a Group of Versions 260
8.2.9 Update 261
8.2.10 Merge 261
8.2.11 OnParentVersion Attribute 265
8.2.12 The OnParentVersionAction Class 268
8.2.13 Removal of Versions 269
8.2.14 Versioning API 269
8.2.15 Serialization of Version Storage 283
8.2.16 Versioning within a Transaction 283

8.3 Observation 284
8.3.1 Event Listeners 285
8.3.2 Listener Registration 286
8.3.3 Observation Manager 286
8.3.4 Event Production 288
8.3.5 Event Filtering 288
8.3.6 Event Bundles 288
8.3.7 Interpretation of Events 289

 5

8.3.8 Deserializing Content 291
8.3.9 External Mechanisms 291
8.3.10 Location of Listeners 291
8.3.11 Persistence of Event Listeners 291
8.3.12 Vetoable Event Listeners 292
8.3.13 Exceptions 292

8.4 Locking 293
8.4.1 Discovery of Lock Capabilities 293
8.4.2 Lockable 293
8.4.3 Shallow and Deep Locks 294
8.4.4 Lock Owner 294
8.4.5 Placing and Removing a Lock 294
8.4.6 Lock Token 295
8.4.7 Session-scoped and Open-scoped Locks 295
8.4.8 Effect of a Lock 296
8.4.9 Timing Out 297
8.4.10 Locks and Transactions 297
8.4.11 Locking Methods 298
8.4.12 The Lock Object 300
8.4.13 Session Methods Related to the Lock Token 302

8.5 Searching Repository Content with SQL 303
8.5.1 The SQL Language 303
8.5.2 Database View 303
8.5.3 SQL EBNF 308
8.5.4 SQL Syntax in Detail 309
8.5.5 Query Results 313

 6

Acknowledgements

This specification is the collaborative product of

David Nuescheler (specification lead, Day Software),

Peeter Piegaze (author, Day Software),

 and other members of the JSR 170 expert group, including

Tim Anderson (Intalio),

Gordon Bell (Hummingbird),

Geoffery Clemm (IBM),

David Choy (IBM),

Jeff Collins (Vignette),

Stefan Guggisberg (Day Software),

Stefano Mazzocchi (Apache Software Foundation),

James Myers (Pacific Northwest National Laboratories),

James Owen (BEA),

Franz Pfeifroth (Fujitsu),

David Pitfield (Oracle),

Corprew Reed (FileNet),

Victor Spivak (Documentum),

David B. Victor (IBM),

as well as many others who contributed with corrections and
suggestions.

 7

License

Day Management AG ("Licensor") is willing to license this
specification to you ONLY UPON THE CONDITION THAT YOU
ACCEPT ALL OF THE TERMS CONTAINED IN THIS LICENSE
AGREEMENT ("Agreement"). Please read the terms and conditions
of this Agreement carefully.

Content Repository for JavaTM Technology API Specification
("Specification")
Version: 1.0
Status: FCS
Release: 11 May 2005

Copyright 2005 Day Management AG
Barfüsserplatz 6, 4001 Basel, Switzerland.
All rights reserved.

NOTICE; LIMITED LICENSE GRANTS

1. License for Purposes of Evaluation and Developing
Applications. Licensor hereby grants you a fully-paid, non-
exclusive, non-transferable, worldwide, limited license (without the
right to sublicense), under Licensor's applicable intellectual property
rights to view, download, use and reproduce the Specification only
for the purpose of internal evaluation. This includes developing
applications intended to run on an implementation of the
Specification provided that such applications do not themselves
implement any portion(s) of the Specification.

2. License for the Distribution of Compliant
Implementations. Licensor also grants you a perpetual, non-
exclusive, non-transferable, worldwide, fully paid-up, royalty free,
limited license (without the right to sublicense) under any
applicable copyrights or, subject to the provisions of subsection 4
below, patent rights it may have covering the Specification to
create and/or distribute an Independent Implementation of the
Specification that: (a) fully implements the Specification including
all its required interfaces and functionality; (b) does not modify,
subset, superset or otherwise extend the Licensor Name Space, or
include any public or protected packages, classes, Java interfaces,
fields or methods within the Licensor Name Space other than those
required/authorized by the Specification or Specifications being
implemented; and (c) passes the Technology Compatibility Kit
(including satisfying the requirements of the applicable TCK Users
Guide) for such Specification ("Compliant Implementation"). In
addition, the foregoing license is expressly conditioned on your not
acting outside its scope. No license is granted hereunder for any
other purpose (including, for example, modifying the Specification,
other than to the extent of your fair use rights, or distributing the
Specification to third parties).

 8

3. Pass-through Conditions. You need not include limitations (a)-
(c) from the previous paragraph or any other particular "pass
through" requirements in any license You grant concerning the use
of your Independent Implementation or products derived from it.
However, except with respect to Independent Implementations
(and products derived from them) that satisfy limitations (a)-(c)
from the previous paragraph, You may neither: (a) grant or
otherwise pass through to your licensees any licenses under
Licensor's applicable intellectual property rights; nor (b) authorize
your licensees to make any claims concerning their
implementation's compliance with the Specification.

4. Reciprocity Concerning Patent Licenses. With respect to any
patent claims covered by the license granted under subparagraph 2
above that would be infringed by all technically feasible
implementations of the Specification, such license is conditioned
upon your offering on fair, reasonable and non-discriminatory
terms, to any party seeking it from You, a perpetual, non-exclusive,
non-transferable, worldwide license under Your patent rights that
are or would be infringed by all technically feasible implementations
of the Specification to develop, distribute and use a Compliant
Implementation.

5. Definitions. For the purposes of this Agreement: "Independent
Implementation" shall mean an implementation of the Specification
that neither derives from any of Licensor's source code or binary
code materials nor, except with an appropriate and separate license
from Licensor, includes any of Licensor's source code or binary code
materials; "Licensor Name Space" shall mean the public class or
interface declarations whose names begin with "java", "javax",
"javax.jcr" or their equivalents in any subsequent naming
convention adopted by Licensor through the Java Community
Process, or any recognized successors or replacements thereof; and
"Technology Compatibility Kit" or "TCK" shall mean the test suite
and accompanying TCK User's Guide provided by Licensor which
corresponds to the particular version of the Specification being
tested.

6. Termination. This Agreement will terminate immediately
without notice from Licensor if you fail to comply with any material
provision of or act outside the scope of the licenses granted above.

7. Trademarks. No right, title, or interest in or to any trademarks,
service marks, or trade names of Licensor is granted hereunder.
Java is a registered trademark of Sun Microsystems, Inc. in the
United States and other countries.

8. Disclaimer of Warranties. The Specification is provided "AS
IS". LICENSOR MAKES NO REPRESENTATIONS OR WARRANTIES,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

 9

PURPOSE, NON-INFRINGEMENT (INCLUDING AS A CONSEQUENCE
OF ANY PRACTICE OR IMPLEMENTATION OF THE SPECIFICATION),
OR THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE
FOR ANY PURPOSE. This document does not represent any
commitment to release or implement any portion of the
Specification in any product.

The Specification could include technical inaccuracies or
typographical errors. Changes are periodically added to the
information therein; these changes will be incorporated into new
versions of the Specification, if any. Licensor may make
improvements and/or changes to the product(s) and/or the
program(s) described in the Specification at any time. Any use of
such changes in the Specification will be governed by the then-
current license for the applicable version of the Specification.

9. Limitation of Liability. TO THE EXTENT NOT PROHIBITED BY
LAW, IN NO EVENT WILL LICENSOR BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR
DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL
OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF OR RELATED TO ANY
FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE
SPECIFICATION, EVEN IF LICENSOR HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

10. Report. If you provide Licensor with any comments or
suggestions in connection with your use of the Specification
("Feedback"), you hereby: (i) agree that such Feedback is provided
on a non-proprietary and non-confidential basis, and (ii) grant
Licensor a perpetual, non-exclusive, worldwide, fully paid-up,
irrevocable license, with the right to sublicense through multiple
levels of sublicensees, to incorporate, disclose, and use without
limitation the Feedback for any purpose related to the Specification
and future versions, implementations, and test suites thereof.

 10

1 Preface
This is version 1.0.1 of the Content Repository API for Java
Technology specification (Java Specification Request 170,
Maintenance Release 1).

1.1 Documents Included

The specification includes:

• This document in Adobe Portable Document Format
(jsr170-1.0.1.pdf).

• The Java source code for the API package javax.jcr and
subpackages.

• A jar file of the API package javax.jcr and subpackages.

• The Javadoc produced from the javax.jcr and subpackages.

In case of a discrepancy between this document and the Javadoc
produced from the javax.jcr package, this document should be
considered normative.

 11

2 Introduction

2.1 Motivation

As the number of vendors offering proprietary content repositories
has increased, the need for a common programmatic interface to
these repositories has become apparent. The aim of the Content
Repository for Java Technology API specification is to provide such
an interface and, in doing so, lay the foundations for a true
industry-wide content infrastructure.

Application developers and custom solution integrators will be able
to avoid the costs associated with learning the particular API of
each repository vendor. Instead, programmers will be able to
develop content-based application logic independently of the
underlying repository architecture or physical storage.

Customers will also benefit by being able to exchange their
underlying repositories without touching any of the applications
built on top of them.

2.2 Goals

The guiding principles governing the design of the API are:

It should not be tied to any particular underlying
architecture, data source or protocol.

The API is, of course, essentially a set of Java interfaces, which can
be implemented in a wide variety of ways. Hence, achieving this
goal is not difficult in itself. The main challenge here is to allow
enough flexibility in the API so that it can be used for both
hierarchical and non-hierarchical repository models. This is done by
providing for both hierarchical, path-based addressing of content
items and direct, UUID-based addressing.

It should be easy to use from the programmer’s point of
view.

To this end, the API is designed to be as simple and straightforward
as possible. In particular, it has a simple object model and
concentrates on representing the core functionality of a content
repository without venturing into areas that might be regarded as
“content applications”.

It should allow for relatively easy implementation on top of
as wide a variety of existing content repositories as possible.

A concerted effort was made to ensure that it would be relatively
easy to implement the API (especially at level 1, see below) on top
of the repositories of most major vendors.

 12

However, it should also standardize some more complex
functionality needed by advanced content-related
applications.

Recognizing that a tension exists between this aim and the previous
one, this specification has been split into two compliance levels as
well as a set of optional features.

Level 1 defines a read-only repository. This includes functionality
for the reading of repository content, introspection of content-type
definitions, basic support for namespaces, export of content to XML
and searching. This functionality should meet the needs of
presentation templates and basic portal applications comprising a
large portion of the existing code-base of content-related
applications. Level 1 is also designed to be easy to implement on
top of any existing content repository.

Level 2 additionally defines methods for writing content,
assignment of types to content, further support for namespaces,
and importing content from XML.

Finally, a number of independently optional features are defined
that a compliant repository may support. These are transactions,
versioning, observation, access control, locking and additional
support for searching.

 13

3 Use Cases

3.1 Swappability

ENT Corporation, a large distributed enterprise, has different
content management systems in different divisions. Their
Knowledge Management (KM) team has developed an idea for
better discovery of corporate assets across the various repositories.

The team implements the application using the Content Repository
for Java Technology API to the content management (CM) systems.
As the KM team finds more CM systems across the enterprise, the
application can easily harvest the new data as well as that from the
existing systems.

Additionally, the presentation templates that cover the corporate
design guidelines for the organization have been developed based
on this specification in a Java framework around JSP.

A year later, two divisions switch their CM vendors. As part of the
migration process, the KM discovery application is tested against
the new CMS in those divisions. Other than having its configuration
file updated, the application works as before.

Through their standardized interface these repositories allow simple
migration of the content from the two old repositories to the new
one; this means that the content can be converted from the source
repository to the newly purchased destination repository through a
simple export and import.

Content Repository 1 Content Repository 2 Content Repository 3

RDBMS XML Object DB

javax.jcr (JSR170) javax.jcr (JSR170) javax.jcr (JSR170)

JSP Presentation
Templates for Public

Website

Web

JSP Presentation
Templates for

Intranet

Intranet

KM Application

 14

Content Repository 1

Content Repository 2 Content Repository 3

RDBMS

XML Object DB

javax.jcr (JSR170) javax.jcr (JSR170)

JSP Presentation
Templates for Public

Website

Web

JSP Presentation
Templates for

Intranet

Intranet

KM Application

New content Repository

Filesystem Based

javax.jcr (JSR170) javax.jcr (JSR170)

Content Migration

Furthermore, all the content presentation templates developed
against this specification keep working as before. In the case of
ENT the development of this presentation logic was one of the
major investments made when the intranet and the public Internet
website were first developed. Being able to migrate this logic
painlessly to work on top of the new repository is therefore of great
benefit.

3.2 Resource Crunch (Personalization)

PersonalizeIt Software Corp., a vendor of personalization and portal
software, needs to gain access to meta-information and content
that is aggregated and managed by content management systems.

Since, historically, the CM market has been quite diverse,
PersonalizeIt has had to integrate into many different proprietary
APIs. This meant that PersonalizeIt had to spend a large amount of
time familiarizing their developers with these APIs and had to
maintain compatibility with all the different APIs as the various CM
vendors' products evolved.

 15

Content Repository 1 Content Repository 2 Content Repository 3

RDBMS XML Object DB

PersonalizeIt
Application

Proprietary API CR1 Proprietary API CR2 Proprietary API CR3

Since the adoption of this specification, PersonalizeIt offers a
standard interface to compliant repositories. Therefore, they no
longer have to maintain dozens of proprietary integrations and can
concentrate on their core competency.

Content Repository 1 Content Repository 2 Content Repository 3

RDBMS XML Object DB

javax.jcr (JSR170) javax.jcr (JSR170) javax.jcr (JSR170)

PersonalizeIt
Application

Proprietary API CR1 Proprietary API CR2 Proprietary API CR3

 16

4 The Repository Model
A content repository consists of one or more workspaces, each of
which contains a tree of items. An item is either a node or a
property. Each node may have zero or more child nodes and zero
or more child properties. There is a single root node per workspace,
which has no parent. All other nodes have one parent. Properties
have one parent (a node) and cannot have children; they are the
leaves of the tree. All of the actual content in the repository is
stored within the values of the properties.

In the diagram above, we see the single root node of some
workspace with child nodes a, b and c, each of which have further
child nodes or properties. For example, the node a has two child
nodes, d and e. Node e, in turn, has two properties, j and k. The
property j contains an image (a picture of a rabbit) and k contains
a floating-point number (6.022 × 1023). Similarly, the property i
contains a boolean value (true), the property g contains a string
(“Once upon a time...”) and the property h contains an integer (-
25).

true

[root]

 a
 b c

 e
g h

 i j

6.022 × 1023

"Once upon
a time..."

-25

 k

 d

node

property

 17

Every item in a workspace apart from the root node has a non-
empty name. The root node always has the empty string as its
name.

A property and node with the same parent cannot have the same
name. Two or more nodes with the same parent may in some
circumstances have the same name, in which case they are
distinguished by index (see 4.3 Same-Name Siblings for more
details).

The chain of names from the root to any item defines the absolute
path of that item. For example, the path / refers to the root node
and the path /a/d/i refers to the property with value true.
Absolute paths always begin with a / character.

A relative path specifies a node or property relative to another
location within the hierarchy. For example, relative to node /a in
the above diagram, the path to the property with value true is d/i.
The Unix-style path segments “.” and “..” (meaning respectively,
“this” and “parent”) are also supported so that, relative to /a, the
property containing the value –25 would be ../c/h. Relative paths
are distinguished from absolute paths by having no leading /
character.

4.1 API Basics

The repository as a whole is represented by a Repository object1.
A client connects to the repository by calling Repository.login
optionally specifying a workspace name and a Credentials object2.
The client then receives a Session object tied to the specified
workspace.

How the Repository object is actually acquired is beyond the scope
of this specification. However, one possibility, as shown below, is to
use JNDI, though this depends entirely on the implementation.
Similarly, the specifics of acquiring the Credentials object are also
not specified. Below we show one possibility: using the class
SimpleCredentials included in the specification. Implementations
may provide their own Credentials classes as well.

// Get the Repository object
InitialContext ctx = ...
Repository repository = (Repository)ctx.lookup("myrepo");

1 Unless otherwise noted, all references to “objects” refer to
instances of Java classes implementing the indicated Java interface
from the javax.jcr package. For example, the term “Repository
object” means an instance of a class implementing the interface
javax.jcr.Repository.

2 There are other signatures of login as well. See 6.1.1 Repository
for details.

 18

// Get a Credentials object
Credentials credentials =
 new SimpleCredentials("MyName",
 "MyPassword".toCharArray());
// Get a Session
Session mySession =
 repository.login(credentials, "MyWorkspace");

Through the Session object the client can access any node or
property in that tree of the workspace to which the Session is tied.
The API provides methods for both traversing the tree step by step
and for directly accessing a particular item.

4.1.1 Traversal Access

Traversal access typically begins with

Node Session.getRootNode().

From the returned root node, successive levels of child nodes can
be accessed with

Node Node.getNode(String relPath),

which takes a relative path (so it can skip down or up multiple
levels as well). There is also a similar method for accessing
properties,

Property Node.getProperty(String relPath).

The data stored in the property can be accessed either directly with
methods like

String Property.getString(),

or in the form of a type-neutral wrapper, the Value object, using

Value Property.getValue().

The actual data can then be retrieved with, for example,

String Value.getString().

Here is an example code snippet:

// Get the root node
Node root = mySession.getRootNode();

// Traverse to the node you want
Node myNode = root.getNode("a/e");

// Retrieve a property of myNode
Property myProperty = myNode.getProperty("k");

// Get the value of the property
Value myValue = myProperty.getValue();

 19

// Convert the value to the desired type
double myDouble = myValue.getDouble();

// The variable myDouble will contain the
// value 6.022 x 10^23

4.1.2 Direct Access

The most important direct access method is

Item Session.getItem(String abspath).

This method takes an absolute path and is used to jump directly to
the indicated item (node or property):

// Directly get the property with
// the value of Avogadro's Number
// (i.e., 6.022 x 10^23)
Property myProperty =
 (Property)mySession.getItem("/a/e/k");

// Directly convert to a double
double myDouble = myProperty.getDouble();

// The variable myDouble will contain the
// value 6.022 x 10^23

Another direct access method (though for nodes only, not
properties) is,

Node Session.getNodeByUUID(String uuid).

This method can be used to access those nodes that have
Universally Unique Identifiers (see 4.9 Referenceable Nodes):

// Assuming that the node /a/e is referenceable
// and has UUID 1111 2222 3333 4444, we get it
Node myNode =
 mySession.getNodeByUUID("1111 2222 3333 4444");

// and then get the property and convert it to a double
double myDouble = myNode.getProperty("k").getDouble();

// The variable myDouble will contain the
// value 6.022 x 10^23

4.1.3 Writing to the Repository

If the repository is level 2 compliant (see 4.2 Compliance Levels)
then, having acquired a session, the client can write to the
repository by adding or removing nodes and properties or changing
the values of properties.

For example, the client can retrieve a node, add a child node to it
and add a property to that child node:

 20

// Retrieve a node
Node myNode = (Node) mySession.getItem("/a/e");

// Add a child node
Node newNode = myNode.addNode("n");

// Add a property
newNode.setProperty("x", "Hello");

// Persist the changes
mySession.save();

The node myNode has the path /a/e, so the new node will have path
/a/e/n and the new property will have the path /a/e/n/x and the
string value “Hello”.

4.1.3.1 Removing Items

To erase an item, the method Item.remove() is used. For example,
continuing from the above code segment, the following code,

// Remove the node /a/e (and its subtree)
myNode.remove();

// Persist the changes
mySession.save();

would result in the node at /a/e (and its child node /a/e/n) being
deleted.

In the case of Properties, an alternative to remove is to set the
property to null. This can be done in two ways, by calling
setValue with null on the property itself, or by calling
setProperty with the property name and a null value on the
property's parent node:

// Assume we have node /m and two
// properties /m/p and /m/q
Node m = (Node) mySession.getItem("/m");
Property p = m.getProperty("p");

//Remove p by calling setValue on p itself
p.setValue((Value)null);

//Remove q by calling setProperty on q's parent node
m.setProperty("q", (Value)null);

// Persist the changes
mySession.save();

See 4.7.3 No Null Values.

 21

4.1.3.2 Transient Storage in the Session

Notice the use of the method Session.save in the above examples.
This method is needed because changes made through most
methods of Session, Node3 or Property are not immediately
reflected in the persistent workspace. The changes are held in
transient storage associated with the Session object until they are
either persisted (using Session.save or Item.save) or discarded
(using Session.refresh(false) or Item.refresh(false)).

Changes not yet saved or discarded are called pending changes.
Pending changes are immediately visible through the session that
made them but are not visible through other sessions accessing the
same workspace.

Session.save validates and, if validation succeeds, persists all
pending changes currently stored in the Session object, making
them visible to other sessions (though this only applies if the save
is not within the scope of a transaction, see 4.1.3.3 Transactions,
below). Conversely, Session.refresh(false) discards all pending
changes currently stored in the Session.

For more fine-grained control over which changes are persisted or
discarded, the methods Item.save and Item.refresh are also
provided. Item.save saves all pending changes in the Session that
apply to that particular item or its subtree. Analogously,
Item.refresh(false) discards all pending changes that apply to
that item or its subtree. See 7.1 Writing Repository Content.

4.1.3.3 Transactions

Throughout this document, any discussion of “persistence of
changes upon save” or “immediate persistence of changes through
methods that do not require save” refers to cases in which the save
is performed outside the scope of a transaction.

Within the scope of a transaction, save and other methods that act
directly on the persistent workspace will not make changes visible
to other sessions; this will only occur when the transaction is
committed.

However, even within the scope of a transaction, save still performs
validation and, if successful, clears pending changes from the
Session. As well, refresh(false) still clears pending changes
from the Session.

3 A few Node methods act immediately on the persistent workspace
and do not require save. See 7.1 Writing Repository Content for
details.

 22

When a transaction commits, it persists only those changes that
have been saved; it does not automatically save pending changes
and then commit them as well. After a commit, pending changes
remain in the Session and may be saved and committed later.
Note that support for transactions is optional. See 8.1 Transactions.

 23

4.1.4 Nodes, Properties and Items

Because nodes and properties have some common functionality,
common methods are defined in the interface Item, to which the
sub-interfaces Node and Property add further methods. The
following diagram summarizes the basic relationships between the
interfaces.

This UML diagram indicates that Property and Node are
subinterfaces of Item. A single Property has one and only one
parent Node. A Node can have either zero parents (only if it is the
root node) or one parent. A Node can have any number of child
Item objects (i.e., either Property or Node objects).

4.2 Compliance Levels

This specification is divided into two compliance levels and a set of
additional optional features which repositories of either level may
support. Level 1 provides for read functions and level 2 adds
additional write functions. The functional division is as follows:

Level 1 includes:

• Retrieval and traversal of nodes and properties

• Reading the values of properties

• Transient namespace remapping

• Export to XML/SAX

• Query facility with XPath syntax

• Discovery of available node types

• Discovery of access control permissions

Level 2 adds:

• Adding and removing nodes and properties

• Writing the values of properties

Item

Node Property

1

*

* 1

0..1

*

child

parent

parent

 24

• Persistent namespace changes

• Import from XML/SAX

• Assigning node types to nodes

Optional:

Any combination of the following features may be added to an
implementation of either level.

• Transactions

• Versioning

• Observation (Events)

• Locking

• SQL syntax for query

4.3 Same–Name Siblings

A particular node may, in some cases, have same-name siblings,
that is, other nodes that share its parent and have the same name.
Whether a particular node allows this depends on the child-node
definition that applies to it (this definition is part of the node type of
that node’s parent, see section 6.7 Node Types).

The standard method for retrieving a set of such nodes is
Node.getNodes(String namePattern) which returns an iterator
over all the child nodes of the calling node that have the specified
pattern (by making namePattern just a name, without wildcards,
we can get all the nodes with that exact name, see section 6.2.3
Node Read Methods).

4.3.1 Index Notation

A particular node within a same-name sibling group can be
addressed by embedding an array-like notation within the path. For
example the path /a/b[2]/c[3] specifies the third child node called
c of the second child node called b of the node a below the root.

The indexing of same-name siblings begins at 1, not 0. This practice
stems from the need to allow XPath-based queries on the
repository (see 6.6 Searching Repository Content).

However, as opposed to the semantics of XPath, a name in a
content repository path that does not explicitly specify an index
implies an index of 1. For example, /a/b/c is equivalent to
/a[1]/b[1]/c[1].

The indexing is based on the order in which child nodes are
returned in the iterator acquired through Node.getNodes().

 25

Same-name siblings are indexed by their position relative to each
other in this larger ordered set. For example, the order of child
nodes returned by a getNodes on some parent might be:

[A, B, C, A, D]

In this case, A[1] refers the first node in the list and A[2] refers to
the fourth node in the list.

Note that regardless of whether orderable child nodes are
supported in general (see 4.4 Orderable Child Nodes), the relative
ordering of a set of same name sibling nodes must be persistent; it
cannot change arbitrarily between read method calls or between
sessions. This requirement stems from the fact that the path of a
node must not change arbitrarily, and in the case of a same-name
sibling, its position relative to its co-named siblings defines part of
its path.

4.3.2 Support for Same Name Siblings is Optional

As mentioned, whether or not a particular node allows multiple
child items with the same name is governed by the node type of
that particular node. See 6.7 Node Types.

Though there is a required set of node types that every compliant
repository must support, none of these required node types allow
same-name siblings and any further node types available in a
particular repository are implementation-specific. Therefore, it is
possible for a repository to disallow same-name siblings altogether
by restricting the set of available node types.

4.3.3 Properties Cannot Have Same Name Siblings

Properties cannot have sibling properties of the same name.
However, they may have multiple values. See 4.7.1, Multi-Value
Properties, below.

4.4 Orderable Child Nodes

Some nodes may support client-controlled ordering of their child
nodes. Whether a particular node preserves the order of its child
nodes is governed by its node type. See 6.7 Node Types.

If a node supports orderable child nodes, the order of its child
nodes, as reflected in the iterator acquired through
Node.getNodes() can be controlled by the client using the method
Node.orderBefore. The order of child nodes is persisted upon save
of the parent node.

When a child node is added to a node that supports orderable child
nodes it is added to the end of the list. It can then be re-ordered
using the above method.

 26

4.4.1 Orderable Same Name Siblings

If the parent node supports orderable child nodes and same-name
siblings then the same-name sibling child nodes will be orderable
by the application just like an other child nodes. For example, given
the following initial ordering of child nodes,

[A, B, C, A, D]

a call to

orderBefore("A[2]","A[1]")

will cause the child node currently called A[2] to be moved to the
position before the child node currently called A[1], the resulting
order will be:

[A, A, B, C, D]

where the first A is the one that was formerly after C and the
second A is the one that was formerly at the head of the list.

Note, however, that after the completion of this operation the
indices of the two nodes have now switched, due to their new
positions relative to each other. What was formerly A[2] is now
A[1] and what was formerly A[1] is now A[2].

4.4.2 Non-orderable Child Nodes

When a node does not support orderable child nodes this means
that it is left up to the implementation to maintain the order of child
nodes. Applications should not, in this case, depend on the order of
child nodes returned by Node.getNodes, as it may change at any
time. The only exception to this rule is that same-name siblings
must maintain their relative order across read method invocations
and across sessions.

4.4.3 Orderable Child Node Support is Optional

Like same name siblings, support for orderable child nodes depends
on the range of node types available in a particular repository.
Orderable child nodes are not mandated by any required node
types, and any additional node types are implementation-specific.
Therefore, orderable child node support is, in effect, optional.

4.4.4 Properties are Never Orderable

Properties are never client orderable, the order in which properties
are returned by Node.getProperties is always maintained by the
implementation and can change at any time.

 27

4.5 Namespaces

The name of a node or property may have a prefix, delimited by a
single ':' (colon) character that indicates the namespace of the
item.

Namespacing in a content repository is patterned after
namespacing in XML. As in XML, the prefix is actually shorthand for
the full namespace, which is a URI. URIs are used as namespaces
in order to minimize naming collisions. Every compliant (level 1 or
2) repository has a namespace registry. The namespace registry
always contains at least the following built-in namespace prefixes:

• jcr Reserved for items defined within built-in node types.

• nt Reserved for the names of built-in primary node types.

• mix Reserved for the names of built-in mixin node types.

• xml Reserved for reasons of compatibility with XML.

• “” (the empty prefix) This indicates the default namespace.

In level 1 repositories the prefix assigned to an existing
registered namespace (a URI) may be temporarily over-ridden
by another prefix within the scope of a particular Session. Level
2 repositories have, additionally, the capability to add, remove
and change the set of namespaces (URIs) stored in the
namespace registry (excluding the built-in namespaces). See
section 6.3, Namespaces, for more details.

4.6 Path Syntax

A syntactically valid path is:

path ::= abspath | relpath

abspath ::= '/' relpath | '/'

relpath ::= pathelement | relpath '/' pathelement

pathelement ::= name | name '[' number ']' | '..' | '.'

number ::= /* An integer > 0 */

name ::= [prefix ':'] simplename

simplename ::= onecharsimplename |
 twocharsimplename |
 threeormorecharname

onecharsimplename ::= /* Any Unicode character except:
 '.', '/', ':', '[', ']', '*',
 ''', '"', '|' or any whitespace
 character */

twocharsimplename ::= '.' onecharsimplename |
 onecharsimplename '.' |

 28

 onecharsimplename onecharsimplename

threeormorecharname ::= nonspace string nonspace

prefix ::= /* Any valid non-empty XML NCName */

string ::= char | string char

char ::= nonspace | ' '

nonspace ::= /* Any Unicode character except:
 '/', ':', '[', ']', '*',
 ''', '"', '|' or any whitespace
 character */

4.6.1 Names vs. Paths

A “name” is valid if satisfies the above name production. It can be
thought of, informally, as a single path element without any
square-bracket index (and not including the '.' and '..'). For
example, myapp:paragraph is a name and a valid relative path (of
depth 1) whereas, myapp:paragraph[3] is not a name, it is only a
relative path.

Names and paths are not simply strings with certain syntax. They
have special semantics in that they respect the namespace
mappings of the current Session (see 6.3 Namespaces). The
special property types NAME and PATH are provided to enable the
storage of these values in the repository in a namespace-sensitive
way (see 6.2.5 Property Types as well as 4.7 Properties,
immediately below).

4.6.2 Current Item and Parent Item

The syntax of paths includes the segments “.” and “..” indicating
current item and parent item, respectively. These can be used
within JCR paths just as they can in Unix-like file system paths. For
example, /a/b/../c is equivalent to /a/c while /a/b/./c is
equivalent to /a/b/c.

4.7 Properties

Every property is of one of the following types:

• PropertyType.STRING

• PropertyType.BINARY

• PropertyType.DATE

• PropertyType.LONG

• PropertyType.DOUBLE

• PropertyType.BOOLEAN

• PropertyType.NAME

 29

• PropertyType.PATH

• PropertyType.REFERENCE

Methods are provided to read (in level 1) and write (in level 2) the
values of properties to and from the appropriate native Java types
(i.e. PropertyType.STRING values can be read and written as
java.lang.String objects, PropertyType.LONG values into Java
long variables, and so on).

4.7.1 Multi-Value Properties

In some cases, a property may have more than one value. A
property that may have more than one value is referred to as a
multi-valued property (regardless of whether it currently has one or
more than one value).

Whether a particular property is a multi-valued property is
governed by the property definition applicable to it, which is
determined by the node type of the property's parent node.

The values within a multi-valued property are ordered.

Accessing the values of such a property is done with the method
Property.getValues, which returns an array of Value objects that
contains the values in their prescribed order.

Accessing a multi-valued property with Property.getValue, or a
single-value property with Property.getValues will throw a
ValueFormatException.

The values stored within a multi-valued property are all of the same
type.

As with single-value properties, there is no such thing as a null
value. If a value within a multi-value property is set to null, this is
equivalent to removing that value from the value array. In such a
case the array is automatically compacted: shifting the indexes of
those values with indexes greater than that of the removed value
by -1.

Note that this does mean that a multi-value property can have no
values (i.e., be an empty array), whereas a single-value property
either has a (non-null) value or does not exist.

See 7.1.5 Adding and Writing Properties for more details.

4.7.2 Reference, Path and Name Property Types

Three of the property types listed above have special semantics:
REFERENCE, PATH and NAME.

NAME properties are used for storing strings that are namespace-
qualified, such as the names of node types or the names of

 30

repository items. A NAME property can be thought of as a
namespace-aware STRING. It is set like a string (for example,
setProperty("aNodeType", "nt:file")). However, the prefix is
automatically mapped to its current URI and the value is stored
using that full namespace URI. When the property is later read the
mapping is reversed and if the URI in question has been remapped
that remapping is reflected in the returned value.

A PATH property represents a path in a workspace (either relative or
absolute) and therefore can also be used to refer to items
elsewhere in the workspace. However, the PATH property does not
enforce referential integrity; in other words it can point to a
location where no item currently exists. Like a NAME property, a
PATH is also namespace-aware in that its apparent value when read
will always reflect the current prefix to URI mapping.

A REFERENCE property is used to provide a named reference to a
node elsewhere in the workspace. The value of the property is the
UUID of the node to which it refers. Consequently, only a
referenceable node can be the target of a REFERENCE property (see
4.9 Referenceable Nodes). REFERENCE properties have the
additional semantic feature of maintaining referential integrity by
preventing the removal of any node that is currently the target of a
reference property. To remove a node that is the target of a
REFERENCE, one must first remove the REFERENCE. The check for
referential integrity is done when an attempt is made to persist the
removal of a node (that is, either on save, or, if the change was
made within a transaction, on commit; in any case, the check is not
done immediately on remove). The method Node.getReferences()
can be used to find all REFERENCE properties that refer to a
particular node. The method Node.setProperty(String name,
Node value) can be used to set the value of a REFERENCE property
to the UUID of the specified node.

In versioning repositories the version storage is exposed in the
workspace tree as a protected subtree below
jcr:system/jcr:versionStorage (see 8.2.2 Version Storage).
Within this subtree, the referential integrity requirement is lifted for
REFERENCE properties stored as part of the frozen state of a version
(see 8.2.2.9 Reference Properties within a Version).

4.7.3 No Null Values

Every property must have a value. The range of property states
does not include having a “null value”, or “no value”. Setting a
property to “null” is equivalent to removing that property. In the
case of multi-value properties, the setting of a particular value
within the array to null results in the removal of that value and the
compacting of the array. As a result it is possible to have a multi-
value property with no values (an empty array). See 7.1.5 Adding
and Writing Properties.

 31

4.8 Node Types

Every node must have one and only one primary node type. The
primary node type defines the names, types and other
characteristics of the properties and child nodes that a node is
allowed (or required) to have. Every node has a special property
called jcr:primaryType that records the name of its primary node
type.

In addition to its primary node type, a node may also have one or
more mixin types. These are node type definitions that can
mandate extra characteristics (i.e., more child nodes, properties
and their respective names and types) for a particular node in
addition to those enforced by its primary node type. When a node is
assigned a mixin node type, it acquires a special multi-value
property called jcr:mixinTypes that records its mixin node types.

Level 1 of the specification provides methods for discovering the
node types of existing nodes, and for discovering and reading the
definitions of node types available in the repository.

Level 2 of the specification provides methods for assigning primary
and mixin node types to nodes.

The specification does not attempt to provide methods for defining,
creating or managing primary or mixin node types.

This specification also provides a set of predefined primary and
mixin node types; some required and some optional. See 6.7 Node
Types.

4.9 Referenceable Nodes

The concept of the referenceable node is foundational to many
features of the repository, including multiple workspaces and
versioning. The following principles define the characteristics and
functioning of referenceable nodes:

• A repository may support referenceable nodes. To do this the
repository must support the mixin type mix:referenceable.

• The mix:referenceable type has the effect of enforcing, on
any node to which it is assigned, the presence of a property
called jcr:uuid.

• The jcr:uuid property is a protected, auto-created, mandatory
property. This means that it is created and administered by the
system and can only be read (but not changed or deleted) by
the client.

• The job of the jcr:uuid property is to expose the universally
unique identifier (UUID) of its node.

 32

• The UUID of a referenceable node is assigned on node creation
(or at least on node persistence) by the system itself.

• In a given workspace, there is never more than one node with a
given UUID, though there may be nodes that are not
mix:referenceable and so do not have UUIDs at all.

• If a node that is not mix:referenceable happens to have a
property called jcr:uuid, then this property has no special
significance (Note that adding such a property is not
recommended: In general, the jcr prefix should be reserved for
items defined within the specification, though this restriction
may not be enforced by the implementation).

• A repository implementation may make its workspace root
nodes mix:referenceable. If so, then the root node of all
workspaces must be referenceable, and all must have the same
UUID.

Some implementations may allow or even require every node to
have a UUID, and hence be mix:referenceable. In some cases
however, especially where this API is implemented on top of an
existing datastore, the provision of UUIDs for every node may be
impractical. For this reason, an implementation is free to enforce
whatever policies it wishes regarding where within a workspace tree
referenceable nodes may be created or existing nodes extended
with an assignment of mix:referenceable (in fact, this stems
from the more general principle that an implementation is free to
enforce such policies on the assignment of primary and mixin node
types in general).

4.9.1.1 When UUIDs are Assigned

In some client-server implementations the assignment of a
permanent UUID may be done on the server. In these cases it is
not practical for a newly created referenceable node to be given a
UUID upon creation. Rather, it makes more sense for the UUID to
be assigned upon save of that node. In such cases a “dummy
UUID” may be assigned on creation of a new node while the real
UUID assignment takes place later, upon save. Applications should
not, therefore, rely on the UUID of a node before that node is saved
for the first time.

4.9.1.2 Reference Properties

Being referenceable allows a node to be the target of a property of
PropertyType.REFERENCE. A REFERENCE property stores the UUID
of an existing node in the same workspace and it enforces
referential integrity (see 6.2.5.4 Reference). An exception to the
referential integrity rule is made for REFERENCE properties stored as
part of frozen version state in the version storage (see 8.2.2.9
Reference Properties within a Version).

 33

4.10 Workspaces

A content repository is composed of a number of workspaces. Each
workspace contains a single rooted tree of items. In the simplest
case a repository will consist of just one workspace. In more
complex cases a repository will consist of more than one
workspace.

4.10.1 Single Workspace Repositories

A repository with only a single workspace consists of a single tree
of nodes and properties. The example at the beginning of this
section (4 The Repository Model) describes a single workspace
repository.

Since a given workspace contains at most one node with a given
UUID, in this case, there is at most one node with a given UUID in
the repository as a whole.

The following diagram depicts a single workspace repository:

 34

The small circles represent nodes. The arrows point from parent to
child and are labeled with the name of the child. The name of the
root node is actually the empty string though, for clarity, it is
indicated here with the string “[root]”. The numbers within the
nodes represent the UUIDs of the nodes. For example, the UUID of
the root node / is 00 and the UUID of /a/d is 03. The node /a/c is
not referenceable and therefore does not have a UUID.

4.10.2 Multiple Workspaces and Corresponding Nodes

In repositories that have multiple workspaces, a node in one
workspace may have corresponding nodes in other workspaces. A
node's corresponding node is defined as follows:

• A node's corresponding nodes are those with the same
correspondence identifier.

• The correspondence identifier of a referenceable node is its
UUID.

• The correspondence identifier of a non-referenceable node
with at least one referenceable ancestor is the pair
consisting of the UUID of its nearest referenceable ancestor
and its relative path from that ancestor.

• The correspondence identifier of a non-referenceable node
with no referenceable ancestor is its absolute path.

Recall also that (as stated in 4.9 Referenceable Nodes) if a
repository has a workspace with a referenceable root node then all

[root]

a

c d

b

WS

Repository

00

01 02

03

 35

its workspaces must have referenceable root nodes and those root
nodes must all have the same UUID.

Apart from having the same correspondence identifier,
corresponding nodes need have nothing else in common. They can
have entirely different properties and child nodes, for example.

While a node may have a corresponding node in another
workspace, it is not required to.

Note that there is still at most one node with a given UUID per
workspace.

The update method,

Node.update(String srcWorkspace)

causes this node and its subtree to be replaced by a clone of this
nodes corresponding node and its subtree in srcWorkspace.

For more details on corresponding nodes and the update method
see 7.1.8 Updating and Cloning Nodes across Workspaces.

 36

4.10.2.1 Example

The following diagram shows a schematic of a two-workspace
repository.

Here we see two workspaces, WS1 and WS2. The dotted lines indicate
corresponding nodes. For example, the node /a in WS1 corresponds
to /m in WS2 because both have a UUID of 01. Similarly, /b in WS1
corresponds with /b in WS2. In these cases, because the nodes are
referenceable, their paths and names are not relevant in
determining their correspondence.

On the other hand, /a/c in WS1 corresponds with /m/c in WS2
because they have the same relative path (namely, c) from their
nearest referenceable corresponding ancestors (namely, /a and /m
in WS1 and WS2 respectively).

Note there can also be nodes (such as /a/d in WS1) that exist in one
workspace but not in the other.

[root]

a

c d

b

WS1

Repository

[root]

m

 c

b

WS2

00

01

01 02

00

02

03

 37

4.11 Versioning

Support for versioning is an optional feature. The versioning system
is built on top of the system of workspaces and referenceable nodes
described above.

In a repository that supports versioning, a workspace may contain
both versionable and nonversionable nodes. A node is versionable if
and only if it has been assigned the mixin type mix:versionable,
otherwise it is nonversionable. Repositories that do not support
versioning will simply not provide this mixin type, whereas
repositories that do support versioning must provide it. The type
mix:versionable is a subtype of mix:referenceable, so if a node
is versionable it is automatically also referenceable and thus has a
UUID.

Being versionable means that at any given time the node's state
can be saved for possible future recovery. This saved state is called
a version and the action of saving it is called checking in.

Versions exist as part of a version history. Within a version history,
the versions form a version graph that describes the
predecessor/successor relations among versions of a particular
versionable node.

Version histories and their contained versions are stored in version
storage. There is one version storage per repository, though it is
exposed in each workspace as a special protected subtree below
the node /jcr:system/jcr:versionStorage.

4.11.1.1 Relation Between Nodes and Version Histories

The relationship between nodes and version histories is built on the
notion of correspondence via UUID. The details are as follows:

• Each set of corresponding versionable nodes (nodes with the
same UUID) share the same version history.

• In a given workspace, there is at most one versionable node
per version history (this follows directly from the fact that
there is at most one node from each correspondence set per
workspace).

• Given a particular workspace, there may be version histories
for which that particular workspace does not contain a
corresponding versionable node.

• A workspace may contain nonversionable nodes, which, of
course, never have corresponding version histories.

• When a new versionable node is created (i.e., the first
instance in the repository as whole) a version history for
that node is automatically created in version storage.

 38

• If a versionable node is cloned to another workspace, it
maintains the same UUID and the new corresponding
versionable node remains associated with the original's
version history.

• Note that since all versionable nodes are by definition
referenceable, there is no need to include the qualification
involving relative paths to the nearest versionable node (or
root node) as in the discussion of update, above.

 39

4.11.1.2 Example

The following diagram illustrates a possible repository architecture.

This diagram shows a repository that supports versioning and
contains two workspaces. The version storage is represented by the
area in the bottom. It contains a version history for each
versionable node in the repository. The versionable nodes in the
workspaces are shown in various shadings. The nonversionable
nodes are shown in white.

[root]

a

c d

b

WS1

Repository

[root]

m

 c

b

WS2

00

01

01 02

00

02

00 01 02

Version Storage

03

 40

All versionable nodes are referenceable, though not all
referenceable nodes are versionable (for example the node 03 in
WS1 is referenceable, because it has a UUID, but it is not
versionable). Both WS1 and WS2 also contain nonreferenceable nodes
(the nodes c below 01).

In the diagram the version histories are represented by stacked
circles of differing shades. Each versionable node shares its version
history with its corresponding node in the other workspace.

At any given time a particular workspace may hold nodes based on
various versions stored in version storage. In the diagram, WS1
holds nodes based on the “light gray” version of the nodes 00, 01
and 02. WS2, in contrast, has nodes based on the “dark gray”
version of 00, the “light gray” version of 01 and the “dotted”
version of 02.

Note that for the purposes of illustration, each version history is
depicted as containing three versions. This is a simplification; in an
actual system the version histories of distinct nodes may differ.
Furthermore, in this picture, parent child relations within the
version storage are not shown. See 8.2 Versioning for a more
detailed description.

4.12 Metadata

All content in the repository is ultimately accessed through
properties (that is, objects that implement the Property interface).
The API does not distinguish between “real” content and meta-
content.

Such a separation would only duplicate the entire API, since one
would probably want to provide the same functionality for handling
both meta-content and primary content. The distinction is in any
case only meaningful at the level of the application, not the
repository. Any particular application built on top of a compliant
repository may, of course, choose which content is to be considered
“meta”, and which primary.

However, the API does provide the concept of the primary child
item. Any one of a node’s child items may be specified as its
primary child item. This item can be directly accessed (without
knowing its name) with the method Node.getPrimaryItem(). The
primary item of a particular node (if it has one) is declared in its
node type.

4.13 Hierarchical versus Direct Access

Though this specification provides a hierarchical, tree-based view of
content, it is also compatible with repository implementations that
are not primarily hierarchy-based.

 41

Though such implementations must still expose a hierarchical
structure, the flexibility of this specification ensures that this need
not be a particularly restrictive requirement. The following
strategies, amongst others, can be adopted by implementations
that are not primarily hierarchical:

• The exposed hierarchy can be almost flat. A very shallow
tree consisting of a root node with a large set of child nodes
or properties is a valid arrangement. The names of the
nodes may be identical with the UUIDs of the nodes.

• There is no requirement that a particular hierarchical view of
the repository be in any way “primary”. Through the use of
REFERENCE properties feature, many orthogonal hierarchical
views of the same underlying content are supported. This
does away with the notion that there is a single canonical
hierarchy. See, for example, 6.7.22.7 nt:linkedFile.

• Hierarchical navigation is only one possible way to access
the repository. The specification also supports a search
query interface (see 6.6 Searching Repository Content). In
addition, direct access via node UUID is also provided (see
6.2.1 Session Read Methods).

 42

5 Example Implementations

5.1 A File System-backed Content Repository

An obvious implementation of a content repository is as a layer on
top of a conventional file system.

Consider, for example, a file system with the following layout:

content/
 newpaintings/
 bigredstripe.gif
 bigredstripe.desc
 oldpaintings/
 sistinechapel.gif
 sistinechapel.desc

Here is a possible mapping of this file structure to the content
repository:

Node
Property = "..."

content/ /
 newpaintings/ ├─newpaintings
 bigredstripe.gif │ ├─bigredstripe.gif
 (creation date of the file) │ │ ├─jcr:created = "2001-01-01T00:00:00.000Z"
 <binary data> │ │ └─jcr:content

│ │ └─myapp:data = <binary data>
 bigredstripe.desc │ └─bigredstripe.desc
 (creation date of the file) │ ├─jcr:created = "2001-01-02T00:00:00.000Z"
 "An excellent example..." │ └─jcr:content

│ └─myapp:data = "An excellent..."
 oldpaintings/ └─oldpaintings
 sistinechapel.gif ├─sistinechapel.gif
 (creation date of the file) │ ├─jcr:created = "2001-01-03T00:00:00.000Z"
 <binary data> │ └─jcr:content

 │ └─myapp:data = <binary data>
 sistinechapel.desc └─sistinechapel.desc
 (creation date of the file) ├─jcr:created = "2001-01-04T00:00:00.000Z"
 "Not bad." └─jcr:content

 └─myapp:data = "Not bad."

In this example, both directories and files are mapped to nodes.
Nodes that represent files have a jcr:created property and a
jcr:content node. The jcr:content node in turn has a single
myapp:data property that holds the actual contents of the
corresponding file (note that the nodes representing the files
bigredstripe.gif and so forth, are of node type nt:file; see
6.9.22.6 nt:file).

A variation on the above arrangement is to reflect the directory
structure directly but combine the file pairs (the picture and the
description text) into a single node:

Node/
Property = "..."

content/ /
 newpaintings/ ├─newpaintings
 bigredstripe.gif │ └─bigredstripe
 (creation date of .gif or .desc
 whichever was first)

│ ├─jcr:created = "2001-05-03T00:00:00.000Z"
│ │

 43

 <binary data> │ └─jcr:content
│ ├─myapp:image = <binary data>

 bigredstripe.desc
 "An excellent example
 of stripeism."

│ └─myapp:desc = "An excellent example
│ of stripeism."
│

 oldpaintings/ └─oldpaintings
 sistinechapel.gif └─sistinechapel
 (creation date of .gif or .desc
 whichever was first)

 ├─jcr:created = "2001-06-04T00:00:00.000Z"
 │

 <binary data> └─jcr:content
 ├─myapp:image = <binary data>

 sistinechapel.desc
 "Not bad."

 └─myapp:desc = "Not bad."

In this example, there is no longer a one-to-one correspondence
between file and hierarchy node (though as above, nodes of type
nt:file combined with application-specific content node types are
used).

5.2 A WebDAV-backed Content Repository

Consider a repository with some arbitrary underlying
implementation structure (file system, database) but which exposes
its content via a WebDAV interface.

In such a case, the implementer might choose to implement this
specification not directly on top of the underlying system but on top
of the existing WebDAV layer.

The mapping from the exposed WebDAV structure to the repository
hierarchy can be done quite directly using a mapping similar to that
described above in the file system example.

In addition to this, all supplemental information of a WebDAV
resource, such as properties, locking information, etc. can be
mapped to repository properties.

 /
/newpaintings/ └─newpaintings
 bigredstripe.gif └─bigredstripe.gif
 <PROPFIND/newpaintings/bigredstripe.gif> │
 DAV:displayname ├─myapp:name = "Big Red Stripe"
 DAV:creationdate ├─jcr:created = "2001-05-03

 │ T00:00:00.000Z"
 └─jcr:content
 DAV:getlastmodified ├─jcr:lastModified = "2001-05-03

 │ T00:00:00.000Z"
 DAV:getcontenttype ├─jcr:mimeType = "image/gif"
 <GET /newpaintings/bigredstripe.gif> └─jcr:data = <binary data>

In this example, the file bigredstripe.gif is represented by a
subtype of nt:file and the jcr:content subnode is of type
nt:resource.

5.3 Database-backed Content Repository

A compliant repository can also be implemented on top of a
database. Consider again the following repository structure:

Node/
Property = "..."

 44

/
├─newpaintings
│ └─bigredstripe
│ ├─jcr:created = "2001-05-03T00:00:00.000Z"
│ │
│ └─jcr:content
│ ├─myapp:image = <binary data>
│ └─myapp:desc = "An excellent example
│ of stripeism."
│
└─oldpaintings
 └─sistinechapel
 ├─jcr:created = "2001-06-04T00:00:00.000Z"
 │
 └─jcr:content
 ├─myapp:image = <binary data>
 └─myapp:desc = "Not bad."

One possible implementation is to use four tables, a NODES table
and three XXXX_PROPERTIES tables, one for each of the three
property types used in the example:

NODES
name id parent_id
<jcr:root> 0 0
newpaintings 1 0
bigredstripe 2 1
jcr:content 3 2
oldpaintings 4 0
sistinechapel 5 4
jcr:content 6 5

DATE_PROPERTIES
name value parent_id
jcr:created 2001-05-03T00:00:00.000Z 2
jcr:created 2001-06-04T00:00:00.000Z 5

TEXT_PROPERTIES
name value parent_id
myapp:desc An excellent... 3
myapp:desc Not bad. 6

BLOB_PROPERTIES
name value parent_id
myapp:image <BLOB> 3
myapp:image <BLOB> 6

5.4 XML-backed Content Repository

Another possible implementation is as a layer on top of a file
system where that file system contains structured content in the
form of XML files.

Let’s say that the file system looks like this:

/

 45

 products.xml
 people.xml
 services.xml
 products/
 rhombus.xml
 ...
 people/
 ...
 services/
 ...

And products.xml looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<content>
 <title>Our Products</title>
 <lead>Geometrixx is proud to offer...</lead>
 <paragraph>
 <text>Geometrixx is the industry leader...</text>
 
 </paragraph>
 <paragraph>
 <text>We have recently...</text>
 
 </paragraph>
</content>

And similarly, rhombus.xml looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<content>
 <title>Rhombus: The shape of things to come!</title>
 <price>123.00</price>
 <lead>Here at Geometrixx...</lead>
 <paragraph>
 <text>The rhombus is a very special shape...</text>
 
 </paragraph>
 <paragraph>
 <text>Some say a square is...</text>
 
 </paragraph>
</content>

One way of mapping this to a content repository would be:

 46

Node
Property = "Some value"

/ [root]
 products.xml ├─products
 [creation date of the file] │ ├─jcr:created = "2001-01-01T..."
 <?xml version=”1.0”...?>
 <content>

│ ├─jcr:content
│ │ │

 <title>Our Products</title> │ │ ├─myapp:title = "Our Products"
 <lead>Geometrixx is...</lead> │ │ ├─myapp:lead = "Geometrixx is..."
 <paragraph> │ │ ├─myapp:paragraph[1]
 <text>Geometrixx is...</text> │ │ │ ├─myapp:text = "Geometrixx is..."
  │ │ │ └─myapp:image = <binary data>
 </paragraph> │ │ │
 <paragraph> │ │ └─myapp:paragraph[2]
 <text>We have...</text> │ │ ├─myapp:text = "We have..."
  │ │ └─myapp:image = <binary data>
 </paragraph>
 </content>

│ │
│ │

 products/ │ │
 rhombus.xml │ ├─rhombus
 [creation date of the file] │ │ ├─jcr:created = "2002-06-01T..."
 <?xml version=“1.0“...?>
 <content>

│ │ └─jcr:content
│ │ │

 <title>Rhombus:...</title> │ │ ├─myapp:title = "Rhombus:..."
 <price>123.00</price> │ │ ├─myapp:price = "123.00"
 <lead>Here at...</lead> │ │ ├─myapp:lead = "Here at..."
 <paragraph> │ │ ├─myapp:paragraph[1]
 <text>The rhombus...</text> │ │ │ ├─myapp:text = "The rhombus..."
  │ │ │ └─myapp:image = [binary data]
 </paragraph> │ │ │
 <paragraph> │ │ └─myapp:paragraph[2]
 <text>Some say...</text> │ │ ├─myapp:text = "Some say..."
  │ │ └─myapp:image = <binary data>
 </paragraph>
 </content>
 ...

│ │
│ │
│ ...

 people.xml ├─people
 [creation date of the file] │ ├─jcr:created = "2001-01-01T..."
 <?xml version=“1.0“...?>
 <content>
 ...

│ ├─jcr:content
│ │ │
│ │ ...

 people/ │ │
 fred.xml │ ├─fred
 [creation date of the file] │ │ ├─jcr:created = "2001-12-01T..."
 <?xml version=“1.0“...?>
 ...

│ │ ├─jcr:content
...

This example demonstrates the use of a fine-grained content model
where the mapping to a node-property structure extends from the
folder and file level into the internal structure of the XML document.

Note that this example is just one possible mapping; it is not meant
to imply that this is the only mapping between the repository and
XML (see, for example, 6.4 XML Mappings).

5.5 Namespace Prefixes in the Examples

In the above examples, we use colon-delimited prefixes for naming
certain nodes and properties. The nodes and properties fall into
three categories:

• Nodes and properties common to all applications: In
the example these include jcr:content and jcr:created.
This naming convention is enforced by the node types built
into the repository. For example, in 5.1, the node

 47

bigstripe.gif is mapped to a node of type nt:file, and
that node type requires the node to have a property named
jcr:created and a child node named jcr:content (see
6.7 Node Types).

• Nodes and properties specific to the application: In
the examples we use myapp. These names could be
enforced by application-specific node types.

• Nodes and properties with names taken from existing
resources: These include the file and directory names
products and rhombus in example 5.4. Since in these
examples these names are taken directly from the
underlying resources, they happen not to be namespaced.
In general however, a mapping to namespaced names
could just as well be used.

For more details see 6.3 Namespaces.

 48

6 Level 1 Repository Features
The following section explains level 1 of the API on a functional
basis. For an explanation organized on an interface-by-interface
basis, see the accompanying Javadoc.

Level 1 defines a read-only repository. This encompasses the
following functionality:

• Retrieval and traversal of nodes and properties

• Reading the values of properties

• Transient namespace remapping

• Export to XML/SAX

• Query facility with XPath syntax

• Discovery of available node types

Where a level 2 repository (or a repository supporting an optional
feature, such as versioning) would differ from a purely level 1
repository, the relevant difference is noted.

Since level 2 is a superset of level 1, anything required for level 1
compliance is automatically required for level 2 (see 4.2
Compliance Levels). Thus, this section applies to level 2
implementations as well.

Note that in the discussion below, reference to a “level 1
repository” means a repository that implements only level 1
features.

 49

6.1 Accessing the Repository

The point of entry is the Repository object, which will typically be
acquired through the Java Naming and Directory (JNDI) API.

6.1.1 Repository

The naming service lookup (or whatever mechanism is used) will
return an object implementing the Repository interface.

javax.jcr.
Repository

Session login(Credentials credentials,
 String workspaceName)

Authenticates the user using the supplied
credentials. If workspaceName is recognized as the
name of an existing workspace in the repository and
authorization to access that workspace is granted, then
a new Session object is returned. The format of the
string workspaceName depends upon the
implementation.

If credentials is null, it is assumed that
authentication is handled by a mechanism external to
the repository itself (for example, through the JAAS
framework) and that the repository implementation
exists within a context (for example, an application
server) that allows it to handle authorization of the
request for access to the specified workspace. See 8.4
Access Control for more details.

If workspaceName is null, a default workspace is
automatically selected by the repository
implementation. This may, for example, be the “home
workspace” of the user whose credentials were passed,
though this is entirely up to the configuration and
implementation of the repository. Alternatively, this
may be a “null workspace” that serves only to provide
the method
Workspace.getAccessibleWorkspaceNames, allowing
the client to select from among available “real”
workspaces (see 6.2.2 Workspace Read Methods).

If authentication or authorization for the specified
workspace fails, a LoginException is thrown.

If workspaceName is not recognized, a
NoSuchWorkspaceException is thrown.

A RepositoryException is thrown if another error
occurs.

 50

Session login(Credentials credentials)

Equivalent to login(credentials, null).

Session login(String workspaceName)

Equivalent to login(null, workspaceName).

Session login()

Equivalent to login(null, null).

String[] getDescriptorKeys()

Returns a string array holding all descriptor keys
available for this implementation. This set must contain
at least the built-in keys defined by the string
constants in this interface (see below). Used in
conjunction with Repository.getDescriptor(String
name) to query information about this repository
implementation.

String getDescriptor(String key)

Returns the descriptor for the specified key. Used to
query information about this repository
implementation. The set of available keys can be found
by calling getDescriptorKeys. If the specified key is
not found, null is returned.

6.1.1.1 Repository Descriptors

The methods Repository.getDescriptorKeys and
Repository.getDescriptor can be used to query information
about the particular repository implementation. The required names
are defined as string constants of the Repository interface. They
are:

Descriptor Key
(String Constant)

Information Returned

SPEC_VERSION_DESC For this specification the value of this
descriptor is “1.0”.

SPEC_NAME_DESC For this specification the value of this
descriptor is “Content Repository for
Java Technology API”.

REP_VENDOR_DESC The name of the vendor of this
repository implementation.

REP_VENDOR_URL_DESC The URL of the repository vendor.

 51

REP_NAME_DESC The name of this repository
implementation.

REP_VERSION_DESC The version of this repository
implementation.

LEVEL_1_SUPPORTED Indicates whether this implementation
supports all level 1 features. This
descriptor should always be “true”.

LEVEL_2_SUPPORTED Indicates whether this implementation
supports all level 2 features. This
descriptor will be either “true” or
“false”.

OPTION_TRANSACTIONS_SUPPORTED Indicates whether this implementation
supports transactions. This descriptor
will be either “true” or “false”.

OPTION_VERSIONING_SUPPORTED Indicates whether this implementation
supports versioning. This descriptor will
be either “true” or “false”.

OPTION_OBSERVATION_SUPPORTED Indicates whether this implementation
supports observation. This descriptor
will be either “true” or “false”.

OPTION_LOCKING_SUPPORTED Indicates whether this implementation
supports locking. This descriptor will be
either “true” or “false”.

OPTION_QUERY_SQL_SUPPORTED Indicates whether this implementation
supports queries using the SQL
language. This descriptor will be either
“true” or “false”.

QUERY_XPATH_POS_INDEX Indicates whether this implementation
supports index position notation for
same-name siblings within XPath
queries. This descriptor will be either
“true” or “false”. See 6.6.4.1 Adapting
XPath to the Content Repository::Same-
Name Siblings for more details.

QUERY_XPATH_DOC_ORDER Indicates whether this implementation
returns the results of XPath queries in
document order. This descriptor will be
either “true” or “false”. See 6.6.4.2
Adapting XPath to the Content
Repository::Document Order.

Implementations may add additional descriptors.

 52

6.1.1.2 Thread Safety of Repository Methods

An implementation is required to provide thread-safe
implementations of all the methods of the Repository interface.
Note that this requirement is of more relevance in a level 2
implementation than a pure level 1 implementation. See 7.5
Thread-Safety Requirements.

6.1.2 Credentials

The credentials that are passed must implement the empty marker
interface Credentials.

The implementer may either provide its own custom
implementation or use the provided SimpleCredentials class. This
class provides a minimal standard method for authenticating
against a repository (i.e., using a user ID and password). Additional
attributes may be used by the repository, for example, to set a
token that can then be passed back and forth once authentication
has been completed (thus enabling later authorization without re-
authentication).

javax.jcr.
SimpleCredentials

String SimpleCredentials(String userID, char[] password)

Create a new SimpleCredentials object, given a user ID and
password. Note that the given password is cloned before it is
stored in the new SimpleCredentials object. This should avoid
the risk of having unnecessary references to password data lying
around in memory.

String getUserID()

Gets the user ID.

char[] getPassword()

Returns the password. Note that this method returns a reference
to the password. It is the caller's responsibility to zero out the
password information after it is no longer needed.

void setAttribute(String name, Object value)

Stores an attribute in this credentials instance.

void removeAttribute(String name)

Removes an attribute from this credentials instance.

Object getAttribute(String name)

Returns the value of the named attribute as an Object, or null if
no attribute of the given name exists.

 53

String[] getAttributeNames()

Returns the names of the attributes available to this credentials
instance. This method returns an empty array if the credentials
instance has no attributes available to it.

 54

6.2 Reading Repository Content

Reading repository content involves accessing nodes (either directly
or by traversing the hierarchy step by step) and reading the values
of properties.

The Session object returned by Repository.login encapsulates
both the authorization settings of a particular user (as determined
by the Credentials object) and a binding to the workspace
specified by the workspaceName passed on login.

Each Session object is associated one-to-one with a Workspace
object. The Workspace object represents a “view” of an actual
repository workspace entity as seen through the authorization
settings of its associated Session.

There is an important distinction between the Workspace object
instance associated with a particular Session and the actual
workspace entity in the repository. If multiple Sessions access a
particular workspace each will have its own Workspace object, even
though all of these Workspace objects may represent the same
actual workspace entity in the repository. In other words, a
Workspace object corresponds to a view of a particular workspace
entity, and that view is determined by the Session associated with
the Workspace object.

On the other hand, each Session object represents a separate
session entity. Two or more Session instances can exist for the
same Credentials and the same workspaceName but still have
different states.

Since Session and Workspace instances are always associated one-
to-one, combining them into a single object might seem logical.
However, the distinction between the two objects comes into play
in level 2 implementations, where writing to the repository can
occur in two ways, either through transient storage (associated with
the Session object) or directly to the persistent layer (associated
with the Workspace object). It is primarily to differentiate these two
modes of writing that the distinction between the two objects is
maintained. See 4.1.3.2 Transient Storage in the Session and 7.1
Writing Repository Content for more details.

In a level 1 repository the distinction between Session and
Workspace objects does not play a significant role. It exists simply
for the sake of compatibility with level 2.

6.2.1 Session Read Methods

The following are the methods of Session associated with accessing
information about a repository and for accessing content from this
Session's workspace. Session has other methods as well. In a
level 1-only implementation, these other methods will either do

 55

nothing or throw an exception. See and 7.1 Writing Repository
Content.

The most important methods exposed by Session are those that
provide access to the Items in the workspace tree: typically the
user would begin by calling Session.getRootNode(), which returns
the root node of the workspace. From this the user can traverse the
workspace tree. It is also possible to directly access a node in the
workspace with Session.getNodeByUUID or Session.getItem.

javax.jcr.
Session

Repository getRepository()

Returns the Repository object through which this
Session was acquired.

String getUserID()

Gets the user ID associated with this Session. How the
user ID is set is up to the implementation, it may be a
string passed in as part of the credentials or it may be a
string acquired in some other way. This method is free
to return an “anonymous user ID” or null.

String[] getAttributeNames()

Returns the names of the attributes set in this session
as a result of the Credentials that were used to
acquire it. Not all Credentials implementations will
contain attributes (though, for example,
SimpleCredentials does allow for them). This method
returns an empty array if the Credentials instance did
not provide attributes.

Object getAttribute(String name)

Returns the value of the named attribute as an Object,
or null if no attribute of the given name exists. See
Session.getAttributeNames, above.

Workspace getWorkspace()

Returns the Workspace attached to this Session.

Node getRootNode()

Returns the root node of the workspace, /. This node is
the main access point to the content of the workspace.

A RepositoryException is thrown if an error occurs.

Item getItem(String absPath)

 56

Returns the item at the specified absolute path in the
workspace.

A PathNotFoundException is thrown if no item at
absPath exists.

A RepositoryException is thrown if another error
occurs.

boolean itemExists(String absPath)

Returns true if an item exists at absPath and this
Session has read access to it; otherwise returns false.

A RepositoryException is thrown if absPath is not a
well-formed absolute path.

Node getNodeByUUID(String uuid)

Returns the node specified by the given UUID. Only
applies to nodes that expose a UUID, in other words,
those of mixin node type mix:referenceable.

An ItemNotFoundException is thrown if no item with
the specified UUID exists.

A RepositoryException is thrown if another error
occurs.

Session impersonate(Credentials c)

Returns a new Session in accordance with the specified
(new) Credentials. Allows the current user to
“impersonate” another using incomplete or relaxed
credentials requirements (perhaps including a user
name but no password, for example), assuming that
this Session gives them that permission.

The new Session is tied to a new Workspace instance.
In other words, Workspace instances are not re-used.
However, the Workspace instance returned represents
the same actual persistent workspace entity in the
repository as is represented by the Workspace object
tied to this Session.

A LoginException is thrown if this session does not
have sufficient permissions to perform the operation.

A RepositoryException is thrown if another error
occurs.

void logout()

Releases all resources associated with this Session.
This method should be called when a Session is no

 57

longer needed.

boolean isLive()

Returns true if this Session object is usable by the
client. A usable Session object is one that is neither
logged-out, timed-out nor in any other way
disconnected from the repository.

6.2.2 Workspace Read Methods

In a level 1 repository the Workspace object serves only to
encapsulate a number of methods for accessing either information
about the Workspace or classes that provide further repository
functions. The following are the level 1 methods of Workspace.
Workspace has other methods as well, though in a level 1-only
implementation these will either do nothing or throw an exception.

javax.jcr.
Workspace

Session getSession()

Returns the Session object through which this
Workspace object was acquired.

String getName()

Returns the name of the actual persistent workspace
represented by this Workspace object. This is the
name used in Repository.login.

QueryManager getQueryManager()

Returns the QueryManager, through which search
methods are accessed. See 6.6 Searching Repository
Content.

A RepositoryException is thrown if an error occurs.

NamespaceRegistry getNamespaceRegistry()

Returns the NamespaceRegistry object, which can
be used to access the mapping between prefixes and
namespaces. See 6.3 Namespaces.

A RepositoryException is thrown if an error occurs.

NodeTypeManager getNodeTypeManager()

Returns the NodeTypeManager, which is used to
access information about which node types are
available in the repository. There is one node type
registry per repository, therefore the

 58

NodeTypeManager is not workspace-specific; it
provides introspection methods for the global,
repository-wide set of available node types. See 6.7
Node Types.

A RepositoryException is thrown if an error occurs.

String[] getAccessibleWorkspaceNames()

Returns an string array containing the names of all
workspaces in this repository that are accessible to
this user, given the Credentials that were used to
get the Session to which this Workspace is tied.

In order to access one of the listed workspaces, the
user performs another Repository.login, specifying
the name of the desired workspace, and receives a
new Session object.

A RepositoryException is thrown if an error occurs.

6.2.3 Node Read Methods

The following are the level 1 methods of Node. They are used for
getting the child nodes and properties of a node. The Node interface
has other methods as well, though in a level 1-only implementation
they will either do nothing or throw an exception.

javax.jcr.
Node

Node getNode(String relPath)

Returns the node at relPath relative to this node.

If relPath contains a path element that refers to a
node with same-name sibling nodes without explicitly
including an index using the array-style notation ([x]),
then the index [1] is assumed (See 4.3 Same-Name
Siblings).

Within the scope of a single Session object, if a node
has been acquired with getNode, any subsequent call
of getNode reacquiring the same node must return a
Node object reflecting the same state as the earlier
Node object. Whether this object is actually the same
Node instance, or simply one wrapping the same state,
is up to the implementation. See 7.1.3.1 Re-using
Item Objects.

If no node exists at relPath a
PathNotFoundException is thrown.

 59

A RepositoryException is thrown if another error
occurs.

NodeIterator getNodes()

Returns all child nodes of this node. Does not include
properties of this node. The same reacquisition
semantics apply as with getNode. If this node has no
child nodes, then an empty iterator is returned.

A RepositoryException is thrown if another error
occurs.

NodeIterator getNodes(String namePattern)

Gets all child nodes of this node that match
namePattern. The pattern may be a full name or a
partial name with one or more wildcard characters
("*"), or a disjunction (using the “|” character to
represent logical OR) of these. For example,

N.getNodes("jcr:* | myapp:report | my doc")

would return a NodeIterator holding all child nodes of
N that are either called 'myapp:report', begin with the
prefix 'jcr:' or are called 'my doc'.

Note that leading and trailing whitespace around a |
character is ignored, but whitespace within a disjunct
forms part of the pattern to be matched.

The EBNF for namePattern is:

namePattern ::= disjunct {'|' disjunct}
disjunct ::= name [':' name]
name ::= '*' |
 ['*'] fragment {'*' fragment}['*']
fragment ::= char {char}
char ::= nonspace | ' '
nonspace ::= (* Any Unicode character except:
 '/', ':', '[', ']', '*',
 ''', '"', '|' or any whitespace
 character *)

The pattern is matched against the names (not the
paths) of the immediate child nodes of this node.

If this node has no matching child nodes, then an
empty iterator is returned.

The same reacquisition semantics apply as with
getNode.

A RepositoryException is thrown if an error occurs.

 60

Property getProperty(String relPath)

Get the property at relPath relative to this node. The
same reacquisition semantics apply as with getNode.

If no property exists at relPath a
PathNotFoundException is thrown.

A RepositoryException is thrown if another error
occurs.

PropertyIterator getProperties()

Gets all properties of this node. Does not include child
nodes of this node. The same reacquisition semantics
apply as with getNode. If this node has no properties,
then an empty iterator is returned.

A RepositoryException is thrown if an error occurs.

PropertyIterator getProperties(String namePattern)

Gets all properties of this node that match
namePattern. The pattern may be a full name or a
partial name with one or more wildcard characters
("*"), or a disjunction (using the “|” character to
represent logical OR) of these. For example,

N.getProperties("jcr:* | myapp:name | my doc")

would return a PropertyIterator holding all
properties of N that are either called 'myapp:name',
begin with the prefix 'jcr:' or are called 'my doc'.

Note that leading and trailing whitespace around a
disjunct is ignored, but whitespace within a disjunct
forms part of the pattern to be matched.

The EBNF for namePattern is:

namePattern ::= disjunct {'|' disjunct}
disjunct ::= name [':' name]
name ::= '*' |
 ['*'] fragment {'*' fragment}['*']
fragment ::= char {char}
char ::= nonspace | ' '
nonspace ::= (* Any Unicode character except:
 '/', ':', '[', ']', '*',
 ''', '"', '|' or any whitespace
 character *)

The pattern is matched against the names (not the
paths) of the immediate child properties of this node.

If this node has no matching properties, then an

 61

empty iterator is returned.

The same reacquisition semantics apply as with
getNode.

A RepositoryException is thrown if an error occurs.

Item getPrimaryItem()

The primary node type (see 6.7 Node Types) of this
node may specify one child item (child node or
property) of this node as the primary child item. This
method returns that item.

In cases where the primary child item specifies the
name of a set of same-name sibling child nodes, the
node returned will be the one among the same-name
siblings with index [1].

The same reacquisition semantics apply as with
getNode.

If this node has no primary child item, either because
none is declared in the node type or because a
declared primary item is not present on this node
instance, then this method throws an
ItemNotFoundException.

A RepositoryException is thrown if another error
occurs.

String getUUID()

Returns the UUID of this node as recorded in the
node's jcr:uuid property. This method only works on
nodes of mixin node type mix:referenceable.

On nonreferenceable nodes, this method throws an
UnsupportedRepositoryOperationException. To
avoid throwing an exception to determine whether a
node has a UUID, a call to
isNodeType("mix:referenceable") can be made.

A RepositoryException is thrown if another error
occurs.

int getIndex()

This method returns the index of this node within the
ordered set of its same-name sibling nodes. This index
is the one used to address same-name siblings using
the square-bracket notation, e.g., /a[3]/b[4]. Note
that the index always starts at 1 (not 0), for
compatibility with XPath. As a result, for nodes that do

 62

not have same-name-siblings, this method will always
return 1.

PropertyIterator getReferences()

Returns all REFERENCE properties that refer to this
node.

Some level 2 implementations may only return
properties that have been saved (in a transactional
setting this includes both those properties that have
been saved but not yet committed, as well as
properties that have been committed). Other level 2
implementations may additionally return properties
that have been added within the current Session but
are not yet saved.

In implementations that support versioning, this
method does not return REFERENCE properties that are
part of the frozen state of a version in version storage.

If this node has no references, an empty iterator is
returned.

A RepositoryException is thrown if an error occurs.

boolean hasNode(String relPath)

Returns true if a node exists at relPath and false
otherwise.

boolean hasNodes()

Returns true if this node has one or more child nodes.
Returns false otherwise.

boolean hasProperty(String relPath)

Returns true if a property exists at relPath and false
otherwise.

boolean hasProperties()

Returns true if this node has one or more properties.
Returns false otherwise.

6.2.4 Property Read Methods

The following are the level 1 methods of Property. They are used
for reading a property. The Property interface has other methods
as well, though in a level 1-only implementation they will either do
nothing or throw an exception.

 63

javax.jcr.
Property

Value getValue()

Returns the value of this property as a Value object.

If this property is multi-valued, this method throws a
ValueFormatException.

The object returned is a copy of the stored value and
is immutable.

A RepositoryException is thrown if an error occurs.

Value[] getValues()

Returns an array of all the values of this property.
This method is used to access multi-value properties.

If the property is single-valued, this method throws a
ValueFormatException.

The array returned is a copy of the stored values, so
changes to it are not reflected in internal storage.

A RepositoryException is thrown if an error occurs.

String getString()

Returns a String representation of the value of this
property. A shortcut for
Property.getValue().getString(). See 6.2.7
Value.

If this property is multi-valued, this method throws a
ValueFormatException.

If the value of this property cannot be converted to a
String, a ValueFormatException is thrown.

A RepositoryException is thrown if another error
occurs.

InputStream getStream()

Returns an InputStream representation of the value
of this property. A shortcut for
Property.getValue().getStream(). See 6.2.7
Value.

If this property is multi-valued, this method throws a
ValueFormatException.

A RepositoryException is thrown if another error

 64

occurs.

long getLong()

Returns a long representation of the value of this
property. A shortcut for
Property.getValue().getLong(). See 6.2.7 Value.

If this property is multi-valued, this method throws a
ValueFormatException.

If the value of this property cannot be converted to a
long, a ValueFormatException is thrown.

A RepositoryException is thrown if another error
occurs.

double getDouble()

Returns a double representation of the value of this
property. A shortcut for
Property.getValue().getDouble(). See 6.2.7
Value.

If this property is multi-valued, this method throws a
ValueFormatException.

If the value of this property cannot be converted to a
double, a ValueFormatException is thrown.

A RepositoryException is thrown if another error
occurs.

Calendar getDate()

Returns a Calendar representation of the value of
this property. A shortcut for
Property.getValue().getDate() See 6.2.7 Value.

The object returned is a copy of the stored value, so
changes to it are not reflected in internal storage.

If this property is multi-valued, this method throws a
ValueFormatException.

If the value of this property cannot be converted to a
Calendar, a ValueFormatException is thrown.

A RepositoryException is thrown if another error
occurs.

boolean getBoolean()

Returns a boolean representation of the value of this
property. A shortcut for
Property.getValue().getBoolean(). See 6.2.7

 65

Value.

If this property is multi-valued, this method throws a
ValueFormatException.

If the value of this property cannot be converted to a
boolean, a ValueFormatException is thrown.

A RepositoryException is thrown if another error
occurs.

Item getNode()

If this property is of type REFERENCE this method
returns the Node to which this property refers.

If this property is multi-valued, this method throws a
ValueFormatException.

If this property cannot be converted to a reference,
then a ValueFormatException is thrown.

If this property is a REFERENCE property but is
currently part of the frozen state of a version in
version storage, this method will throw a
ValueFormatException.

A RepositoryException is thrown if another error
occurs.

long getLength()

Returns the length of the value of this property in
bytes if the value is a PropertyType.BINARY,
otherwise it returns the number of characters needed
to display the value in its string form as defined in
 6.2.6 Property Type Conversion.

Returns –1 if the implementation cannot determine
the length of the value.

If this property is multi-valued, this method throws a
ValueFormatException.

A RepositoryException is thrown if another error
occurs.

long[] getLengths()

Returns an array holding the lengths of the values of
this (multi-value) property in bytes if the values are
PropertyType.BINARY, otherwise it returns the
number of characters needed to display each value in
its string form as defined in 6.2.6 Property Type
Conversion). The order of the length values

 66

corresponds to the order of the values in the
property.

Returns a –1 in the appropriate position if the
implementation cannot determine the length of a
value.

If this property is single-valued, this method throws a
ValueFormatException.

A RepositoryException is thrown if another error
occurs.

int getType()

Returns the type of this Property. The type returned
is that which was set at property creation. Note that
for some property p, the type returned by
p.getType() may differ from the type returned by
p.getDefinition.getRequiredType() only in the
case where the latter returns UNDEFINED. The type of
a property instance is never UNDEFINED (it must
always have some actual type). See 6.2.5 Property
Types and 6.7.18 Discovery of Constraints on Existing
Items.

6.2.5 Property Types

The class PropertyType defines integer constants for the available
property types as well as for their standardized type names (used
in serialization) and two methods for converting back and forth
between name and integer value:

javax.jcr.
PropertyType

int STRING

The STRING property type is used to store strings. It has
the same characteristics as the Java String class.

int BINARY

BINARY properties are used to store binary data.

int LONG

The LONG property type is used to store integers. It has the
same characteristics as the Java primitive type long.

 67

int DOUBLE

The DOUBLE property type is used to store floating point
numbers. It has the same characteristics as the Java
primitive type double.

int BOOLEAN

The BOOLEAN property type is used to store boolean values.
It has the same characteristics as the Java primitive type
boolean.

int DATE

The DATE property type is used to store time and date
information. See 6.2.5.1 Date.

int NAME

A NAME is a pairing of a namespace and a local name.
When read, the namespace is mapped to the current
prefix. See 6.2.5.2 Name.

int PATH

A PATH property is an ordered list of path elements. A path
element is a NAME with an optional index. When read, the
NAMEs within the path are mapped to their current prefix. A
path may be absolute or relative. See 6.2.5.3 Path.

int REFERENCE

A REFERENCE property stores the UUID of a referenceable
node (one having type mix:referenceable), which must
exist within the same workspace or session as the
REFERENCE property. A REFERENCE property enforces this
referential integrity by preventing (in level 2
implementations) the removal of its target node. See
6.2.5.4 Reference.

int UNDEFINED

This constant can be used within a property definition (see
6.7.6 Property Definitions) to specify that the property in
question may be of any type. However, it cannot be the
actual type of any property instance. For example it will
never be returned by Property.getType and (in level 2
implementations) it cannot be assigned as the type when
creating a new property.

 68

String TYPENAME_STRING == "String"

TYPENAME_BINARY == "Binary"

TYPENAME_LONG == "Long"

TYPENAME_DOUBLE == "Double"

TYPENAME_DATE == "Date"

TYPENAME_BOOLEAN == "Boolean"

TYPENAME_NAME == "Name"

TYPENAME_PATH == "Path"

TYPENAME_REFERENCE == "Reference"

TYPENAME_UNDEFINED == "Undefined"

These constants define the standard string forms of the
property types. These are used, for example, when
serializing content to XML. See 6.4 XML Mappings.

String nameFromValue(int type)

Returns the standard name of the given property type,
specified by its integer value.

int valueFromName(String name)

Returns the integer value of the given property type,
specified by its standard name.

6.2.5.1 Date

The text format of dates must follow the following ISO 8601:2000-
compliant format:

sYYYY-MM-DDThh:mm:ss.sssTZD

where:

sYYYY Four-digit year with optional leading positive (‘+’) or
negative (‘-’) sign. A negative sign indicates a year BCE. The
absence of a sign or the presence of a positive sign indicates a year
CE (for example, -0055 would indicate the year 55 BCE, while
+1969 and 1969 indicate the year 1969 CE).

MM Two-digit month (01 = January, etc.)

DD Two-digit day of month (01 through 31)

hh Two digits of hour (00 through 23)

mm Two digits of minute (00 through 59)

 69

ss.sss Seconds, to three decimal places (00.000
 through 59.999)

TZD Time zone designator (either Z for Zulu, i.e. UTC, or
 +hh:mm or -hh:mm, i.e. an offset from UTC)

Note that the "T" separating the date from the time and the
separators "-" and ":" appear literally in the string. See
http://www.w3.org/TR/NOTE-datetime for more information.

6.2.5.2 Name

A NAME is a pairing of a namespace and a local name. It must be
handled internally in such a way that when read through the API
the namespace is mapped to the current prefix. For example, if at
the time of reading the current prefix to URI mapping is:

 myapp -> http://mycorp.com/myapp

then a NAME with fully qualified form

 {http://mycorp.com/myapp}myItem

would be returned as the string:

 myapp:myItem

If the namespace were later remapped to

 yourapp -> http://mycorp.com/myapp

then the value returned would be the string

 yourapp:myItem

Note however, that how the NAME value is stored internally is up to
the implementation, as long as dynamic remapping is supported.

NAME properties are used for recording values such as node type
names (see 6.7.5 Special Properties jcr:primaryType and
jcr:mixinTypes) that must respect namespace mappings.

Upon save, a NAME property is validated according to two criteria:

• The prefix specified (if any) must be currently mapped to a
registered namespace (see 6.3 Namespaces).

• The syntax of the string specified must conform to the
following EBNF:

name ::= [prefix ':'] simplename

simplename ::= onecharsimplename |
 twocharsimplename |
 threeormorecharname

 70

onecharsimplename ::= (* Any Unicode character except:
 '.', '/', ':', '[', ']', '*',
 ''', '"', '|' or any whitespace
 character *)

twocharsimplename ::= '.' onecharsimplename |
 onecharsimplename '.' |
 onecharsimplename onecharsimplename

threeormorecharname ::= nonspace string nonspace

prefix ::= /* Any valid non-empty XML NCName */

string ::= char | string char

char ::= nonspace | ' '

nonspace ::= /* Any Unicode character except:
 '/', ':', '[', ']', '*',
 ''', '"', '|' or any whitespace
 character */

6.2.5.3 Path

A PATH property is an ordered list of path elements. A path element
is a NAME plus an with optional index. When read, the fully qualified
NAMEs within the path are mapped to their current prefix and the
result is returned as a string. A path may be absolute or relative.
For example, given the namespace mapping

 myapp -> http://mycorp.com/myapp

a PATH property value with fully qualified form

/{http://mycorp.com/myapp}document[1]/
{http://mycorp.com/myapp}paragraph[3]

would be returned as the string

 /myapp:document/myapp:paragraph[3]

If the namespace were later remapped to

 yourapp -> http://mycorp.com/myapp

then the value returned would be the string

 /yourapp:document/yourapp:paragraph[3]

Note however, that how the PATH value is stored internally is up to
the implementation, as long as dynamic remapping is supported.

A common use for PATH properties is likely to be the storage of
paths to other items in the workspace. However the repository does
not enforce referential integrity (unlike in the case of REFERENCE
properties, see 6.2.5.4 Reference); a PATH property may specify a
location where no item exists.

 71

Upon save, a PATH property is validated according to two criteria:

• All prefixes specified must be currently mapped to
registered namespaces (see 6.3 Namespaces).

• The syntax of the string specified must conform to the
following EBNF:

path ::= abspath | relpath

abspath ::= '/' relpath | '/'

relpath ::= pathelement | relpath '/' pathelement

pathelement ::= name | name '[' number ']' | '..' | '.'

number ::= /* An integer > 0 */

name ::= /* see section 6.2.5.2 Name, above */

Note that the method Property.getNode() which resolves a
REFERENCE property and returns the referenced node does not work
with PATH properties (see 6.2.5.4 Reference). PATH properties may
point to properties (not just referenceable nodes) or to nothing at
all. In order to use a PATH to retrieve an item, the PATH's value
must be retrieved and then used in a regular getItem, getNode or
getProperty call.

6.2.5.4 Reference

A REFERENCE property stores the UUID of a referenceable node (one
having type mix:referenceable). The referential integrity of
REFERENCE properties must be guaranteed.

In level 2 implementations, enforcement of referential integrity
means that when a node is removed, a check must be done to
ensure that no REFERENCE properties in the workspace still refer to
nodes in the subtree to be removed. This check is done when an
attempt is made to persist the removal of a node (that is, either on
save, or, if the change was made within a transaction, on commit;
in any case, the check is not done immediately on remove). If any
references to a node in the subtree to be removed exist, a
ReferentialIntegrityException is thrown.

An exception is made to the referential integrity rule when the
REFERENCE property in question is part of the frozen state of a
version stored in version storage. In that case the frozen
REFERENCE property may hold the UUID of a node that is no longer
in the workspace (see 8.2.2.9 Reference Properties within a
Version).

 72

6.2.6 Property Type Conversion

When a read or write of a property is performed with an access
method or value of a different type than the property, an attempt
will be made to automatically convert between types using the
principles described in the following table:

 73

From To
 String Binary Date Double Long Boolean Name Path Reference
String UTF-8 ISO

8601:2000.
Throw on
format error.

java.lang.
Double.
valueOf(String)
(base 10 conversion)

java.lang.
Long.
valueOf(String)
(base 10
conversion)

java.lang.
Boolean.
valueOf(String)

Throw on
format error.

Throw on
format error.

Throw on
format error.

Binary UTF-8.
If binary is not
UTF-8
behavior is
implementation
-specific

 via String via String via String via String via String via String via String

Date ISO 8601:2000 via String Milliseconds since
1970-01-
01T00:00:00Z.
Throw on out-of-
range.

Milliseconds
since 1970-01-
01T00:00:00Z.
Throw on out-
of- range.

Throws
ValueFormat
Exception

Throw
ValueFormat
Exception

Throw
ValueFormat
Exception

Throw
ValueFormat
Exception

Double java.lang.
Double.
toString()
(base 10
conversion)

via String Milliseconds
since 1970-
01-
01T00:00:00
Z

 Standard Java
conversion

Throw
ValueFormat
Exception

Throw
ValueFormat
Exception

Throw
ValueFormat
Exception

Throw
ValueFormat
Exception

Long java.lang.
Long.toString()
(base 10
conversion)

via String Milliseconds
since 1970-
01-
01T00:00:00
Z

Standard Java
conversion

 Throw
ValueFormat
Exception

Throw
ValueFormat
Exception

Throw
ValueFormat
Exception

Throw
ValueFormat
Exception

Boolean java.lang.
Boolean.
toString()

via String Throw
ValueFormat
Exception

Throw ValueFormat
Exception

Throw
ValueFormat
Exception

 Throw
ValueFormat
Exception

Throw
ValueFormat
Exception

Throw
ValueFormat
Exception

Name Direct via String Throw
ValueFormat
Exception

Throw ValueFormat
Exception

Throw
ValueFormat
Exception

Throw
ValueFormat
Exception

 Name
becomes
relative path

Throw
ValueFormat
Exception

Path Direct via String Throw
ValueFormat
Exception

Throw ValueFormat
Exception

Throw
ValueFormat
Exception

Throw
ValueFormat
Exception

If Path is
relative and
one element
long and has
no index,
convert
directly, other
wise throw
ValueFormat
Exception

 Throw
ValueFormat
Exception

Reference Direct via String Throw
ValueFormat
Exception

Throw ValueFormat
Exception

Throw
ValueFormat
Exception

Throw
ValueFormat
Exception

Throw
ValueFormat
Exception

Throw
ValueFormat
Exception

6.2.7 Value

The Value interface represents the value of a property. The
methods of the Value interface are:

javax.jcr.
Value

String getString()

Returns a String representation of this value.

If this value cannot be converted to a String, a
ValueFormatException is thrown.

If getStream has previously been called on this

 74

Value instance, an IllegalStateException is
thrown. In this case, a new Value instance must be
acquired in order to successfully call getString.

A RepositoryException is thrown if another error
occurs.

InputStream getStream()

Returns an InputStream representation of this value.
Uses the standard conversion to binary.

If a non-stream get method has previously been
called on this Value instance, an
IllegalStateException is thrown. In this case, a
new Value instance must be acquired in order to
successfully call getStream.

A RepositoryException is thrown if another error
occurs.

long getLong()

Returns a long representation of this value.

If this value cannot be converted to a long, a
ValueFormatException is thrown.

If getStream has previously been called on this
Value instance, an IllegalStateException is
thrown. In this case a new Value instance must be
acquired in order to successfully call getLong.

A RepositoryException is thrown if another error
occurs.

double getDouble()

Returns a double representation of this value.

If this value cannot be converted to a double, a
ValueFormatException is thrown.

If getStream has previously been called on this
Value instance, an IllegalStateException is
thrown. In this case a new Value instance must be
acquired in order to successfully call getDouble.

A RepositoryException is thrown if another error
occurs.

Calendar getDate()

Returns a Calendar representation of this value.

The object returned is a copy of the stored value, so

 75

changes to it are not reflected in internal storage.

If this value cannot be converted to a Calendar, a
ValueFormatException is thrown.

If getStream has previously been called on this
Value instance, an IllegalStateException is
thrown. In this case a new Value instance must be
acquired in order to successfully call getDate.

A RepositoryException is thrown if another error
occurs.

boolean getBoolean()

Returns a boolean representation of this value.

If this value cannot be converted to a boolean, a
ValueFormatException is thrown.

If getStream has previously been called on this
Value instance, an IllegalStateException is
thrown. In this case a new Value instance must be
acquired in order to successfully call getBoolean.

A RepositoryException is thrown if another error
occurs.

int getType()

Returns the type of this value. See 6.2.5 Property
Types. The type returned is that which was set at
property creation.

Implementations of Value must observe the following behavioral
restrictions:

• A Value object can be read using type-specific get methods.
These methods are divided into two groups:

o The non-stream get methods getString(),
getDate(), getLong(), getDouble() and
getBoolean().

o getStream().

• Once a Value object has been read once using
getStream(), all subsequent calls to getStream() will
return the same stream object. This may mean, for
example, that the stream returned is fully or partially
consumed. In order to get a fresh stream the Value object
must be reacquired via Property.getValue().

 76

• Once a Value object has been read once using
getStream(), any subsequent call to any of the non-stream
get methods will throw an IllegalStateException. In
order to successfully invoke a non-stream get method the
Value must be reacquired via Property.getValue().

• Once a Value object has been read once using a non-stream
get method, any subsequent call to getStream() will throw
an IllegalStateException. In order to successfully invoke
getStream() the Value must be reacquired via
Property.getValue().

6.2.7.1 Creating New Value Instances

In level 2 repositories, new Value instances are created using the
ValueFactory object acquired through Session.getValueFactory.
(see 7.1 Writing Repository Content and 7.1.5.3 Creating
Value Objects).

6.2.7.2 Equality Conditions

Two Value instances, v1 and v2, are considered equal if and only if

v1.getType() == v2.getType() and

v1.getString().equals(v2.getString()).

Actually comparing two Value instances by converting them to
string form may not be practical in some cases (for example, if the
values are large binaries). Consequently, the above is intended as a
normative definition of Value equality, but not as a procedural test.
It is assumed that implementations will have an efficient means of
determining equality that conforms with the above definition.

6.2.7.3 Value Length

Determining the length of a Value can be done through the
Property interface by calling Property.getLength or getLengths
(the former for single value properties, the latter for multi-value
properties). These length-reporting methods are found on Property
and not on Value because determining the length of a value is
typically more useful if done before loading the value into local
memory as a Value object (of course, whether to do such late-
loading is an implementation-level issue, but it is likely to be a
common approach). As well, in many implementations determining
the length of some values may require access to the Workspace
object and in many cases Value objects will not hold such reference
(whereas Property objects will). See 6.2.4 Property Read Methods.

6.2.8 Item Read Methods

The Item interface also contains a number of other methods,
inherited by both Node and Property. The following methods

 77

provide access to and information about nodes and properties. Item
also has other methods applicable to level 2. In a level 1-only
implementation they will either do nothing or throw an exception.

javax.jcr.
Item

String getPath()

Returns the absolute path to this item.

If the path includes items that are same name sibling
nodes or multi-value properties then those elements in
the path will include the appropriate “square bracket”
index notation (for example, /a/b[3]/c).

A RepositoryException is thrown if an error occurs.

String getName()

Returns the name of this item. The name is the last item
in the path, minus any square-bracket index that may
exist. If this item is the root node of the workspace (i.e.,
if this.getDepth() == 0), an empty string will be
returned.

A RepositoryException is thrown if an error occurs.

Item getAncestor(int depth)

Returns the ancestor of the specified depth below the
root. An ancestor of depth x is the Item that is x levels
down along the path from the root node to this Item.

• depth = 0 returns the root node.

• depth = 1 returns the child of the root node
along the path to this Item.

• depth = 2 returns the grandchild of the root
node along the path to this Item.

• And so on to depth = n, where n is the depth of
this Item, which returns this Item itself. If depth
> n is specified then an ItemNotFoundException
is thrown.

An ItemNotFoundException will be thrown if depth < 0
or depth > n where n is the is the depth of this item
along the path returned by getPath().

An AccessDeniedException is thrown if the current
session does not have sufficient access permissions to
retrieve the specified node.

 78

A RepositoryException is thrown if another error
occurs.

Node getParent()

Returns the parent of this Item.

An ItemNotFoundException is thrown if there is no
parent node. This only happens if this item is the root
node of a workspace.

An AccessDeniedException is thrown if the current
session does not have sufficient access permissions to
retrieve the parent of this item.

A RepositoryException is thrown if another error
occurs.

int getDepth()

Returns the depth below the root node of this Item
(counting this Item itself):

• The root node returns 0.

• A property or child node of the root node returns
1.

• A property or child node of a child node of the
root returns 2.

• And so on to this Item.

A RepositoryException is thrown if an error occurs.

Session getSession()

Returns the Session through which this Item was
acquired.

A RepositoryException is thrown if an error occurs.

boolean isNode()

Returns true if this Item is a Node; returns false if this
Item is a Property.

boolean isSame(Item otherItem)

Returns true if this Item object (the Java object
instance) represents the same actual repository item as
the object otherItem.

Two Item objects represent the same repository item if
all the following are true:

• Both objects were acquired through

 79

Session objects that were created by the
same Repository object.

• Both objects were acquired through
Session objects bound to the same
repository workspace.

• The objects are either both Node objects or
both Property objects.

• If they are Node objects, they have the
same correspondence identifier (see
4.10.2 Multiple Workspaces and
Corresponding Nodes).

• If they are Property objects they have
identical names and their parent nodes
have the same correspondence identifiers.

This method does not compare the states of the two
items. For example, if two Item objects representing the
same actual repository item have been retrieved through
two different sessions and one has been modified, then
this method will still return true when comparing these
two objects. Note that if two Item objects representing
the same repository item are retrieved through the same
session they will always reflect the same state (see 7.1.3
Reflecting Item State) so comparing state is not an
issue.

A RepositoryException is thrown if an error occurs.

void accept(ItemVisitor visitor)

Accepts an ItemVisitor and calls the appropriate visit
method according to whether this Item is a Node or a
Property.

This method provides support for the visitor design
pattern. It takes an ItemVisitor object that must
implement two methods: visit(Node node) and
visit(Property property). Depending on whether this
Item is a Node or a Property one of the visit methods is
called with this Item as the parameter.

The API also provides the abstract class
TraversingItemVisitor implementing ItemVisitor,
which automatically traverses the hierarchy calling
accept at each node and property. It provides the
methods entering and leaving that can be overridden
in a subclass to perform custom operations.

Throws a RepositoryException if an error occurs.

 80

6.2.9 Effect of Access Denial on Read

If a particular repository restricts the read access of a particular
user (see 6.9 Access Control), then the nodes and properties to
which that user does not have read access will simply not appear to
exist. For example, the nodes returned on N.getNodes will not
include subnodes of N to which the user in question does not have
read access. In other words lack of read access to an item blocks
access to both information about the content of that item and
information about the existence of the item.

6.2.10 Example

The following section gives some examples of how node access and
property read operations are performed. In order to provide some
context for the examples, we return to our earlier example of a
repository structured like this:

Node
Property = "Some Value"

[root]
└─products
 ├─jcr:created = "2001-01-01T..."
 ├─jcr:content
 │ ├─myapp:title = "Our Products..."
 │ ├─myapp:lead = "Geometrixx is proud..."
 │ ├─myapp:paragraph[1]
 │ │ ├─myapp:text = "Geometrixx is..."
 │ │ └─ myapp:image = [binary data]
 │ └─myapp:paragraph[2]
 │ ├─ myapp:text = "We have..."
 │ └─ myapp:image = [binary data]
 └─rhombus
 ├─jcr:created = "2002-06-01T"
 └─jcr:content
 ├─myapp:title = "Rhombus:..."
 ├─myapp:price = "123.00"
 ├─myapp:lead = "Here at..."
 ├─myapp:paragraph[1]
 │ ├─myapp:text = "The rhombus..."
 │ └─myapp:image = [binary data]
 └─myapp:paragraph[2]
 ├─myapp:text = "Some say..."
 └─myapp:image = [binary data]

Assuming that the programmer has called:

Session session = ...
Node root = session.getRootNode();

From the root node, one can access any node or property in the
workspace. For example,

Node n1 = root.getNode("products");
Node n2 = n1.getNode("rhombus");
Node n3 = n2.getNode("jcr:content");
Node n4 = n3.getNode("myapp:paragraph[2]");

 81

Property p = n4.getProperty("myapp:text");
Value v = p.getValue();
String s = v.getString();
System.out.println(s);

would print, "Some say..." to standard output. Alternatively, more
convenient direct access is also possible,

Property p = root.getProperty("products/rhombus/
 jcr:content/myapp:paragraph[2]/myapp:text");
System.out.println(p.getString());

Here we use a relative path from the root to access a property deep
in the hierarchy.

As well, traversal of the hierarchy is easily done. For example,
given the following method,

public void traverse(Node n, int level)
 throws RepositoryException {
 String name = (n.getDepth() == 0) ? "/" : n.getName();
 System.out.println(makeIndent(level) + name);
 for (PropertyIterator i = n.getProperties();
 i.hasNext();) {
 Property p = i.nextProperty();
 System.out.println(makeIndent(level + 1) +
 p.getName() + " = \"" +
 p.getString() + "\"");
 }
 for (NodeIterator i = n.getNodes(); i.hasNext();) {
 Node nn = i.nextNode();
 traverse(nn, level + 1);
 }
}

the call,

traverse(root, 0);

would print out something like the following:

/
 products
 jcr:created = "2001-01-01T..."
 jcr:content
 myapp:title = "Our Products..."
 myapp:lead = "Geometrixx is proud..."
 myapp:paragraph[1]
 myapp:text = "Geometrixx is..."
 myapp:image = ""
 myapp:paragraph[2]
 myapp:text = "We have..."
 myapp:image = ""
 rhombus
 jcr:created = "2002-06-01T..."
 jcr:content
 myapp:title = "Rhombus:..."
 myapp:price = "123.00"
 myapp:lead = "Here at..."

 82

 myapp:paragraph[1]
 myapp:text = "The rhombus..."
 myapp:image = ""
 myapp:paragraph[2]
 myapp:text = "Some say..."
 myapp:image = ""

 83

6.3 Namespaces

A compliant content repository provides support for the
namespacing of item and node type names. Namespacing serves to
prevent naming collisions among items and node types that come
from different sources or application domains. The namespace
system is modelled after XML Namespaces.

6.3.1 Namespace Registry

Each repository has a single, persistent namespace registry
represented by the NamespaceRegistry object, accessed via
Workspace.getNamespaceRegistry(). The following describes the
methods of NamespaceRegistry supported in level 1.
NamespaceRegistry also has other methods that are supported in
level 2. In level 1 repositories these methods either do nothing or
throw an exception. See 7.2 Adding and Deleting Namespaces for
more details.

javax.jcr.
NamespaceRegistry

String[] getPrefixes()

Returns an array holding all currently registered prefixes.

A RepositoryException is thrown if an error occurs.

String[] getURIs()

Returns an array holding all currently registered URIs.

A RepositoryException is thrown if an error occurs.

String getURI(String prefix)

Returns the URI to which the given prefix is mapped. If a
mapping with the specified prefix does not exist, a
NamespaceException is thrown.

A RepositoryException is thrown if another error occurs.

String getPrefix(String uri)

Returns the prefix which is mapped to the given uri. If a
mapping with the specified uri does not exist, a
NamespaceException is thrown

A RepositoryException is thrown if another error occurs.

A registered prefix can be used in the name of any node or property
in the repository. The prefix serves as shorthand for the URI to
which it is mapped. Because the space of URIs is universally
managed, the combination of the per-repository namespace and

 84

the larger URI namespace can be used to provide universal
uniqueness of node or property names. Of course, just as in the
case of XML namespaces, ensuring this universal uniqueness
requires applications to map their application-specific prefixes to
URIs that are uniquely identified with that particular application.

The namespace registry always contains at least the following built-
in mappings:

• jcr -> http://www.jcp.org/jcr/1.0
Reserved for items defined within built-in node types. For
example jcr:content.

• nt -> http://www.jcp.org/jcr/nt/1.0
Reserved for the names of built-in primary node types.

• mix -> http://www.jcp.org/jcr/mix/1.0
Reserved for the names of built-in mixin node types.

• xml -> http://www.w3.org/XML/1998/namespace
Reserved for reasons of compatibility with XML. This prefix
should not be used by clients of the API in the names of
normal nodes or properties, since doing so will cause
problems on export to XML.

• “” (the empty prefix) -> “” (the empty URI)
This makes the default namespace the empty URI. In effect
this means that a name without a prefix is identical in both
its prefixed form and in its fully qualified form (i.e. when it is
stored internally as URI plus local name). See 6.6.1 Internal
Storage of Names and Values.

In a level 1 repository there is no provision for adding new
namespaces to the registry (or deleting namespaces from it), this
functionality is part of level 2 (see 7.2 Adding and Deleting
Namespaces). However, a level 1 implementation may provide any
number of built-in namespaces, in addition to the five required ones
listed above. As well, level 1 supports the temporary assignment of
new prefixes to existing namespaces within the scope of a
particular Session (see immediately below).

6.3.2 Prefix Syntax

A prefix can be any valid XML name. Note that the local name for
an item (the part after the colon) might not be a valid XML name
(the space of valid content repository local names is a superset of
the space of XML names), however the set of possible content
repository prefixes is identical to the set of possible XML prefixes.

 85

6.3.3 Session Namespace Remapping

Any registered namespace (other than the empty namespace or
one beginning with "xml") can be temporarily remapped to a new
prefix within the scope of a particular Session.

javax.jcr.
Session

void setNamespacePrefix(String newPrefix,
 String existingUri)

Within the scope of this Session, gives the existing
registered namespace URI existingUri the new prefix,
newPrefix. The remapping only affects operations done
through this Session. To clear all remappings, the client
must acquire a new Session.

If existingUri is not registered in the NamespaceRegistry a
NamespaceException will be thrown.

If newPrefix is already locally mapped to existingUri (i.e.,
within this Session, by virtue of an earlier
setNamespaceRegistry call) then this method returns silently
and has no effect.

If newPrefix is already locally mapped to a URI other than
existingUri, then that URI reverts to its globally mapped
prefix (as set in the NamespaceRegistry) and newPrefix is
locally mapped to existingUri.

If newPrefix is already assigned in the global
NamespaceRegistry to otheruri (which differs from
existingUri) and otherUri has not been locally mapped to
another prefix which differs from newPrefix, then a
NamespaceException will be thrown. In order to successfully
locally map newPrefix to existingUri, otherUri must first be
locally mapped to another prefix.

A NamespaceException will be thrown if an attempt is made
to remap an existing namespace URI to a prefix beginning
with the characters “xml” (in any combination of case).

A NamespaceException will be thrown if an attempt is made
to remap either the empty prefix or the empty namespace
(i.e., if either newPrefix or existingUri are the empty
string).

A RepositoryException is thrown if another error occurs.

String[] getNamespacePrefixes()

Returns all prefixes currently set for this Session. This
includes all those registered in the NamespaceRegistry but

 86

not temporarily over-ridden by a
Session.setNamespacePrefix, plus those currently set
locally by Session.setNamespacePrefix.

A RepositoryException is thrown if an error occurs.

String getNamespaceURI(String prefix)

Returns the URI to which the given prefix is mapped as
currently set in this Session.

A NamespaceException is thrown if the specified prefix is
unknown.

A RepositoryException is thrown if another error occurs.

String getNamespacePrefix(String uri)

Returns the prefix to which the given URI is mapped as
currently set in this Session.

A NamespaceException is thrown if the specified uri is
unknown.

A RepositoryException is thrown if another error occurs.

6.3.3.1 Using Session Namespace Remapping

One use case for session-based namespace remapping occurs in the
context of an XPath or SQL query (see 6.6 Searching Repository
Content and 8.5 8.5 Searching Repository Content with SQL).

Queries often include literal names that have namespace prefixes.
When attempting to use a stored query (or one obtained from some
external source) whose prefixes do not match those currently used
in the repository, dynamic remapping of namespaces in the session
allows the temporary session mapping to be adapted to whatever
prefixes are used in the query statement.

6.3.3.2 Scope of Session Namespace Remapping

All methods that take paths or names as arguments use the current
Session namespace mappings to interpret those paths and names.
This includes not just methods of Session, Item, Node and
Property but also methods of the Workspace object. Since each
Workspace object is associated one-to-one with a particular
Session object, the object has access to the namespace mapping
currently in effect on that Session.

6.3.3.3 Conflict between Session Remapping and Namespace Registry

There are two circumstances in which a potential conflict may arise
between a session namespace mapping and the repository-wide
namespace registry.

 87

The first case occurs when an attempt is made to locally map prefix
P to URI U where P is already globally mapped to URI U' (not equal
to U) and there is no local mapping of some prefix P' (not equal to
P) to U'. As described above, an exception is thrown in this case.
To successfully locally map P to U, U' must first be locally mapped
to some P'.

The second case occurs when a mapping of P to U is added to the
global namespace registry while P is locally mapped to some U'
(not equal to U) in at least one active session S. How this conflict is
handled is left up to the implementation, since in any case, the
mechanism for making changes to the global namespace registry is
beyond the scope of this specification.

Note that the names of nodes and properties must be stored
internally in such a way that when accessed they will reflect the
current namespace mapping. One way of achieving this is to store
them internally using fully qualified names and, upon access,
dynamically produce the correct prefixed name or path based on
the current mapping. Other mechanisms may also be used to
achieve the same result.

Similarly, all properties of type NAME or PATH must also dynamically
reflect the current mapping. All accesses to the values of these
properties should shield the client from the raw fully-qualified name
and translate the value using the currently mapped prefix (see
6.2.5.2 Name and 6.2.5.3 Path).

6.3.4 Transactions and Namespaces

In repositories that support transactions, both changes to the
namespace registry and Session namespace remappings must be
non-transactional.

 88

6.4 XML Mappings

Level 1 supports two mappings of the content repository data
model to XML. The mappings are called the system view and the
document view.

6.4.1 System View XML Mapping

The system view mapping provides a complete serialization of
workspace content to XML without loss of information. In level 1
this allows the complete content of a workspace to be exported
(see 6.5 Exporting Repository Content). In level 2, this also allows
for roundtripping of content to XML and back again through export
and import (see 7.3 Importing Repository Content).

Given a subtree of a workspace, the resulting system view is
determined as follows:

1. The relevant namespace mapping from the repository
NamespaceRegistry is included as XML namespace
declarations in the top-most XML element (though the xml
namespace is excluded, since its presence would be
redundant). Additionally a namespace mapping is included
that maps to http://www.jcp.org/jcr/sv/1.0, for
example xmlns:sv="http://www.jcp.org/jcr/sv/1.0". In
what follows it is assumed that the prefix used is sv, though
any prefix is allowed as long as it is mapped to the URI
above.

2. Each content repository node becomes an XML element
<sv:node>.

3. Each content repository property becomes an XML element
<sv:property>.

4. The name of each content repository node or property
becomes the value of the sv:name attribute of the
corresponding <sv:node> or <sv:property> element.

5. If the root node of a workspace is included in the serialized
subtree, it receives the special name jcr:root (instead of
the empty string).

6. The property type of each content repository property is
recorded in the sv:type attribute of the corresponding
<sv:property> element, using the standard string forms for
property type names as returned by the method
PropertyType.nameFromValue (i.e., “String”, “Binary”,
“Date”, “Boolean”, “Double”, “Long”, “Name”, “Path” and
“Reference”).

7. The value of each non-BINARY content repository property is
converted to string form (according to 6.2.6 Property Type

 89

Conversion). BINARY values are Base64 encoded. In both
cases the resulting string is included as XML text within an
<sv:value> element within the <sv:property> element.
Entity references are used to escape characters which
cannot be included as literals within XML text (see 6.4.4
Escaping of Values). In addition, if the string form of a value
contains characters which cannot appear in XML documents
at all (neither as literals nor as character references4) then
the value is also Base64 encoded, the attribute
xsi:type="xsd:base64Binary" is added to the <sv:value>
element, and the namespace mappings for xsi and xsd are
added to the topmost XML element (i.e.,
xmlns:xsd="http://www.w3.org/2001/XMLSchema" and
xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"). Note that since BINARY values are always
Base64 encoded, the xsi:type="xsd:base64Binary"
attribute is considered the default in those cases and
therefore is omitted.

8. A multi-value property is converted to an <sv:property>
element containing multiple <sv:value> elements. The
order of the <sv:value> elements reflects the order of the
value array returned by Property.getValues.

9. The hierarchy of the content repository nodes and properties
is reflected in the hierarchy of the corresponding XML
elements.

10. Within an <sv:node> element all <sv:property>
subelements must occur before the first <sv:node>
subelement.

11. The first two <sv:property> elements within an <sv:node>
element must be the jcr:primaryType and
jcr:mixinTypes (in that order) properties of the node in
question.

12. In the case of referenceable nodes, the third <sv:property>
element in the <sv:node> element must be jcr:uuid.

13. The order of the <sv:node> subelements of a parent
<sv:node> must reflect the order in which the corresponding
child nodes are returned by Node.getNodes().

6.4.1.1 Example

A subtree with the following structure:

4 See http://www.w3.org/TR/REC-xml/#charsets,
http://www.w3.org/TR/REC-xml/#NT-CharRef, and
http://www.w3.org/TR/REC-xml/#wf-Legalchar.

 90

Node
Property = "value"

myapp:document
├─jcr:primaryType = "mynt:document"
├─myapp:title = "JSR 170"
├─myapp:lead = "Content Repository"
└─myapp:body
 ├─jcr:primaryType = "mynt:body"
 └─myapp:paragraph
 ├─jcr:primaryType = "mynt:paragraph"
 ├─myapp:title = "Node Types"
 └─myapp:text = "An important feature..."

where the source repository's namespace registry holds the
mappings (in addition to the built-in ones):

myapp -> http://mycorp.com/myapp

and

mynt -> http://mycorp.com/mynt

would appear in the system view as:

<?xml version="1.0" encoding="UTF-8"?>
<sv:node xmlns:jcr="http://www.jcp.org/jcr/1.0"
 xmlns:nt="http://www.jcp.org/jcr/nt/1.0"
 xmlns:mix="http://www.jcp.org/jcr/mix/1.0"
 xmlns:sv="http://www.jcp.org/jcr/sv/1.0"
 xmlns:myapp="http://mycorp.com/myapp"
 xmlns:mynt="http://mycorp.com/mynt"
 sv:name="myapp:document">
 <sv:property sv:name="jcr:primaryType" sv:type="Name">
 <sv:value>mynt:document</sv:value>
 </sv:property>
 <sv:property sv:name="myapp:title" sv:type="String">
 <sv:value>JSR 170</sv:value>
 </sv:property>
 <sv:property sv:name="myapp:lead" sv:type="String">
 <sv:value>Content Repository</sv:value>
 </sv:property>
 <sv:node sv:name="myapp:body">
 <sv:property sv:name="jcr:primaryType" sv:type="Name">
 <sv:value>mynt:body</sv:value>
 </sv:property>
 <sv:node sv:name="myapp:paragraph">
 <sv:property sv:name="jcr:primaryType" sv:type="Name">
 <sv:value>mynt:paragraph</sv:value>
 </sv:property>
 <sv:property sv:name="myapp:title" sv:type="String">
 <sv:value>Node Types</sv:value>
 </sv:property>
 <sv:property sv:name="myapp:text" sv:type="String">
 <sv:value>An important feature...<sv:value>
 </sv:property>
 </sv:node>
 </sv:node>
</sv:node>

 91

Note that in the above, the XML has been formatted for readability.
The actual XML stream might not have any extraneous whitespace
between elements or attributes.

6.4.2 Document View XML Mapping

The document view is designed to be more human-readable than
the system view, though it achieves this at the expense of
completeness.

In level 1 the document view is used as the format for the virtual
XML stream against which an XPath query is run (see 6.6 Searching
Repository Content). As well, in level 1, export to document view
format is supported (see 6.5 Exporting Repository Content). In
level 2, document view also allows for the import of arbitrary XML
(see 7.3.2 Import from Document View).

The document view mapping in fact consists of a family of related
mappings whose precise features vary according to the context in
which it is used (export, import or XPath query) and which optional
features are supported by the particular implementation in
question.

The next section describes the general structure of the document
view mapping and then moves on to explain the special cases,
context-related differences and optional features. With respect to
context-related differences, the description below addresses XPath
and export. A discussion of document view in the context of import
can be found in the above-mentioned section 7.3.2 Import from
Document View.

6.4.2.1 General Structure

Given a subtree of a workspace, the general form of the document
view is determined as follows:

1. The relevant mappings from the repository namespace
registry are rendered as a set of namespace declarations in
the top-most XML element (though the xml namespace is
excluded, since its presence would be redundant).

2. Each content repository node N becomes an XML element of
the same name, N.

3. Each child node C of N becomes a subelement C of XML
element N.

4. The order of the subelements of element N must reflect the
order in which the corresponding child nodes are returned
by Node.getNodes.

 92

5. Each property P of node N becomes an XML attribute P of
XML element N.

6. If P is a non-BINARY property its value is converted to string
form according to the standard conversion (see 6.2.6
Property Type Conversion). If P is a BINARY property its
value is Base64 encoded. The resulting string becomes the
value of the XML attribute P. Entity references are used to
escape characters which should not be included as literals
within attribute values (see 6.4.4 Escaping of Values).

The following sections describe the exceptions to the above general
rules.

6.4.2.2 Workspace Root

If the root node of a workspace is included within the scope of the
serialization, then that node is mapped to an XML element with the
name jcr:root. This convention is required because XML elements
cannot have empty-string names, whereas a workspace root node,
by definition, has the empty string as its name.

6.4.2.3 XML Text

In level 2, on document view import XML text is converted to the
special node/property structure jcr:xmltext/jcr:xmlcharacters
(see 7.3.2 Import from Document View). When this structure is
mapped back to XML the following rules apply.

If a child node of N called jcr:xmltext is encountered and that
jcr:xmltext node has one and only one child item and that item is
a single-valued property called jcr:xmlcharacters, then the
treatment of that jcr:xmltext depends on the context within
which the document view is being used:

• Export: In the context of export, the jcr:xmltext node is
not converted into an XML element. Instead, the value of the
jcr:xmlcharacters property becomes text within the body
of the XML element N. Entity references are used to escape
characters which should not be included as literals within
XML text (see 6.4.4 Escaping of Values) however, escaping
of whitespace is not performed (see 6.4.2.5 Multi-value
Properties). Note also that two or more jcr:xmltext nodes
adjacent within the ordering of a child node set will have the
values of their respective jcr:xmlcharacters concatenated
into a single resulting XML text node.

• XPath: In the context of an XPath query jcr:xmltext
nodes and jcr:xmlcharacters properties are treated just
like any other nodes and properties, appearing as elements
and attributes, respectively, within the virtual document

 93

view stream against which XPath queries are run. See
6.6.4.12 text() Node Test for more details.

6.4.2.4 Invalid Item Names

If the name of a content repository item I is not a valid XML
element or attribute name (as the case may be) then how it is
handled depends upon the context in which the document view is
being used:

• Export: In the context of export, the repository may either
ignore the item in question or employ the escaping scheme
described below (see 6.4.3 Escaping Names). Which
approach taken is up to the implementation.

• XPath: In the context of an XPath query, the escaping
scheme described below (see 6.4.3 Escaping Names) must
be used in the virtual document view XML stream against
which the query is run. Consequently, the same escaping
scheme must be used within any XPath statement that
refers to the item I.

6.4.2.5 Multi-value Properties

If a multi-value property P is encountered, then its treatment
depends on the context within which the document view is being
used:

• Export: In the context of export, the repository may either
ignore the multi-value property or serialize it as an attribute
whose value is an XML Schema list type5 (i.e., a whitespace-
delimited list of strings). If the latter approach is taken
then:

o Each value in the property is converted to a string
according to standard conversion, see 6.2.6 Property
Type Conversion. If the multi-value property contains
no values, then it is serialized as an empty string.

o All literal whitespace within each string is escaped, as
well as any characters that should not be included as
literals in any case, see 6.4.4 Escaping of Values.

o The final attribute value is constructed by
concatenating the resulting strings, with the addition
of the space delimiter, into a single string. The order
of concatenation must be the same as the order in

5 See http://www.w3.org/TR/xmlschema-0/#ListDt for more
information about the XML Schema list type.

 94

which the values appear in the Value array returned
by Property.getValues.

o Furthermore, if multi-value property serialization is
supported, then a mechanism must be adopted
whereby upon re-import the distinction between
multi- and single- value properties is not lost, see
6.4.4 Escaping of Values.

o Note that this escaping of space literals does not
apply to the value of
jcr:xmltext/jcr:xmlcharacters when it is
converted to XML text. In that case only the standard
XML entity escaping is required, regardless of
whether multi-value property serialization is
supported (see 6.4.2.3 XML Text and 6.4.4 Escaping
of Values).

• XPath: In the context of an XPath query, the value array of
property P is mapped to a pseudo list type attribute value.
We call it a pseudo list type because space delimiters are
not used and consequently space literals within individual
values are not escaped, nor are the five special characters
(&, <, > ,' and ") that would normally be escaped using
predefined entity references. This is possible because the
XML stream in the XPath context is virtual and therefore it
need never be actually serialized. However, tests against
multi-value properties in XPath using general comparison
operators act as they would if the multi-value property were
a list-type attribute, except that spaces and any of the five
special characters occurring within value literals in the XPath
statement are not escaped (see 6.6.4.10 Searching Multi-
value Properties).

6.4.2.6 Invalid Characters in Values

If the string form of the value of property P contains characters
which cannot appear in XML documents at all (neither as literals nor
as character references6) then the attribute P is simply excluded
from the document view serialization and does not appear at all.

6.4.2.7 Example

Given the same subtree and namespace settings as used in the
system view example (see 6.4.1.1 Example), the document view
would look like this (note that the following example assumes that

6 See http://www.w3.org/TR/REC-xml/#charsets,
http://www.w3.org/TR/REC-xml/#NT-CharRef, and
http://www.w3.org/TR/REC-xml/#wf-Legalchar.

 95

multi-value property serialization is not supported and therefore
escaping of space literals is not done (see 6.4.4 Escaping of
Values):

<?xml version="1.0" encoding="UTF-8"?>
<myapp:document xmlns:jcr="http://www.jcp.org/jcr/1.0"
 xmlns:nt="http://www.jcp.org/jcr/nt/1.0"
 xmlns:mix="http://www.jcp.org/jcr/mix/1.0"
 xmlns:myapp="http://mycorp.com/myapp"
 xmlns:mynt="http://mycorp.com/mynt"
 jcr:primaryType="mynt:document">
 myapp:title="JSR 170"
 myapp:lead="Content Repository">
 <myapp:body jcr:primaryType="mynt:body">
 <myapp:paragraph jcr:primaryType="mynt:paragraph"
 myapp:title="Node Types"
 myapp:text="An important feature..."/>
 </myapp:body>
</myapp:document>

Note that in the above, the XML has been formatted for readability.
The actual XML stream might not have any extraneous whitespace
between elements or attributes.

6.4.3 Escaping of Names

Not every item name is a valid XML name. In particular, even
though a content repository prefix is always a valid XML prefix, the
content repository local name (the part after the colon, or the
whole name, if there is no prefix) may not be a valid XML name.
For example, a content repository name may contain spaces,
whereas XML names cannot.

Consequently, for document view serialization, each content
repository name is converted to a valid XML name (as defined by
XML 1.0) by translating invalid characters into escaped numeric
entity encodings7.

The escape character is the underscore (“_”). Any invalid character
is escaped as _xHHHH_, where HHHH is the four-digit hexadecimal
UTF-16 code for the character. When producing escape sequences
the implementation should use lowercase letters for the hex digits
a-f. When unescaping, however, both upper and lowercase
alphabetic hexadecimal characters must be recognized.

Escaping and unescaping is done by parsing the name from left to
right.

7 This escaping scheme is based on the scheme described in
ISO/IEC 9075-14:2003 for converting arbitrary strings into valid
XML element and attribute names.

 96

The underscore character (“_”), when appearing as literal, is itself
escaped if it is followed by xHHHH where H is one of the following
characters: 0123456789abcdefABCDEF.

So, for example,

• “My Documents” is encoded as “My_x0020_Documents”.

• “My_Documents” is not encoded.

• “My_x0020Documents” is encoded as
“My_x005f_x0020Documents”.

• “My_x0020_Documents” is encoded as
“My_x005f_x0020_Documents”.

• “My_x0020 Documents” is encoded as
“My_x005f_x0020_x0020_Documents”.

6.4.4 Escaping of Values

When a non-BINARY value is serialized during either system view or
document view export, it is first converted to string form using
standard value conversion, see 6.2.6 Property Type Conversion
(BINARY values are encoded using Base64).

Within the resulting string, any occurrence of one of the five
characters corresponding to the five predefined entity references in
XML, ampersand (&), less-than symbol (<), greater-than symbol
(>), apostrophe ('), and quotation mark (") must be escaped as
&, <, >, ' and ", respectively.

In document view serialization, if the property being serialized is
multi-valued (or if the implementation chooses to encode spaces in
single value properties too, see below) then the value or values
must be further encoded by escaping any occurrence of one of the
four whitespace characters: space, tab, carriage return and line
feed. The scheme used to encode these characters is the same as
that described in 6.4.3 Escaping of Names. Note that in this
restricted context, applying those escaping rules amounts to the
following: a space becomes _x0020_, a tab becomes _x0009_, a
carriage return becomes _x000D_, a line feed becomes _x000A_ and
any underscore (_) that occurs as the first character of a sequence
that could be misinterpreted as an escape sequence becomes
x005f.

Finally, in document view export, the value of the attribute
representing a multi-value property is constructed by concatenating
the results of the above escaping into a space-delimited list.

In document view export (though not in system view), if multi-
value property serialization is supported (see 6.4.2.5 Multi-value
Properties) then a mechanism must be adopted whereby upon re-

 97

import the distinction between multi- and single- value properties is
not lost. One option is that escaping of space literals must be
applied to the value of all single-value properties as well, Another
option is that when an XML document is imported in document
view, each attribute is assumed to be a single-value property
unless out-of-band information defines it to be multi-valued (for
example, if the applicable node type defines the property as multi-
valued or the XML document is associated with a schema definition
that indicates that the attribute is a list value).

Note that the value of a jcr:xmlcharacters property used to
represent XML text (see 6.4.2.3 XML Text) is not space-escaped,
regardless of the prevailing multi-value property serialization policy.

 98

6.5 Exporting Repository Content

Level 1 supports the export of repository content to both system
view XML and document view XML. The XML can be output either in
as a stream or as SAX events.

The export methods are found in the Session object:

javax.jcr.
Session

void exportSystemView(String absPath,
 ContentHandler contentHandler,
 boolean skipBinary,
 boolean noRecurse)

Serializes the node (and if noRecurse is false, the
whole subtree) at absPath into a series of SAX events
by calling the methods of the supplied
org.xml.sax.ContentHandler. The resulting XML is in
the system view form. Note that absPath must be the
path of a node, not a property.

If skipBinary is true then any properties of
PropertyType.BINARY will be serialized as if they are
empty. That is, the existence of the property will be
serialized, but its content will not appear in the
serialized output (the <sv:value> element will have no
content). Note that in the case of multi-value BINARY
properties, the number of values in the property will be
reflected in the serialized output, though they will all be
empty. If skipBinary is false then the actual value(s)
of each BINARY property is recorded using Base64
encoding.

If noRecurse is true then only the node at absPath and
its properties, but not its child nodes, are serialized. If
noRecurse is false then the entire subtree rooted at
absPath is serialized.

If the user lacks read access to some subsection of the
specified tree that section simply does not get
serialized, since, from the user's point of view it is not
there.

The serialized output will reflect the state of the current
workspace as modified by the state of this Session.
This means that pending changes (regardless of
whether they are valid according to node type
constraints) and the current session-mapping of
namespaces are reflected in the output.

A PathNotFoundException is thrown if no node exists

 99

at absPath.

A SAXException is thrown if an error occurs while
feeding events to the ContentHandler.

A RepositoryException is thrown if another error
occurs.

void exportSystemView(String absPath,
 OutputStream out,
 boolean skipBinary,
 boolean noRecurse)

Serializes the node (and if noRecurse is false, the
whole subtree) at absPath into an XML stream and
outputs it through the supplied OutputStream. The
resulting XML is in the system view form. Note that
absPath must be the path of a node, not a property.

If skipBinary is true then any properties of
PropertyType.BINARY will be serialized as if they are
empty. That is, the existence of the property will be
serialized, but its content will not appear in the
serialized output (the <sv:value> element will have no
content). Note that in the case of multi-value BINARY
properties, the number of values in the property will be
reflected in the serialized output, though they will all be
empty. If skipBinary is false then the actual value(s)
of each BINARY property is recorded using Base64
encoding.

If noRecurse is true then only the node at absPath and
its properties, but not its child nodes, are serialized. If
noRecurse is false then the entire subtree rooted at
absPath is serialized.

If the user lacks read access to some subsection of the
specified tree that section simply does not get
serialized, since, from the user's point of view it is not
there.

The serialized output will reflect the state of the current
workspace as modified by the state of this Session.
This means that pending changes (regardless of
whether they are valid according to node type
constraints) and the current session-mapping of
namespaces are reflected in the output.

The output XML will be encoded in UTF-8.

An IOException is thrown if an I/O error occurs.

A PathNotFoundException is thrown if no node exists

 100

at absPath.

A RepositoryException is thrown if another error
occurs.

void exportDocumentView(String absPath,
 ContentHandler contentHandler,
 boolean skipBinary,
 boolean noRecurse)

Serializes the node (and if noRecurse is false, the
whole subtree) at absPath into a series of SAX events
by calling the methods of the supplied
org.xml.sax.ContentHandler. The resulting XML is in
the document view form. Note that absPath must be
the path of a node, not a property.

If skipBinary is true then any properties of
PropertyType.BINARY will be serialized as if they are
empty. That is, the existence of the property will be
serialized, but its content will not appear in the
serialized output (the value of the attribute will be
empty). If skipBinary is false then the actual value(s)
of each BINARY property is recorded using Base64
encoding.

If noRecurse is true then only the node at absPath and
its properties, but not its child nodes, are serialized. If
noRecurse is false then the entire subtree rooted at
absPath is serialized.

If the user lacks read access to some subsection of the
specified tree that section simply does not get
serialized, since, from the user's point of view it is not
there.

The serialized output will reflect the state of the current
workspace as modified by the state of this Session.
This means that pending changes (regardless of
whether they are valid according to node type
constraints) and the current session-mapping of
namespaces are reflected in the output.

A PathNotFoundException is thrown if no node exists
at absPath.

A SAXException is thrown if an error occurs while
feeding events to the ContentHandler.

A RepositoryException is thrown if another error
occurs.

 101

void exportDocumentView(String absPath,
 OutputStream out,
 boolean skipBinary,
 boolean noRecurse)

Serializes the node (and if noRecurse is false, the
whole subtree) at absPath into an XML stream and
outputs it through the supplied OutputStream. The
resulting XML is in the document view form. Note that
absPath must be the path of a node, not a property.

If skipBinary is true then any properties of
PropertyType.BINARY will be serialized as if they are
empty. That is, the existence of the property will be
serialized, but its content will not appear in the
serialized output (the value of the attribute will be
empty). If skipBinary is false then the actual value(s)
of each BINARY property is recorded using Base64
encoding.

If noRecurse is true then only the node at absPath and
its properties, but not its child nodes, are serialized. If
noRecurse is false then the entire subtree rooted at
absPath is serialized.

If the user lacks read access to some subsection of the
specified tree that section simply does not get
serialized, since, from the user's point of view it is not
there.

The serialized output will reflect the state of the current
workspace as modified by the state of this Session.
This means that pending changes (regardless of
whether they are valid according to node type
constraints) and the current session-mapping of
namespaces are reflected in the output.

The output XML will be encoded in UTF-8.

An IOException is thrown if an I/O error occurs.

A PathNotFoundException is thrown if no node exists
at absPath.

A RepositoryException is thrown if another error
occurs.

6.5.1 Encoding

XML streams produced by export must be encoded in UTF-8.

 102

6.6 Searching Repository Content

In level 1, support for the XPath syntax is required. Optionally, a
repository may support the SQL syntax (see 8.5 Searching
Repository Content with SQL). Implementations may also support
additional languages.

XPath is a search language originally designed for selecting
elements from an XML document. Since a workspace, like an XML
document, can be viewed as a tree structure, XPath provides a
convenient syntax for searching workspace content. The main
prerequisite for providing XPath querying is to establish an XML
mapping of the workspace tree. Having already established two
such mappings (system and document view) for purposes of
serialization and deserialization, we simply re-use one of them, the
document view, as the basis against which an XPath query is run
(see 6.4.2 Document View XML Mapping).

6.6.1 XPath over Document View

When an XPath query is executed, the XPath expression specified is
applied to the document view of the workspace being searched.

For example, consider a workspace with the following structure
(based on the earlier example in Section 6.4.1.1, with the addition
of a top-most root node):

<?xml version="1.0" encoding="UTF-8"?>
<jcr:root xmlns:jcr="http://www.jcp.org/jcr/1.0"
 xmlns:nt="http://www.jcp.org/jcr/nt/1.0"
 xmlns:mix="http://www.jcp.org/jcr/mix/1.0"
 xmlns:myapp="http://mycorp.com/myapp"
 xmlns:mynt="http://mycorp.com/mynt"
 jcr:primaryType="nt:unstructured">
 <myapp:document jcr:primaryType="mynt:document">
 myapp:title="JSR 170"
 myapp:lead="Content Repository">
 <myapp:body jcr:primaryType="mynt:body">
 <myapp:paragraph jcr:primaryType="mynt:paragraph"
 myapp:title="Node Types"
 myapp:text="An important feature..."/>
 </myapp:body>
 </myapp:document>
</jcr:root>

Note that in the above, the XML has been formatted for readability.
The actual XML stream might not have any extraneous whitespace
between elements or attributes.

In this case, to find the node called myapp:paragraph, the following
XPath expression would be used:

//element(*, mynt:paragraph)[@myapp:title="Node Types"]

This query will return the node at the repository workspace path (as
opposed to an XPath):

 103

/myapp:document/myapp:body/myapp:paragraph

6.6.2 XPath and SQL

XPath 2.0 forms the basis of the querying syntax in level 1. All
compliant repository implementations must support this search
syntax. However, implementations that use a relational database as
an underlying datastore will typically be limited in the range of
XPath queries that they can efficiently support. Such
implementations will find support for the optional SQL syntax a
more natural fit (see 8.5 Searching Repository Content with SQL).

Therefore, in order to ensure that database-backed
implementations are not unnecessarily burdened by compliance
requirements, only a subset of XPath is required. This subset is
defined as the set of XPath statements that can be translated to
and from SQL at parse-time of the query.

This arrangement allows database-backed repositories to
implement search natively with SQL but still comply with the
minimal XPath requirement by translating XPath queries to SQL.

On the other hand, implementations that are natively hierarchical
and therefore capable of supporting XPath functionality beyond the
minimum requirement are free to do so.

As mentioned, support for SQL is optional. But because the minimal
set of XPath features is driven by the semantic range of SQL, a
knowledge of the mapping between the two aids greatly in
understanding that minimal feature set XPath. The following
sections summarize that mapping.

6.6.3 Structure of a Query

A query, whether XPath or SQL, specifies a subset of nodes within a
workspace, called the result set. The result set constitutes all the
nodes in the workspace that meet the constraints stated in the
query. The constraints fall into three categories:

• Type constraint: This limits the returned nodes to a
particular primary node type (and possibly, additionally
limits the nodes to those with particular mixin node types).

• Property constraint: This limits the returned nodes to those
with particular properties having particular values.

• Path constraint: This limits the returned nodes to those
within certain subtrees in the workspace.

A query result is returned in two parallel forms: an iterator over the
result set of nodes and a table where each row corresponds to a
node in the result set. The query statement also defines aspects of

 104

how these two return objects are structured through two
presentation specifiers:

• Column specifier: This specifies the set of properties that will
form the columns of the returned table.

• Ordering specifier: This defines the order of the nodes in the
iterator and rows in the table.

The following sections describe in more detail how each of these
five elements are expressed, both in XPath and in SQL, and how
these affect the content and presentation of the query result.

6.6.3.1 Column Specifier

The column specifier of a query is the part of the statement that
specifies which properties are to be returned as columns in the
result table. Support is only required for single-value, non-residual
properties that are declared in or inherited by the node types
specified in the type constraint. It is optional to allow specification
of residual properties as columns.

If no column specifier is given, then at least the default set of
columns will be returned. The default set is defined as all single-
value, non-residual properties declared in or inherited by the node
types specified in the type constraint. It is optional to return
columns for residual properties.

In both cases (an explicitly specified set of columns, or the default
set) the pseudo-property jcr:path will always be returned as a
column. jcr:path is a special column that does not correspond to
any actual property, it holds the normalized absolute path for the
node represented by each row (see 8.5.2.2 Pseudo-property
jcr:path).

As well, a score column will also be included, though it is not
required that its contents always be meaningful. Note also that this
column may be labeled simply jcr:score or it may be labeled with
the signature and parameters of the jcr:score(...) function used
in XPath. Additional score-related columns may be also returned by
implementations that support multiple jcr:score(...) functions
with varying parameters (see 8.5.2.4 Pseudo-property, 6.6.5.2
jcr:contains Function, and 8.5.4.5 CONTAINS).

If columns are explicitly specified then the order in which they are
specified in the query is the order in which they will appear in the
table. If no columns are explicitly specified then the order in which
they appear is implementation-specific.

The column specifier has no effect on the content or form of the
NodeIterator view of the query result.

 105

XPath: In XPath the mechanism of the column specifier is not
specified, though one possible approach is to interpret as the
column specifier the last location step when it uses the attribute
axis; in other words, when content repository properties (XML
attributes in document view) are selected in the last location step.
If this approach is taken then, for example, multiple properties are
selected with a union.

Another possible approach is to define an XPath function that
specifies the desired columns. This specification, however, does not
attempt to define or limit the possible options.

SQL: In SQL the column specifier is the SELECT clause. To select
the default column set the * is used.

Examples:

SQL XPath (one suggested approach)

SELECT *
FROM nt:base

//*

SELECT *
FROM my:type

//element(*, my:type)

SELECT my:title
FROM my:type

//element(*, my:type)/@my:title

SELECT my:title, my:text
FROM my:type

//element(*, my:type)/
(@my:title | @my:text)

6.6.3.2 Type Constraint

A type constraint specifies the common primary node type of the
returned nodes, plus, possibly, additional mixin types that they also
must have. Type constraints are inheritance-sensitive in that
specifying a constraint of node type X will include all nodes
explicitly declared to be type X, as well as all nodes of subtypes of
X.

Implementations are required to support constraints of one primary
type. It is optional to support constraints based on multiple primary
node types (this would, in any case, only be applicable to
implementations that supported multiple inheritance of node
types). It is also optional to support constraints on (one or more)
mixin node types.

Note however, that property constraints can always be used to test
declared types (that is, a non-inheritance-sensitive test), by testing
the values of the properties jcr:primaryType and
jcr:mixinType.(see 6.6.3.3 Property Constraint).

 106

XPath: In XPath the element test is used to test against node
type. It is optional to support element tests on location steps other
than the last.

SQL: In SQL the type constraint is expressed in the FROM clause.

Examples:

SQL XPath

SELECT *
FROM my:type

//element(*, my:type)

SELECT *
FROM my:type
WHERE jcr:path LIKE '/nodes[%]/%'

/jcr:root/nodes//
element(*, my:type)

6.6.3.3 Property Constraint

A query may specify further constraints on the result nodes by way
of property constraints.

XPath: In XPath a predicate that tests attributes on the last
location step forms the property constraint expression. Predicates
on any other location step are optional.

SQL: In SQL the WHERE clause forms the constraint expression.

 Examples:

SQL XPath

SELECT *
FROM my:type
WHERE my:title='JSR
170'

//element(*, my:type)
[@my:title = 'JSR 170']

In order to ensure mutual translatability between XPath and SQL
we only require support for the XPath general comparison operators
(=, !=, <, <=, >, >=). In SQL the semantics of these operators must
be the same as they are for XPath. The only difference is that in
XPath the not-equal operator is !=, while in SQL it is <>.

The term “general comparison” comes from XPath terminology. The
significance of requiring support for XPath general comparison, and
their equivalents in SQL, lies in the way that these operators
behave with multi-value properties. See 6.6.4.10 Searching Multi-
value Properties for details.

Additionally, support for jcr:like() (LIKE in SQL) and
jcr:contains (CONTAINS in SQL) is required (though the range of
this requirement is qualified below).

 107

Since not all property types can be meaningfully compared using all
operators the following describes the minimal set of comparison
support required for each property type:

STRING: =, != (<>), <, <=, >, >=, jcr:like()(LIKE)

LONG: =, != (<>), <, <=, >, >=

DOUBLE: =, != (<>), <, <=, >, >=

DATE: =, != (<>), <, <=, >, >=

NAME: =, != (<>)

PATH: =, != (<>), (additionally, in SQL, LIKE is used against the
jcr:path pseudo-property to define path constraints, see 6.6.3.4
Path Constraint)

REFERENCE: =, != (<>)

BOOLEAN: =, != (<>)

BINARY: (none)

The jcr:like function in XPath corresponds to the LIKE operator in
SQL. See 6.6.5.1 jcr:like Function and 8.5.4.4 LIKE.

Support for the jcr:contains() (CONTAINS() in SQL) function is
not required for any property types in particular. It is however
required to work at the node level. In that case it applies to those
properties of the node for which the implementation maintains an
index. Which properties those are is an implementation issue. See
 6.6.5.2 jcr:contains Function and 8.5.4.5 CONTAINS.

Support for comparing jcr:score in a SQL WHERE clause or
jcr:score(...) in a XPath predicate is not required.

In XPath support is only required for comparisons of the form
<property><op><literalvalue> and
<literalvalue><op><property>. For example, support for [@p =
"hello"] and ["hello" = @p] (and so forth for each operator) is
required. Support for [@p = @q] (and so forth for each operator) is
not required.

Examples:

SQL XPath

my:title = 'JSR 170' @my:title = 'JSR 170'

my:title <> 'JSR 170' @my:title != 'JSR 170'

my:title < 'JSR 170' @my:title < 'JSR 170'

my:title <= 'JSR 170' @my:title <= 'JSR 170'

 108

my:title > 'JSR 170' @my:title > 'JSR 170'

my:title >= 'JSR 170' @my:title >= 'JSR 170'

my:title = 'JSR 170' AND
my:author = 'David'

@my:title = 'JSR 170' and
@my:author = 'David'

my:title = 'JSR 170' OR
my:title = 'JSR-170'

@my:title = 'JSR 170' or
@my:title = 'JSR-170'

NOT (my:title = 'JSR
170')

not(@my:title >= 'JSR 170')

my:title IS NOT NULL @my:title

my:title IS NULL not(@my:title)

my:title LIKE 'JSR 170%' jcr:like(@my:title,
'JSR 170%')

CONTAINS(*, 'JSR 170') jcr:contains(., 'JSR 170')

6.6.3.4 Path Constraint

The path constraint restricts the result node to a scope specified by
a path expression. The following path constraints must be
supported:

• Exact
• Child nodes
• Descendants
• Descendants or self

XPath: In XPath the location steps specify the path constraint.

SQL: In SQL the path constraint occurs as an ANDed test within the
WHERE clause of the pseudo-property jcr:path using either the =
operator or the LIKE operator.

Exact path constraint examples:

SQL XPath

SELECT *
FROM my:type
WHERE jcr:path LIKE
'/some[%]/nodes[%]'

/jcr:root/some/
element(nodes, my:type)

SELECT *
FROM my:type
WHERE jcr:path =
'/some/nodes'

/jcr:root/some[1]/element(nodes,
my:type)[1]

 109

Child nodes path constraint examples:

SQL XPath

SELECT *
FROM my:type
WHERE jcr:path LIKE
'/some[%]/nodes[%]/%'
AND NOT jcr:path LIKE
'/some[%]/nodes[%]/%/%'

/jcr:root/some/nodes/
element(*, my:type)

SELECT *
FROM my:type
WHERE jcr:path LIKE
'/some/nodes/%'
AND NOT jcr:path LIKE
'/some/nodes/%/%'

/jcr:root/some[1]/nodes[1]/
element(*, my:type)

Descendants path constraint examples:

SQL XPath

SELECT *
FROM my:type
WHERE jcr:path LIKE
'/some[%]/nodes[%]/%'

/jcr:root/some/nodes//
element(*, my:type)

SELECT *
FROM my:type
WHERE jcr:path LIKE
'/some/nodes/%'

/jcr:root/some[1]/nodes[1]//
element(*, my:type)

Descendants or self path constraint examples:

SQL XPath

SELECT *
FROM my:type
WHERE jcr:path LIKE
'/some[%]/nodes[%]'
OR jcr:path LIKE
'/some[%]/nodes[%]/%'

/jcr:root/some/nodes//
element(*, my:type)

SELECT *
FROM my:type
WHERE jcr:path =
'/some/nodes' OR
jcr:path LIKE
'/some/nodes/%'

/jcr:root/some[1]/nodes[1]//
element(*, my:type)

 110

6.6.3.5 Ordering Specifier

This part of the query statement specifies the ordering of the result
nodes according to the natural ordering of the values of one or
more properties of the result nodes. If no order specification is
supplied in the query statement, implementations may support
document order on the result nodes (see 6.6.4.2 Document Order).

In both XPath and SQL, ordering is specified by a special clause
that lists one or more property names and, for each, whether the
order is to be ascending or descending. If neither ascending nor
descending is specified after a property name (or jcr:score(...)
function), the default is ascending.

Implementations must support ordering on jcr:score (in SQL just
the name is used, see 8.5.2.4 Pseudo-property) or
jcr:score(...) (in XPath, the function form is used, though the
number of parameters depends on the implementation, see 6.6.5.3
jcr:score function).

Support for ordering on PATH and NAME properties is not required. If
it is supported then the collation sequence for these types is
implementation specific.

XPath: A subset of the order by clause specified in XQuery 1.0 is
used to implement the order specification in XPath. If the order
modifier (ascending or descending) is missing, the ordering
defaults to ascending. See 6.6.5.5 order by Clause.

SQL:The order by clause implements the order specification in SQL.
If the order modifier (ASC meaning ascending or DESC, meaning
descending) is missing, the ordering defaults to ASC. See 8.5.4.6
ORDER BY.

Examples:

SQL XPath

SELECT *
FROM my:type
ORDER BY my:title

//element(*, my:type)
order by @my:title

SELECT *
FROM my:type
ORDER BY my:date
DESC, my:title ASC

//element(*, my:type)
order by @my:date descending,
@my:title ascending

SELECT *
FROM my:type
WHERE
CONTAINS(., 'jcr')

//element(*, my:type)
[jcr:contains(., 'jcr')]
order by jcr:score() descending

 111

ORDER BY jcr:score
DESC

6.6.4 Adapting XPath to the Content Repository

The following presents a feature-by-feature discussion of the
minimal requirements. As well, some of the more common possible
extensions are mentioned. For those common extensions, a
discovery mechanism is provided in the form of additional
descriptor keys whose value (“true” or “false”) indicates whether
the feature in question is supported (see 6.1.1.1 Repository
Descriptors).

6.6.4.1 Same-Name Siblings

The syntax used to address same-name sibling nodes in a
workspace path is purposely similar to the XPath abbreviated
syntax for addressing sibling XML elements with the same name,
i.e., the "square bracket index notation" where the first sibling is
indicated by [1] (not [0]) the second by [2] and so forth.

However, because some implementations (those built on an
underlying relational model, for example) may find it difficult to
support querying on the basis of node position, this feature is
optional. Repository.getDescriptor(QUERY_XPATH_POS_INDEX)
returning “true” indicates that the index position notation for
same-name siblings is supported for XPath query.

6.6.4.2 Document Order

The results returned by an XPath query may reflect the document
order of the elements returned if no order by clause is specified
(see 6.6.3.5 Ordering Specifier, above).

Support for this is optional, since some implementations (notably,
database-backed ones) will not have a notion of document order.

If document order searching is supported, then the context
functions related to document order, last() and position(), must
also be supported.

Repository.getDescriptor(QUERY_XPATH_DOC_ORDER) returning
“true” indicates that document order searching is supported.

6.6.4.3 Context Node

The context node of an XPath query is the XML node relative to
which the query expression is evaluated.

A relative XPath statement (one that does not have a leading /) will
be interpreted relative to the root node of the workspace, which, in

 112

the XML document view is the top-most XML element, <jcr:root>.
This means that one should not include jcr:root as the first
segment in a relative XPath statement, since that element is
already the default context node.

An absolute XPath (one with a leading /), in contrast, will be
interpreted relative to a position one level above <jcr:root>. This
means that an absolute XPath must either begin with // or with
/jcr:root in order to match anything at all.

6.6.4.4 Mapping Property Types to XML Types

The following table outlines the mapping between property types to
XML Schema types.

Property Type XML Schema Type

String xs:string

Binary xs:base64Binary

Double xs:double

Long xs:long

Boolean xs:boolean

Date xs:dateTime

Path xs:string

Name xs:string

Reference xs:IDREF

6.6.4.5 Abbreviated Syntax

Only support for the abbreviated syntax of XPath is required.

6.6.4.6 Axes

As part of a location path, the only axes for which support is
required are:

child (in abbreviated syntax this is the default axis,
represented simply by /, the location path separator).

descendant-or-self (abbreviated syntax: //).

attribute (abbreviated syntax: @).

Support for the other axes is not required.

See 6.6.3.3 Property Constraint and 6.6.3.4 Path Constraint,
above.

 113

6.6.4.7 Predicates

Support for predicates in the last step of the location path is
required. For example, the following query would be supported:

Find all employees who have a secretary and an assistant property:
 //element(*, employee)[@secretary and @assistant]

See 6.6.3.3 Property Constraint, above.

6.6.4.8 Boolean Functions

The boolean functions not(), true() and false() are required.

6.6.4.9 Escaping

The names of elements and attributes (corresponding to nodes and
properties, respectively) within an XPath statement must
correspond to the form in which they (notionally) appear in the
document view. This means that spaces (and any other non-XML
characters) within names must be encoded according to the rules
described in 6.4.3 Escaping of Names.

The values of attributes, on the other hand, are not escaped in the
XPath usage of document view (as opposed to the export usage,
see 6.4.2.5 Multi-value Properties, 6.4.4 Escaping of Values
and 6.6.4.10 Searching Multi-value Properties). As a result, string
literals in XPath predicates that test those attribute values are not
escaped either. They may contain whitespace as well as the
characters ampersand (&), less-than (<), greater-than (>),
quotation mark (") and apostrophe ('). In XPath the entity
references that would be used within an XML document (<, >
etc..) are not used. However, the apostrophe (') and quotation
mark(") must be escaped according to the standard rules of XPath
with regard to string literals: If the literal is delimited by
apostrophes, two adjacent apostrophes within the literal are
interpreted as a single apostrophe. Similarly, if the literal is
delimited by quotation marks, two adjacent quotation marks within
the literal are interpreted as one quotation mark.8

6.6.4.10 Searching Multi-value Properties

Searching of multi-value properties with XPath is supported by
mapping multi-value properties to XML attributes of the list type
and employing the XPath feature of general comparisons.

8 See http://www.w3.org/TR/2005/WD-xpath20-20050404/#doc-
xpath-StringLiteral for details.

 114

XML Schema supports attributes having types. Among those is one
called the list type9. This type specifies that white space within an
attribute value serves as the delimiter between individual list items.

Additionally, XPath distinguishes between two types of comparison
operators: general comparisons (=, !=, <, >, <= and >=) and value
comparisons (eq, ne, lt, le, gt, and ge). General comparisons,
when applied to a list type attribute value, will return true if the
specified relation (equal, not equal, greater-than, etc.) evaluates to
true for at least one of the values of in the list. Value comparisons
test the entire attribute value as a single unit. In cases where an
attribute only has one value, the general and value comparisons
are identical.

In the virtual XML document against which XPath queries are run,
multi-value properties will be mapped to XML attributes with values
in a form similar to the XML list type.

However, since the XML document is virtual, it need never be
actually serialized. As a result, we do not need to specify white
space as the delimiter. Doing so would require that white space
that occurs within a value of a multi-value property be escaped
when converted to document view, which would in turn require use
of awkward escaping characters within XPath queries that tested for
such values.

Instead, we simply specify that tests against multi-value properties
using general comparison operators act as they would if the multi-
value property were a list type attribute, except that spaces within
individual values used within the test are not escaped. For
example:

/x/y[@p = 'hello']

would return all nodes with path /x/y that have a property p which
has at least one value "hello".

Note that multi-value properties in document view will be handled
differently for purposes of export (see 6.4.2 Document View XML
Mapping).

6.6.4.11 Comparison Operators

In XPath only support for the general comparison operators (=, !=,
<, <=, >, >=) is required. See 6.6.3.3 Property Constraint, above.

9 See http://www.w3.org/TR/xmlschema-0/#ListDt for more
information about the XML Schema list type.

 115

6.6.4.12 text() Node Test

As discussed in 7.3.2 Import from Document View and 6.4.2.3 XML
Text, document view import converts XML text nodes into the
special structure jcr:xmltext/jcr:xmlcharacters, importing the
actual text into the value of the jcr:xmlcharacters property.

In the virtual XML document against which XPath is run, this
structure appears as an element and attribute. For example:

<limerick>
<jcr:xmltext jcr:xmlcharacters="There once was a..."/>
</limerick>

However, as a convenience, the XPath text() node test may be
supported in such a way as to make the text also simultaneously
visible to XPath in its original form, as an XML text node:

<limerick>There once was a...</limerick>

If the text() node test is supported, the result is simply that
text() becomes equivalent to jcr:xmltext as a node test within
an XPath statement. For example, the XPaths
/jcr:root/limerick/jcr:xmltext and /jcr:root
limerick/text() would be equivalent.

6.6.4.13 element() Node Test

The element() node test defined in XPath 2.0 is used to select
nodes of a particular primary node type. For example:

//element(*, nt:file)

would select all nodes of primary node type nt:file. This includes
all node of subtypes of nt:file as well.

6.6.5 XPath Extensions

XPath in content repositories also defines a small number of
functions and one syntactic addition (the order-by clause). Content
repository-related functions are prefixed with jcr:.

Note that the function signatures below are expressed in XPath
terminology. In particular, the reference to the type element()
means an XML element, which corresponds to a repository node.
Similarly, the type attribute() refers to an XML attribute, which
corresponds to a repository property and node() refers to an XML
node which corresponds to a repository item (that is, a repository
node or property).

 116

6.6.5.1 jcr:like Function

This function is based on the LIKE predicate found in SQL. Support
for this function is required, as described in 6.6.3.3 Property
Constraint.

jcr:like($property as attribute(),
 $pattern as xs:string) as xs:boolean

For example, the query “Find all paras in document whose title
property includes the substring ‘Java’ ”, is expressed as:

/jcr:root/document/para[jcr:like(@title,'%Java%')]

As in SQL, the character ‘%’ represents any string of zero or more
characters, and the character ‘_’ (underscore) represents any single
character. Any literal use of these two characters must be escaped
with a backslash (“\”). Consequently, any literal instance of a
backslash must also be escaped, resulting in a double backslash
(“\\”).

6.6.5.2 jcr:contains Function

jcr:contains($scope as node(),
 $exp as xs:string) as xs:boolean

This function is used to embed a statement in a full-text search
language. It is functionally equivalent to the SQL CONTAINS
function (for level 2 implementations) described in 8.5.4.5
CONTAINS.

The first parameter defines the scope of the contains predicate. It
can be either “.” (meaning this node, i.e., the node-set defined by
the current location step) or it can be an XML attribute name (and
therefore a content repository property), for example
@my:property, specifying a particular property of the node-set
defined by the current location step). If the scope is “.” then all
properties of the current node set for which the implementation
maintains an index are searched. If a specific property is specified
then only the value of that property is searched (if the property is
not indexed then the function will return false).

As described in 6.6.3.3 Property Constraint, support for the
jcr:contains() function is required to work at the node level in
those repositories which support full text searching. In other words
only support for “.” is required. Support for property specific full-
text search is optional.

The EBNF for the second parameter is:

searchexp ::= [-]term {whitespace [OR]
 whitespace [-]term}
term ::= word | '"' word {whitespace word} '"'
word ::= /* A string containing no whitespace */
whitespace ::= /* A string of only whitespace*/

 117

At minimum, all implementations must support the simple search-
engine syntax defined by exp in the EBNF above. This syntax is
based on the syntax of search engines like Google.

The semantics of the simple search expression are as follows:

• Terms separated by whitespace are implicitly ANDed
together.

• Terms may also be ORed with explicit use of the OR keyword.

• AND has higher precedence than OR.

• Terms may be excluded by prefixing with a – (minus sign)
character. This means that the result set must not contain
the excluded term.

• A term may be either a single word or a phrase delimited by
double quotes (").

• The entire text search expression (searchexp in the EBNF,
above) must be delimited by single quotes (').

• Within the searchexp literal instances of single quote (“'”),
double quote (“"”) and hyphen (“-”) must be escaped with a
backslash (“\”). Backslash itself must therefore also be
escaped, ending up as double backslash (“\\”).

For example, the query “Find all nodes with some property that
contains the text ‘JSR 170’ ” is expressed as:

//*[jcr:contains(., 'JSR 170')]

the optionally supported query “Find all nodes with a property
called myapp:title that contain the text ‘JSR 170’ ” is expressed
as:

//*[jcr:contains(@myapp:title, 'JSR 170')]

The relevance score for each node may be returned in (one or
more) score columns (jcr:score or jcr:score(...)) however the
details of how the score is calculated are implementation-specific
(see 8.5.2.4 Pseudo-property, 6.6.5.2 jcr:contains Function and
 8.5.4.5 CONTAINS).

An implementation may choose to support other embedded full-text
search languages other than the simple search engine style shown
here.

6.6.5.3 jcr:score function

jcr:score(...) as xs:decimal

 118

As described in 6.6.3.1 Column Specifier, a score value is returned
for each row the result table. However, how this value is calculated
is left up to the implementation. It is not required that its contents
always be meaningful.

The XPath function jcr:score(...) is provided to enable queries
to specify score calculation parameters in those implementations
that support it.

The jcr:score(...) function must therefore be supported, but the
number and meaning of its parameters is left up to the
implementation. The jcr:score(...) function can be used in
either the columns specifier of the query, or the order specifier. It
is also possible (though not required) that implementations support
multiple jcr:score(...) functions within a single query.

The column within which the score information is returned may be
labeled simply jcr:score or it may be labeled with the signature
and parameters of the jcr:score(...) function used. Additional
score-related columns may be also returned by implementations
that support multiple jcr:score(...) functions with varying
parameters (see 8.5.2.4 Pseudo-property, 6.6.5.2 jcr:contains
Function, and 8.5.4.5 CONTAINS).

Support for comparing jcr:score(...) in a predicate is not
required.

6.6.5.4 jcr:deref Function

This function is used follow a REFERENCE property into the target
reference. Support for this function is optional.

jcr:deref($source as attribute(),
 $node-test as xs:string) as element()*

The first argument is an XML attribute that represents a REFERENCE
property.

The second argument is a node test which is a string to match the
target node name. The function returns a node sequence of all
target nodes matching the node-test. An error is raised if the
reference cannot be resolved.

For example, suppose there is a property of type REFERENCE called
myapp:author which refers to a node representing the author of
this document. A query expression to find the person’s last name
property would be:

/jcr:root/myapp:myDoc/
 jcr:deref(@myapp:author, 'myapp:person')/address

 119

The dereference expression above evaluates to one or more nodes
which has the name myapp:person. Subsequently a child node of
each, representing the person’s address, is selected.

6.6.5.5 order by Clause

As described in 6.6.3.5 Ordering Specifier, it may be desirable to
sort the result of an XPath query into either ascending or
descending order based on the value of a property. This is done by
adding the order by clause to a location path expression. The
additions to the syntax of the XPath location clause are as follows:

JCRXPathExpr ::= (XPath OrderByClause?)?

OrderByClause ::= "order by" OrderSpecList

OrderSpecList ::= OrderSpec ("," OrderSpec)*

OrderSpec ::= ("@" AttributeName OrderModifier) |
 (ScoreFunction OrderModifer)

OrderModifier ::= ("ascending" | "descending")?

ScoreFunction ::= "jcr:score(" ParamList ")"

ParamList ::= /* zero or more comma separated
parameters */

For example, the query to find all nodes of type car where the
color is “green” and sort them by price in ascending order, the
following query might be used:

//element(*, car)[@brand='green'] order by @price
ascending

Note that if neither ascending nor descending are explicitly
specified the default behavior is ascending.

6.6.6 XPath Grammar

The following grammar defines the required subset of XPath. Text
in Courier New indicates parts of standard XPath 2.0 that are
required. Text in Courier New strikethrough indicates parts of
standard XPath 2.0 that are not required.

6.6.6.1 Named Terminals

[1] ExprComment ::= "(:" (ExprCommentContent |
ExprComment)* ":)"

[2] ExprCommentContent ::= Char

[3] IntegerLiteral ::= Digits

 120

[4] DecimalLiteral ::= ("." Digits) | (Digits "." [0-9]*)

[5] DoubleLiteral ::= (("." Digits) | (Digits ("." [0-
9]*)?)) ("e" | "E") ("+" | "-")?
Digits

[6] StringLiteral ::= ('"' (('"' '"') | [^"])* '"') | ("'"
(("'" "'") | [^'])* "'")

[7] SchemaGlobalTypeName ::= "type" "(" QName ")"

[8] SchemaGlobalContext ::= QName | SchemaGlobalTypeName

[9] SchemaContextStep ::= QName

[10] Digits ::= [0-9]+

[11] NCName ::= [http://www.w3.org/TR/REC-xml-
names/#NT-NCName]

[12] VarName ::= QName

[13] QName ::= [http://www.w3.org/TR/REC-xml-
names/#NT-QName]

[14] Char ::= [http://www.w3.org/TR/REC-xml#NT-Char]

6.6.6.2 Non-Terminals

[15] XPath ::= Expr?

[16] Expr ::= ExprSingle ("," ExprSingle)*

[17] ExprSingle ::= ForExpr
| QuantifiedExpr
| IfExpr
| OrExpr

[18] ForExpr ::= SimpleForClause "return" ExprSingle

[19] SimpleForClause ::= <"for" "$"> VarName "in" ExprSingle
("," "$" VarName "in" ExprSingle)*

[20] QuantifiedExpr ::= (<"some" "$"> | <"every" "$">) VarName
"in" ExprSingle ("," "$" VarName "in"
ExprSingle)* "satisfies" ExprSingle

[21] IfExpr ::= <"if" "("> Expr ")" "then" ExprSingle
"else" ExprSingle

 121

[22] OrExpr ::= AndExpr ("or" AndExpr)*

[23] AndExpr ::= InstanceofExpr ("and" InstanceofExpr
)*

[24] InstanceofExpr ::= TreatExpr (<"instance" "of">
SequenceType)?

[25] TreatExpr ::= CastableExpr (<"treat" "as">
SequenceType)?

[26] CastableExpr ::= CastExpr (<"castable" "as">
SingleType)?

[27] CastExpr ::= ComparisonExpr (<"cast" "as">
SingleType)?

[28] ComparisonExpr ::= RangeExpr ((ValueComp
| GeneralComp
| NodeComp) RangeExpr)?

[29] RangeExpr ::= AdditiveExpr ("to" AdditiveExpr)?

[30] AdditiveExpr ::= MultiplicativeExpr (("+" | "-")
MultiplicativeExpr)*

[31] MultiplicativeExpr ::= UnaryExpr (("*" | "div" | "idiv" |
"mod") UnaryExpr)*

[32] UnaryExpr ::= ("-" | "+")* UnionExpr

[33] UnionExpr ::= IntersectExceptExpr (("union" | "|")
IntersectExceptExpr)*

/* Note that support for a UnionExpr
of attributes in the last location
step is optional*/

[34] IntersectExceptExpr ::= ValueExpr (("intersect" | "except")
ValueExpr)*

[35] ValueExpr ::= PathExpr

[36] PathExpr ::= ("/" RelativePathExpr?)
| ("//" RelativePathExpr)
| RelativePathExpr

[37] RelativePathExpr ::= StepExpr (("/" | "//") StepExpr)*

[38] StepExpr ::= AxisStep | FilterStep

 122

[39] AxisStep ::= (ForwardStep | ReverseStep) Predicates

[40] FilterStep ::= PrimaryExpr Predicates

[41] ContextItemExpr ::= "."

[42] PrimaryExpr ::= Literal | VarRef | ParenthesizedExpr |
ContextItemExpr | FunctionCall

[43] VarRef ::= "$" VarName

[44] Predicates ::= ("[" Expr "]")*

[45] GeneralComp ::= "=" | "!=" | "<" | "<=" |
">" | ">="

[46] ValueComp ::= "eq" | "ne" | "lt" | "le" | "gt" |
"ge"

[47] NodeComp ::= "is" | "<<" | ">>"

[48] ForwardStep ::= (ForwardAxis NodeTest) |
AbbrevForwardStep

[49] ReverseStep ::= (ReverseAxis NodeTest) |
AbbrevReverseStep

[50] AbbrevForwardStep ::= "@"? NodeTest

[51] AbbrevReverseStep ::= ".."

[52] ForwardAxis ::= <"child" "::">
| <"descendant" "::">
| <"attribute" "::">
| <"self" "::">
| <"descendant-or-self" "::">
| <"following-sibling" "::">
| <"following" "::">
| <"namespace" "::">

[53] ReverseAxis ::= <"parent" "::">
| <"ancestor" "::">
| <"preceding-sibling" "::">
| <"preceding" "::">
| <"ancestor-or-self" "::">

[54] NodeTest ::= KindTest | NameTest

[55] NameTest ::= QName | Wildcard

[56] Wildcard ::= "*"
| <NCName ":" "*">

 123

| <"*" ":" NCName>

[57] Literal ::= NumericLiteral | StringLiteral

[58] NumericLiteral ::= IntegerLiteral | DecimalLiteral |
DoubleLiteral

[59] ParenthesizedExpr ::= "(" Expr? ")"

[60] FunctionCall ::= <QName "("> (ExprSingle (","
ExprSingle)*)? ")"

[61] SingleType ::= AtomicType "?"?

[62] SequenceType ::= (ItemType OccurrenceIndicator?)
| <"empty" "(" ")">

[63] AtomicType ::= QName

[64] ItemType ::= AtomicType | KindTest | <"item" "("
")">

[65] KindTest ::= DocumentTest
| ElementTest
| AttributeTest
| PITest
| CommentTest
| TextTest
| AnyKindTest

[66] ElementTest ::= <"element" "("> ((SchemaContextPath
ElementName)
| (ElementNameOrWildcard (","
TypeNameOrWildcard "nillable"?)?))?
")"

[67] AttributeTest ::= <"attribute" "("> ((SchemaContextPath
AttributeName)
| (AttribNameOrWildcard (","
TypeNameOrWildcard)?))? ")"

[68] ElementName ::= QName

[69] AttributeName ::= QName

[70] TypeName ::= QName

[71] ElementNameOrWildca
rd

 ::= ElementName | "*"

[72] AttribNameOrWildcar ::= AttributeName | "*"

 124

d

[73] TypeNameOrWildcard ::= TypeName | "*"

[74] PITest ::= <"processing-instruction" "("> (NCName
| StringLiteral)? ")"

[75] DocumentTest ::= <"document-node" "("> ElementTest? ")"

[76] CommentTest ::= <"comment" "("> ")"

[77] TextTest ::= <"text" "("> ")"

[78] AnyKindTest ::= <"node" "("> ")"

[79] SchemaContextPath ::= <SchemaGlobalContext "/">
<SchemaContextStep "/">*

[80] OccurrenceIndicator ::= "?" | "*" | "+"

6.6.6.3 Notes on the Grammar

Required function support ([42] and [60] above) is limited to the
functions described in 6.6.5 XPath Extensions.

6.6.7 Search Scope

A query searches the persistent workspace associated with the
current session. It does not search any pending changes that may
be recorded on the session but not yet saved.

6.6.8 Query API

The query facility in a content repository is accessed through the
QueryManager object. The Workspace interface provides access to
the QueryManager object:

javax.jcr.
Workspace

QueryManager getQueryManager()

Returns the QueryManager, through which search methods
are accessed.

A RepositoryException is thrown if an error occurs.

6.6.9 QueryManager

The QueryManager object provides methods for creating queries,
retrieving saved queries and for discovering supported query
languages:

 125

javax.jcr.query.
QueryManager

Query createQuery(String statement,
 String language)

Creates a new query by specifying the query statement itself
and the language in which the query is stated. If the query
statement is syntactically invalid, given the language
specified, an InvalidQueryException is thrown. The
language parameter must be a string from among those
returned by QueryManager.getSupportedQueryLanguages();
if it is not, then an InvalidQueryException is thrown.

A RepositoryException is thrown if another error occurs.

Query getQuery(Node node)

Retrieves an existing persistent query. If node is not a valid
persisted query (that is, a node of type nt:query), an
InvalidQueryException is thrown.

Persistent queries are created by first using
QueryManager.createQuery to create a Query object and then
calling Query.save to persist the query to a location in the
workspace.

A RepositoryException is thrown if another error occurs.

String[] getSupportedQueryLanguages()

Returns an array of strings identifying the supported query
languages. In level 1 this set must include the string
represented by the constant Query.XPATH. If SQL is supported
it must additionally include Query.SQL. An implementation of
either level may also support other languages.

A RepositoryException is thrown if an error occurs.

6.6.10 The Query Object

A new query is created by calling QueryManager.createQuery. The
returned Query object has the following methods:

javax.jcr.query.
Query

QueryResult execute()

Executes this query and returns a QueryResult
object.

Throws a RepositoryException if an error occurs.

 126

String getStatement()

Returns the statement defined for this query.

String getLanguage()

Returns the language set for this query. This will be
one of the strings returned by
QueryManager.getSupportedQueryLanguages().

String getStoredQueryPath()

If this is a Query that has been stored using
Query.storeAsNode (regardless of whether it has
been saved yet) or retrieved using
QueryManager.getQuery, then this method returns
the path of the nt:query node that stores the
query.

If this is a transient query (that is, a Query object
created with QueryManager.createQuery and not
yet stored), then this method throws an
ItemNotFoundException.

Throws a RepositoryException if another error
occurs.

void storeAsNode(String absPath)

Creates a node representing this Query in content.

In a level 1 repository this method throws an
UnsupportedRepositoryOperationException.

In a level 2 repository it creates a node of type
nt:query at absPath and returns that node.

In order to persist the newly created node, a save
must be performed that includes the parent of this
new node within its scope. In other words, either a
Session.save or an Item.save on the parent or
higher-degree ancestor of absPath must be
performed.

In the context of this method the absPath provided
must not have an index on its final element. If it
does then a RepositoryException is thrown.

Strictly speaking, the parameter is actually a
absolute path to the parent node of the node to be
added, appended with the name desired for the new
node. It does not specify a position within the child
node ordering (if such ordering is supported). If
ordering is supported by the node type of the

 127

parent node then the new node is appended to the
end of the child node list.

An ItemExistsException will be thrown either
immediately (by this method), or on save, if an
item at the specified path already exists and same-
name siblings are not allowed. Implementations
may differ on when this validation is performed.

A PathNotFoundException will be thrown either
immediately (by this method), or on save, if the
specified path implies intermediary nodes that do
not exist. Implementations may differ on when this
validation is performed.

A ConstraintViolationException will be thrown
either immediately (by this method), or on save, if
adding the node would violate a node type or
implementation-specific constraint or if an attempt
is made to add a node as the child of a property.
Implementations may differ on when this validation
is performed.

A VersionException will be thrown either
immediately (by this method), or on save, if the
node to which the new child is being added is
versionable and checked-in or is non-versionable
but its nearest versionable ancestor is checked-in.
Implementations may differ on when this validation
is performed.

A LockException will be thrown either immediately
(by this method), or on save, if a lock prevents the
addition of the node. Implementations may differ on
when this validation is performed.

A RepositoryException is thrown if another error
occurs.

String XPATH

A string constant representing the XPath query
language applied to the document view XML
mapping of the workspace.

String SQL

A string constant representing the SQL query
language applied to the database view of the
workspace. Support for this language is optional.
See 8.5 Searching Repository Content with SQL.

 128

6.6.11 Persistent vs. Transient Queries

When a new Query object is first created with
QueryManager.createQuery it is a transient query. If the
repository is level 2 compliant and supports the node type
nt:query, then a transient query can be stored in content by
calling Query.storeAsNode(String absPath). This creates an
nt:query node at the specified path (a save on the parent of the
new node is required to persist the stored query). Retrieving a
stored query is done by passing the nt:query node to
QueryManager.getQuery(Node node).

Note that the actual query statement stored within a persistent
query (that is, the value of the property jcr:statement, for
example, “//*[@jcr:primaryType='nt:file']” or “SELECT *
FROM nt:base WHERE jcr:primaryType='nt:file'”) is
namespace-fragile in that it is stored as a literal string with the
namespaces in prefix form. As a result, if the stored query is run in
a context where a prefix it references has been remapped, the
query will not produce the same result as it would have before the
remapping. It is left up to the application to ensure that appropriate
mappings are in place (either using temporary Session remapping
or persistent NamespaceRegistry changes) when a stored query is
executed.

6.6.12 Query Results

Once a query has been defined, it can be executed. The method
Query.execute() returns a QueryResult.

The results returned always respect the access restrictions of the
current session. In other words if the current session does not have
read permissions to a particular item, then that item will not be
included in the result set even if it would otherwise constitute a
match.

As mentioned, all queries are run against the persistent state of a
workspace, pending changes stored in the Session are not
searched. However, when an item is accessed from within a
QueryResult object, the state of the item returned will obey the
same semantics as if it were retrieved using a normal
Node.getNode or Node.getProperty, in other words the item state
will reflect any pending changes currently stored in the session. As
a result, it is possible that a property returned as a match will not
reflect the value that caused it to be a match (i.e., its persistent
state). Applications can clear the Session (either through save or
refresh(false)) before running a query in order to avoid such
discrepancies.

The QueryResult is returned in two formats: as a table with
property names as the column names and a set of rows of values
and as a list of nodes. See 6.6.3 Structure of a Query for details of

 129

how the various aspects of these two views are governed by the
query. The methods below provide access to the two views:

javax.jcr.query.
QueryResult

String[] getColumnNames()

Returns an array of all the column names in the table
view of this result set.

Throws a RepositoryException if an error occurs.

RowIterator getRows()

Returns an iterator over the Rows of the result table. If
an ORDER BY clause was specified in the query, then
the order of the returned rows in the iterator will
reflect the order specified in that clause. If no items
match, an empty iterator is returned.

Throws a RepositoryException if an error occurs.

NodeIterator getNodes()

Returns an iterator over all nodes that match the
query. If an ORDER BY clause was specified in the
query, then the order of the returned nodes in the
iterator will reflect the order specified in that clause. If
no nodes match, an empty iterator is returned.

Throws a RepositoryException if an error occurs.

javax.jcr.query.
Row

Value[] getValues()

Returns an array of all the values in the same order as
the column names returned by
QueryResult.getColumnNames().

Throws a RepositoryException if an error occurs.

Value getValue(String propertyName)

Returns the value of the indicated property in this
Row.

If propertyName is not among the column names of
the query result table, an ItemNotFoundException is
thrown.

Throws a RepositoryException if another error

 130

occurs.

6.6.13 Permissions

The results returned by a search are, of course, subject to the same
restrictions as any access to the repository via a particular session.
In other words, a search will only return results from those sections
of the repository for which the initiating session has the appropriate
permissions.

 131

6.7 Node Types

An important feature of many repositories is the ability to
distinguish the entities stored in the repository by type. In a
content repository, this is done by assigning node types to nodes.

Level 1 specifies methods for the following node type-related
functions:

• Discovering the primary and mixin node types of an existing
node.

• Discovering which node types are supported in a particular
repository.

• Discovering the definition of a supported node type.

• Discovering the constraints placed on an existing node or
property due to the node type of its parent.

Level 2 additionally specifies methods for:

• Assigning a primary node type to a node on node creation.

• Assigning additional (optional) mixin node types.

In this section we explain the level 1 node type functionality, see
7.4 Assigning Node Types for level 2 node type functions. In some
cases node type-related information accessible through the
discovery methods will only be relevant to a level 2
implementation. Where this is the case, it is mentioned in the
discussion below.

6.7.1 Node Type Configuration

This specification does not attempt to define methods for defining,
creating or managing node types. The wide range of approaches
used to type entities in existing repositories makes it difficult to
define a single mechanism for node type configuration. Therefore,
this aspect of node type functionality is left up to the individual
implementation. This specification limits itself to defining node type
assignment and discovery.

6.7.2 What Constitutes a Node Type

In a compliant repository, a node type defines which child nodes
and properties a node may (or must) have. In order to provide a
set of discovery methods for node type information, the range of
that information must be defined. To this end, this specification
stipulates that every node type has the following attributes:

• Name: Every node type registered with the repository has
a unique name. The naming conventions for node types are
the same as for items (i.e., they may have a colon
delimited prefix). All predefined primary node types are, for

 132

example, prefixed with nt. Predefined mixin types are
prefixed with mix. See 6.7.19 Predefined Node Types.

• Supertypes: A primary node type (with the exception of
nt:base) must extend another node type (or more than
one node type, if the implementation supports multiple
inheritance). A mixin node type may extend another node
type. 6.7.8 Inheritance Among Node Types.

• Mixin status: A node type may be either primary or mixin.
This status is part of the node type’s definition. See 6.7.4
Primary and Mixin Node Types.

• Orderable child nodes status: A primary node type may
specify that child nodes are client-orderable. If this status is
set to true, then all nodes of that node type must support
the method Node.orderBefore. If this status is set to
false, then nodes of that node type may support this
method. Only primary node types control a node's status in
this regard. This setting on a mixin node type will not have
any effect on the node. See 7.1.10 Ordering Child Nodes.

• Property definitions: A node type contains a set of
definitions specifying the properties that nodes of this node
type are allowed (or required) to have and the
characteristics of those properties.

• Child node definitions: A node type contains a set of
definitions specifying the child nodes that nodes of this
node type are allowed (or required) to have and the
characteristics of those child nodes (including, in turn, their
node types).

• Primary Item Name: A node type may specify one child
item (property or node) as the primary item. This indicator
is used by the method Node.getPrimaryItem(). See 6.2.3
Node Read Methods.

6.7.3 Node Type Discovery in Level 1

Note that in a level 1 implementation clients will not be able to re-
order, add or remove nodes or change properties in any case.
However, the orderable-status, property definitions and child node
definitions may still provide information related to write-capabilities
that a level 1 implementation cannot in practice perform through
this API.

This might be the case, for example, if a particular node-type
happens to be shared with a level 2 repository. In general, the node
type discovery methods will reflect the definition of the node type,
regardless of the level of repository in which the node type happens
to be found.

 133

For this reason, the descriptions in this section often refer to write-
related issues that will only be applicable in a level 2 repository.

6.7.4 Primary and Mixin Node Types

In a content repository, every node has one and only one declared
primary node type. This node type defines, as mentioned, a set of
restrictions on the child items of the node. Note that because node
types may inherit characteristics from supertypes, a particular node
may be of more than one primary node type by virtue of type
inheritance. For example if X is a supertype of Y and node N is of
type Y, then N is also of type X. Nonetheless, this does not change
the fact that any particular node still has exactly one declared node
type.

In addition to its single primary node type, a node may also have
any number of mixin node types assigned to it. A mixin type is
similar to a primary type in that its definition has the same
parameters. It differs, though, in that it provides additional features
to a node, beyond those defined in the node type proper.

Furthermore, while a primary node type can be “instantiated” as a
node (i.e., that node’s structure is fully defined by its primary node
type) this is not the case with mixin types. A mixin type cannot
serve, by itself, to define the structure of a node; it just adds
properties and child node requirements to a node that already has a
primary node type.

A particular supported node type is either a primary type or a mixin
type; it cannot be both.

6.7.5 Special Properties jcr:primaryType and jcr:mixinTypes

A node's primary node type must be stored in content as a NAME
property of that node called jcr:primaryType. Similarly, any mixin
node types assigned to it must be recorded in the multi-value NAME
property jcr:mixinTypes.

Note that the mixin node types listed in the jcr:mixinTypes
property are those that have been explicitly assigned (using
Node.addMixin) to a node. It does not include mixin types that
may be among the supertypes of a node's primary type.

These properties are used to persist node type information across
serialization/deserialization cycles. See 7.4.5 Serialization and Node
Types. Both of these properties are protected; they cannot be
removed or changed by the application using the API. The
jcr:primaryType and jcr:mixinTypes properties are specified in
the predefined primary node type nt:base, which is the supertype
of all other primary node types (be they defined by this
specification or implementation or application specific).

 134

6.7.6 Property Definitions

Each property definition contains the following information:

• The name of the property to which this definition applies.

• The required type of the property (though it may be
specified as UNDEFINED).

• The value constraints on the property. That is, what range
of possible values may be assigned to this property.

• The default value that the property will have if it is auto-
created.

• Whether this property will be auto-created when its parent
node is created. Only properties with a default value can be
auto-created.

• Whether the property is mandatory. A mandatory property
is one that must exist. If a node of a type that specifies a
mandatory property is created then any attempt to save
that node without adding the mandatory property will fail.
Since single-value properties either have a value or do not
exist (there being no concept of the null value) this implies
that a mandatory single-value property must have a value.
A mandatory multi-value property on the other hand may
have zero or more values.

• The onParentVersion status of the property. This specifies
what happens to this property if a new version of its parent
node is checked-in.

• Whether the property is protected. A protected property is
one which cannot be modified or removed (except by
removing its parent) directly through this API but which may
be modified or removed by the repository implementation
itself.

• Whether this property can have multiple values, meaning
that it stores an array of values, not just one. Note that this
“multiple values” flag is special in that a given node type
may have two property definitions that are identical in every
respect except for the their “multiple values” status. For
example, a node type can specify two string properties both
called X, one of which is multi-valued and the other that is
not. An example of such a node type is nt:unstructured
(see 6.7.22.4 nt:unstructured).

6.7.7 Child Node Definitions

Similarly, each child node definition contains the following
information:

 135

• The name of the child node to which this definition applies.

• The required primary node types for this child node. That
is, the primary node types that this child node must have.
This attribute is capable of listing more than one node type
to accommodate those implementations that support
multiple inheritance of primary node types. A child node
definition may, for example, specify required node types X
and Y. This does not mean that the node specified will have
more than one declared primary node type, but rather that
its primary node type (whatever else it may be) must be at
least a subtype of both node types X and Y. Of course,
inheritance is also respected in the simpler case where this
attribute specifies only one primary node type. If it specifies,
for example, type T, this means that the child node must be
of type T or a subtype of type T. Finally, it should be clear
that the subtype relationship between the required type (or
types) and the actual type of the child node must be an
explicit one, that is, it must arise be by virtue of a chain of
declared superclass attributes (see 6.7.8 Inheritance Among
Node Types).

• The default primary node type for this child node. This is
the primary node type automatically assigned if no node
type information is specified when the node is created.

• Whether this child node will be auto-created when its
parent node is created.

• Whether the child node is mandatory. A mandatory child
node is one that must exist. If a mandatory child node is
missing from a parent node then save on the parent node
will fail.

• The onParentVersion status of the child node. This
specifies what to do with the child node if its parent node is
versioned.

• Whether the child node is protected. A protected node is
one which cannot be modified (have child items added to it
or removed from it) or be removed (except by removing its
parent) by the client of this API but which may be modified
or removed by the repository implementation itself.

• Whether this child node can have same-name siblings,
meaning that the parent node can have more than one child
node of this name.

6.7.8 Inheritance Among Node Types

A node type may have one (or in some implementations, more than
one) supertype. A subtype inherits the property and child node

 136

definitions of its supertype(s) (and possibly other attributes) and
may declare further property or child node definitions.

The semantics of inheritance follow the usual rules:

• The supertype relation is, as one would expect, transitive.
In other words if T1 is a supertype of T2 and T2 is a
supertype of T3 then T1 is a supertype of T3.

• The subtype relation is, of course, the converse of
supertype: T1 is a subtype of T2 if and only if T2 is a
supertype of T1. Hence, subtype is also a transitive relation.

• The ‘is of type’ relation which holds between node instances
and node types (as in, node N is of type T) is itself transitive
across the subtype relation. In other words, if T2 is a
subtype of T1 and N is of type T2 then N is also of type T1.
This predicate appears in the API as the method
Node.isNodeType. Note that this relation is also the one that
is relevant in the child node definition attribute required
primary node types.

• The supertype relation always and only stems from explicit
Supertypes attribute declarations within the set of node
types. For example, just because the property and child
node definitions of T2 happen to be a superset of those of
T1 does not make T1 a supertype of T2. For that to be the
case, T2 must declare T1 as its supertype.

• Similarly, the ‘is of type’ relation always and only stems
from an explicit assignment of a node type to a node. Just
because node N happens to have the properties and child
nodes declared by node type T does not necessarily mean
that N is of type T. For that to be the case, N must have
been explicitly assigned the type T, or a subtype of T.

Management of the hierarchy of node types available within a
particular repository is outside the scope of this specification.
However, the requirement of preserving the ‘is of type’ relation
across subtyping, as mentioned above, does imply certain things
about inheritance. The requirement can be restated as:

• If T2 is a subtype of T1, then any instance of T2 must also
be a valid instance of T1.

Note that an implementation can meet this requirement in a
number of ways, ranging from the most coarse-grained to the most
fine-grained. A coarse-grained approach would be to say that a
subtype can never override the property of child node definition of
a supertype (that is, declare a definition with the same name as
one in the supertype). A more fine-grained approach would allow
such overrides, but only in cases where an instance of the subtype
would still be a valid instance of the supertype. For example, if a

 137

supertype declares a property definition called A of type
UNDEFINED, a subtype would may override that with a property
definition A of type STRING. However, the reverse would not be
allowed.

For purposes of the above, the notion of two definitions having the
same name does not apply to two residual definitions. Two (or
more) residual property or child node definitions with differing sub-
attributes must be permitted to co-exist in the same effective node
type. They are interpreted as disjunctive (ORed) options.

Apart from the issue of how inheritance affects the set of property
and child node definitions, there is also the issue of the top-level
node type attributes mixin-status, orderable-status and
primary item. The specification implies only one requirement with
regard to these attributes: that a mixin node-type is capable of
being a supertype of a primary node type, and therefore that a
mixin-status of primary in the subtype overrides a mixin-status of
mixin in the supertype (See, 6.7.22.2 Additions to the Hierarchy).

Other than this, the specification does not define how conflicts
between multiple supertypes are resolved or how these three top
level attributes are inherited. For example, the question of whether
the orderable child nodes setting of a node type is inherited by its
subtypes is left up to the particular implementation.

Some repositories may support multiple inheritance of node types.
As a result, the methods for discovering node type information
must allow for the possibility that a node type has more than one
supertype. See 6.7.11 Discovering the Definition of a Node Type.

6.7.9 Discovering available Node Types

Discovery of which node types are available in a content repository
is done through the NodeTypeManager object, which is acquired via
the Workspace. Recall from earlier in the specification:

javax.jcr.
Workspace

NodeTypeManager getNodeTypeManager()

Returns the NodeTypeManager object through which
available node types are discovered. There is one node
type registry per repository, therefore the
NodeTypeManager is not workspace-specific; it provides
introspection methods for the global, repository-wide
set of available node types.

A RepositoryException is thrown if an error occurs.

The NodeTypeManager provides the following methods:

 138

javax.jcr.nodetype.
NodeTypeManager

NodeType getNodeType(String nodeTypeName)

Returns the NodeType specified by nodeTypeName. If no
node type by that name is registered, a
NoSuchNodeTypeException is thrown.

A RepositoryException is thrown if another error
occurs.

NodeType

Iterator

getAllNodeTypes()

Returns all available node types, primary and mixin.

A RepositoryException is thrown if an error occurs.

NodeType

Iterator

getPrimaryNodeTypes()

Returns all available primary node types.

A RepositoryException is thrown if an error occurs.

NodeType

Iterator

getMixinNodeTypes()

Returns all available mixin types. If none are available,
an empty iterator is returned.

A RepositoryException is thrown if an error occurs.

6.7.10 Discovering the Node Types of a Node

Methods are provided for determining the node types of existing
nodes:

javax.jcr.
Node

NodeType getPrimaryNodeType()

Returns the primary node type assigned to this node.
Which NodeType is returned when this method is called on
the root node of a workspace is up to the implementation,
though the returned type must, of course, be consistent
with the child nodes and properties of the root node.

A RepositoryException is thrown if an error occurs.

NodeType[] getMixinNodeTypes()

Returns an array of NodeType objects representing the
mixin node types assigned to this node. This includes
only those mixin types explicitly assigned to this node,
and therefore listed in the property jcr:mixinTypes. It

 139

does not include mixin types inherited through the
addition of supertypes to the primary type hierarchy. See
6.7.22.2 Additions to the Hierarchy.

A RepositoryException is thrown if an error occurs.

boolean isNodeType(String nodeTypeName)

Returns true if this node is of the specified primary node
type or mixin type, or a subtype thereof. Returns false
otherwise.

A RepositoryException is thrown if an error occurs.

6.7.11 Discovering the Definition of a Node Type

The NodeType object represents a primary or mixin node type
available in the repository.

javax.jcr.nodetype.
NodeType

String getName()

Returns the name of the node type.

boolean isMixin()

Returns true if this is a mixin type; returns false
if it is primary.

boolean hasOrderableChildNodes()

Returns true if nodes of this type must support
orderable child nodes; returns false otherwise. If
a node type returns true on a call to this method,
then all nodes of that node type must support the
method Node.orderBefore. If a node type returns
false on a call to this method, then nodes of that
node type may support Node.orderBefore. Only
the primary node type of a node controls that
node's status in this regard. This setting on a
mixin node type will not have any effect on the
node. See 7.1.11 Ordering Child Nodes.

String getPrimaryItemName()

Returns the name of the primary item (one of the
child items of the nodes of this node type). If this
node has no primary item, then this method
returns null. This indicator is used by the method
Node.getPrimaryItem(). See 6.2.3 Node Read
Methods.

 140

NodeType[] getSupertypes()

Returns all supertypes of this node type in the
node type inheritance hierarchy. For primary types
apart from nt:base, this list will always include at
least nt:base. For mixin types, there is no
required supertype.

NodeType[] getDeclaredSupertypes()

Returns the direct supertypes of this node type in
the node type inheritance hierarchy, that is, those
actually declared in this node type. In single-
inheritance systems, this will always be an array
of size 0 or 1. In systems that support multiple
inheritance of node types this array may be of size
greater than 1.

boolean isNodeType(String nodeTypeName)

Returns true if this node type is nodeTypeName or
a subtype of nodeTypeName, otherwise returns
false.

PropertyDefinition[] getPropertyDefinitions()

Returns an array containing the property
definitions of this node type. This includes both
those property definitions actually declared in this
node type and those inherited from the
supertypes of this type.

PropertyDefinition[] getDeclaredPropertyDefinitions()

Returns an array containing the property
definitions actually declared in this node type.

NodeDefinition[] getChildNodeDefinitions()

Returns an array containing the child node
definitions of this node type. This includes both
those child node definitions actually declared in
this node type and those inherited from the
supertypes of this node type.

NodeDefinition[] getDeclaredChildNodeDefinitions()

Returns an array containing the child node
definitions actually declared in this node type.

boolean canSetProperty(String propertyName,
 Value value)

Returns true if setting propertyName to value is

 141

allowed by this node type. Otherwise returns
false.

boolean canSetProperty(String propertyName,
 Value[] values)

Returns true if setting propertyName to values is
allowed by this node type. Otherwise returns
false.

boolean canAddChildNode(String childNodeName)

Returns true if this node type allows the addition
of a child node called childNodeName without
specific node type information (that is, given the
definition of this parent node type, the child node
name is sufficient to determine the intended child
node type). Returns false otherwise.

boolean canAddChildNode(String childNodeName,
 String nodeTypeName)

Returns true if this node type allows the addition
of a child node called childNodeName of node type
nodeTypeName. Returns false otherwise.

boolean canRemoveItem(String itemName)

Returns true if removing the child item called
itemName is allowed by this node type. Returns
false otherwise.

6.7.12 ItemDefinition

The ItemDefinition is the super-interface of PropertyDefinition
and NodeDefinition. It encapsulates the methods common to
both.

javax.jcr.nodetype.
ItemDefinition

NodeType getDeclaringNodeType()

Gets the node type that contains the declaration of this
ItemDefinition.

String getName()

Gets the name of the item to which this definition
applies. If “*”, then this ItemDefinition defines a
residual set of child items. That is, it defines the
characteristics of all those child items with names apart
from the names explicitly used in other item definitions.

 142

See 6.7.15 Residual Definitions.

boolean isAutoCreated()

Reports whether the item is to be automatically created
when its parent node is created. If true then this
ItemDefinition will necessarily not be a residual set
definition but will specify an actual item name (in other
words getName() will not return “*”). See 6.7.15
Residual Definitions).

boolean isMandatory()

Reports whether the item is mandatory. A mandatory
item is one that, if its parent node exists, must also exist.

This means that a mandatory single-value property must
have a value (since there is no such thing a null value).
In the case of multi-value properties this means that the
property must exist, though it can have zero or more
values.

An attempt (in a level 2 implementation) to save a node
that has a mandatory child item without first creating
that child item will throw a
ConstraintViolationException on save.

int getOnParentVersion()

Gets the OnParentVersion status of the property. This
governs what occurs (in implementations that support
versioning) when the parent node of this item is checked-
in. See 8.2 Versioning.

boolean isProtected()

Reports whether the child item is protected. In level 2
implementations, a protected item is one that cannot be
removed (except by removing its parent) or modified
directly through this API (that is, Item.remove,
Node.addNode, Node.setProperty and
Property.setValue).

A protected node may be removed or modified (in a level
2 implementation), however, through some mechanism
not defined by this specification or as a side-effect of
operations other than the standard write methods of the
API.

 143

6.7.13 PropertyDefinition

The PropertyDefinition represents a property definition. It
inherits all the method of ItemDefinition and adds the following:

javax.jcr.nodetype.
PropertyDefinition extends ItemDefinition

int getRequiredType()

Gets the required type of the property. One of STRING,
BINARY, DATE, LONG, DOUBLE, NAME, PATH, REFERENCE,
BOOLEAN or UNDEFINED. See 6.2.5 Property Types. If
UNDEFINED, then this property may be of any type.

String[] getValueConstraints()

Gets the array of constraint strings. This array of strings
describes the constraints that exist on values of the
property. Reporting of value constraints is optional. An
implementation may return null, indicating that value
constraint information is unavailable (though a constraint
may still exist). Note that to indicate a null value for this
attribute in a node type definition that is stored in
content, the jcr:valueConstraints property is simply
removed (since null values for properties are not
allowed, see 6.7.20 Node Type Definitions in Content).

Returning an empty array, on the other hand, indicates
that constraint information is available and that no
constraints are placed on the value of the property.

If a non-empty array is returned then it is interpreted as
a disjunctive set of constraints (i.e. the value must meet
at least one of the constraints). The interpretation of the
constraint strings themselves differs according to the type
of the property. See 6.7.16 Value Constraints for details.

Value[] getDefaultValues()

Gets the default value(s) of the property. These are the
values (or value) that the property defined by this
PropertyDefinition will be assigned if it is
automatically created (that is, if isAutoCreated()
returns true).

This method returns an array of Value objects. If the
property is multi-valued, then this array represents the
full set of values that the property will be assigned upon
being auto-created. Note that this could be the empty
array. If the property is single-valued, then the array
returned will be of size 1.

If null is returned, then the property has no fixed

 144

default value. This does not exclude the possibility that
the property still assumes some value automatically, but
that value may be parameterized (for example, “the
current date”) and hence not expressible as a single fixed
value. In particular, this must be the case if
isAutoCreated returns true and this method returns
null.

Note that to indicate a null value for this attribute in a
node type definition that is stored in content, the
jcr:defaultValues property is simply removed (since
null values for properties are not allowed, see 6.7.20
Node Type Definitions in Content).

boolean isMultiple()

Reports whether this property can have multiple values.
Note that the isMultiple flag is special in that a given
node type may have two property definitions that are
identical in every respect except for the their isMultiple
status. For example, a node type can specify two string
properties both called X, one of which is multi-valued and
the other not. An example of such a node type is
nt:unstructured (see 6.7.22.4 nt:unstructured).

6.7.14 NodeDefinition

The NodeDefinition represents a child node definition. It inherits
all the methods of ItemDefinition and adds the following:

javax.jcr.nodetype.
NodeDefinition extends ItemDefinition

NodeType[] getRequiredPrimaryTypes()

Gets the minimum set of primary node types that the
child node must have. Returns an array to support those
implementations with multiple inheritance. This method
never returns an empty array. If this node definition
places no requirements on the primary node type, then
this method will return an array containing only the
NodeType object representing nt:base, which is the base
of all primary node types and therefore constitutes the
least restrictive node type requirement. Note that any
particular node instance still has only one assigned
primary node type, but in multiple-inheritance-supporting
implementations the RequiredPrimaryTypes attribute
can be used to restrict that assigned node type to be a
subtype of all of a specified set of node types.

NodeType getDefaultPrimaryType()

 145

Gets the default node type that will be assigned to the
child node if it is created without an explicitly specified
node type. This node type must be a subclass of (or the
same class as) the node type(s) returned by
getRequiredPrimaryTypes.

If null is returned this indicates that no default primary
type is specified and that therefore an attempt to create
this node without specifying a node type will throw a
ConstraintViolationException. Note that to indicate a
null value for this attribute in a node type definition that
is stored in content, the jcr:defaultPrimaryType
property is simply removed (since null values for
properties are not allowed, see 6.7.20 Node Type
Definitions in Content).

boolean allowsSameNameSiblings()

Reports whether this child node can have same-name
siblings. In other words, whether the parent node can
have more than one child node of this name.

6.7.15 Residual Definitions

When the name attribute (i.e., that returned by getName()) of a
PropertyDefinition or NodeDefinition is “*”, this indicates that
the definition is a residual definition.

A residual definition defines the characteristics of all properties (if it
is a PropertyDefinition) or child nodes (if it is a
NodeDefinition) apart than those explicitly named in other
property or node definitions.

It is possible for a node type to have more than one residual
definition. This means that all properties and child nodes other than
those explicitly named must conform to at least one of the residual
definitions.

6.7.16 Value Constraints

Each string in the array returned by
PropertyDefinition.getValueConstraints() specifies a
constraint on the value(s) of the property. The constraints are OR-
ed together, meaning that in order to be valid, the value (each of
the values, in the case of multi-value properties) must meet at
least one of the constraints. For example, a constraint array of
["constraint1", "constraint2", "constraint3"] has the
interpretation: "the value of this property must meet either
constraint1, constraint2 or constraint3".

Reporting constraint information is optional. Therefore, the return
of an empty array indicates that there are no discoverable

 146

constraints, meaning that either there are constraints but they are
inexpressible in the constraint-string syntax, or constraint discovery
is simply not supported.

In the case of multi-value properties, the constraint array returned
applies independently to each of the values of the property. For
example, if one value meets one constraint in the constraint array
while the other meets another, the constraint set is considered met
for the property as a whole.

If a property does not exist or (in the case of multi-value
properties) contains an empty array, the constraint set is
considered to have been met by default since, by definition, no
values have failed to meet the constraints.

The constraint strings themselves have different formats and
interpretations depending on the type of the property in question.
The following describes the value constraint syntax for each
property type:

• STRING: The constraint string is a regular expression pattern.
For example the regular expression “.*” means “any string,
including the empty string”. Whereas a simple literal string
(without any regular expression-specific meta-characters) like
“banana” matches only the string “banana” (see 6.7.16.1 Choice
Lists, below).

• PATH: The constraint string is a path terminating with either no
final “/”, a single “/” or the substring “/*”. For example,
possible constraint strings for a property of type PATH include:

1. “/myapp:products/myapp:televisions”

2. “/myapp:products/myapp:televisions/”

3. “/myapp:products/*”

4. “myapp:products/myapp:televisions”

5. “../myapp:televisions”

6. “../myapp:televisions/*”

The following principles apply:

• The constraint must match the normalized path. For
example, the “*” means “matches descendants” not
“matches any subsequent path”, so that /a/* does not
match /a/../c. Similarly, a trailing “/” has no effect
(hence, 1 and 2, above, are equivalent).

• Relative path constraints only match relative path values
and absolute path constraints only match absolute path
values.

 147

• The trailing “*” character means that the value of the
PATH property is restricted to the indicated subtree (in
other words any additional relative path can replace the
“*”). For example, 3, above would allow
/myapp:products/myapp:radios,
/myapp:products/myapp:microwaves/X900, and so
forth.

• A constraint without a “*” means that the PATH property
is restricted to that precise path. For example, 1, above
would allow only the value
/myapp:products/myapp:televisions.

• The constraint can indicate either a relative path or an
absolute path depending on whether it includes a leading
“/” character. 1 and 4 above, for example, are distinct.

• The constraint string returned must reflect the
namespace mapping in the current Session (i.e., the
current state of the namespace registry overlaid with
any session-specific mappings). Constraint strings for
PATH properties should be stored in fully-qualified form
(using the actual URI instead of the prefix) and then be
converted to prefix form according to the current
mapping. Note however that these constraint strings are
not themselves valid PATH values, since they may
contain a “*” character, which is not allowed in the value
of an actual PATH property.

• NAME: The constraint string is a name in prefix form. For
example, “myapp:products”. No wildcards or other pattern
matching are supported. As with PATH properties, the string
returned must reflect the namespace mapping in the current
Session. Constraint strings for NAME properties should be stored
in fully-qualified form (using the actual URI instead of the
prefix) and then be converted to prefix form according to the
current mapping.

• REFERENCE: The constraint string is a name in prefix form. This
name is interpreted as a node type name and the REFERENCE
property is restricted to referring only to nodes that have at
least the indicated node type10. For example, a constraint of
“mytype:document” would indicate that the REFERENCE property
in question can only refer to nodes that have at least the node

10 This is a minimal requirement. The referenced node may have
additional mixin node types other than that indicated (and in fact,
by definition, it must have at least mix:referenceable, for
example). In addition it may be of a node type that is a subtype of
the type indicated by the constraint.

 148

type mytype:document (assuming this was the only constraint
returned in the array, recall that the array of constraints are to
be "OR-ed" together). No wildcards or other pattern matching
are supported. As with PATH properties, the string returned
must reflect the namespace mapping in the current Session.
Constraint strings for REFERENCE properties should be stored in
fully-qualified form (using the actual URI instead of the prefix)
and then be converted to prefix form according to the current
mapping.

The remaining types all have value constraints in the form of
inclusive or exclusive ranges: i.e., "[min, max]", "(min, max)",
"(min, max]" or "[min, max)". Where "[" and "]" indicate
"inclusive", while "(" and ")" indicate "exclusive". A missing min or
max value indicates no bound in that direction. For example [,5]
means no minimum but a maximum of 5 (inclusive) while [,]
means simply that any value will suffice. The meaning of the min
and max values themselves differ between types as follows:

• BINARY: min and max specify the allowed size range of the
binary value in bytes.

• DATE: min and max are dates specifying the allowed date range.
The date strings must be in the ISO 8601:2000-compliant
format: sYYYY-MM-DDThh:mm:ss.sssTZD. See 6.2.5.1 Date.

• LONG, DOUBLE: min and max are numbers.

6.7.16.1 Choice Lists

Because constraints are returned as an array of disjunctive
constraints, in many cases the elements of the array can serve
directly as a “choice list”. This may, for example, be used by an
application to display options to the end user indication the set of
permitted values.

6.7.17 Automatic Item Creation

The ability to specify the automatic creation of child nodes and
properties has a number of interesting repercussions. Consider a
situation where we have three node types, C, B and A:

• C specifies an auto-created STRING property called Z with
default value “hello”.

• B specifies an auto-created child node Y of node type C.

• A specifies an auto-created child node called X of node type
B.

Therefore, when a node N of node type A is added, this triggers a
chain of automatic node creation resulting in a structure like this:

N--> X--> Y--> Z="hello"

 149

It is perfectly possible for a repository to have node types that may
result in a cascade of item creation. However, it must never be the
case that a repository has a set of node types that may result in an
infinite loop of automatic item creation.

6.7.18 Discovery of Constraints on Existing Items

The Node and Property interfaces also have methods that allow
direct access to the NodeDefinition or PropertyDefinition
applicable to a particular node or property.

javax.jcr.
Node

NodeDefinition getDefinition()

Returns the node definition that applies to this Node. In
some cases there may appear to be more than one
definition that could apply to this node. However, it is
assumed that upon creation of this node, a single
particular definition was used and it is that definition that
this method returns. How this governing definition is
selected upon node creation from among others which
may have been applicable is an implementation issue and
is not covered by this specification. The NodeDefinition
returned when this method is called on the root node of a
workspace is also up to the implementation.

Throws a RepositoryException if an error occurs.

javax.jcr.
Property

PropertyDefinition getDefinition()

Returns the property definition that applies to this
Property. In some cases there may appear to be
more than one definition that could apply to this
property. However, it is assumed that upon creation
of this property, a single particular definition was
used and it is that definition that this method returns.
How this governing definition is selected upon
property creation from among others which may have
been applicable is an implementation issue and is not
covered by this specification.

Throws a RepositoryException if an error occurs.

 150

6.7.19 Predefined Node Types

Every repository must support at least the primary node type
nt:base. All other primary node types must be subtypes of
nt:base. A number of predefined primary node types are defined
for common application domains.

In general, support for these additional primary node types is
optional.

Three mixin node types mix:referenceable, mix:versionable
and mix:lockable are defined. In general support for these types
is also optional. However:

• mix:referenceable is required in order to support UUID-
bearing nodes, which in turn support REFERENCE property
types and versioning.

• Additionally, versioning requires the mixin node type
mix:versionable and the primary node types nt:version,
nt:versionHistory, nt:versionLabels,
nt:versionedChild and nt:frozenNode. See 8.2
Versioning.

• Locking requires the mixin node type mix:lockable. See
8.4 Locking.

6.7.19.1 Node Type Definition Notation

The following sections give the definition of each predefined node
type and a short description and explanation for each. The node
type definitions are in the following format:

NodeTypeName
 ...
Supertypes
 ...
IsMixin
 ...
HasOrderableChildNodes
 ...
PrimaryItemName
 ...
ChildNodeDefinition
 Name ...
 RequiredPrimaryTypes ...
 DefaultPrimaryType ...
 AutoCreated ...
 Mandatory ...
 OnParentVersion ...
 Protected ...
 SameNameSiblings ...
.
. (more ChildNodeDefinitions)
.
PropertyDefinition
 Name ...

 151

 RequiredType ...
 ValueConstraints ...
 DefaultValues ...
 AutoCreated ...
 Mandatory ...
 OnParentVersion ...
 Protected ...
 Multiple ...
.
. (more PropertyDefinitions)
.

6.7.20 Node Type Definitions in Content

It is optional for the repository to expose the definitions of its
available node types as content. However, if it does expose these
definitions then it should expose them using the built-in node type
nt:nodeType (and its associated node types
nt:propertyDefinition and nt:childNodeDefinition). These
node types are defined to store node type definitions themselves.
For example, to store a PropertyDefinition a node of type
nt:propertyDefinition is used. It has properties for each of the
attributes: the Name is stored in the property jcr:name, the
RequiredType in jcr:requiredType and so on.

The attributes that make up a node type definition may in some
cases have no set value. For example, some ChildNodeDefinitions
may not define a DefaultPrimaryType (this amounts to stating that
when such a child node is created by the client the client must
provide a valid node type, otherwise an exception will be thrown;
no node type will automatically be assumed).

In order to store this information (i.e., the lack of a value) in a
nt:nodeType, nt:childNodeDefinition or
nt:propertyDefinition node the property representing that
attribute must simply be not present, since null values for
properties are not allowed (see 4.7.3 No Null Values).

However, to indicate this state in the node type definitions that
follow we do use the value null, even though in an in-content
representation of the node type this would be represented by the
absence of the property in question. For example, in the definition
of the node type nt:file,

NodeTypeName
 nt:file
Supertypes
 nt:hierarchyNode
IsMixin
 false
HasOrderableChildNodes
 false
PrimaryItemName
 jcr:content
ChildNodeDefinition
 Name jcr:content

 152

 RequiredPrimaryTypes [nt:base]
 DefaultPrimaryType null
 AutoCreated false
 Mandatory true
 OnParentVersion COPY
 Protected false
 SameNameSiblings false

the child node jcr:content must exist (hence Mandatory is true,
but it must be added by the client, not automatically (hence
AutoCreated is false) and, when created, the client must provide
the node type (hence DefaultPrimaryType is null). In an in-content
storage of this node type however, the null status of
DefaultPrimaryType would be represented by the absence of the
property jcr:defaultPrimaryType.

Note that the PrimaryItemName indicator in nt:nodeType works
similarly, if there is no primary item specified then the
jcr:primaryItemName property of the nt:nodeType node is simply
missing. But in the notation used here, this is indicated by
specifying a null.

Again, similarly, to indicate that a property or child node definition
is residual, the value returned by ItemDefinition.getName() is
“*”. However, “*” is not a valid value for the property jcr:name in a
nt:propertyDefinition or nt:childNodeDefinition node
(because jcr:name it is a NAME property, not a STRING). As a result,
an in-content definition of a residual item will simply not have a
jcr:name property. In the notation below, however, the indicator
“*” is still used.

6.7.21 Predefined Mixin Node Types

The three predefined mixin types are mix:referenceable,
mix:versionable and mix:lockable. mix:versionable is a
subtype of mix:referenceable. mix:referenceable and
mix:lockable have no supertypes. There is no required supertype
for mixin types.

6.7.21.1 mix:lockable

NodeTypeName
 mix:lockable
Supertypes
 []
IsMixin
 true
HasOrderableChildNodes
 false
PrimaryItemName
 null
PropertyDefinition
 Name jcr:lockOwner
 RequiredType STRING
 ValueConstraints []

 153

 DefaultValues null
 AutoCreated false
 Mandatory false
 OnParentVersion IGNORE
 Protected true
 Multiple false
PropertyDefinition
 Name jcr:lockIsDeep
 RequiredType BOOLEAN
 ValueConstraints []
 DefaultValues null
 AutoCreated false
 Mandatory false
 OnParentVersion IGNORE
 Protected true
 Multiple false

This node type is optional.

Only nodes with mixin node type mix:lockable may hold locks.
See 8.4 Locking.

6.7.21.2 mix:referenceable

NodeTypeName
 mix:referenceable
Supertypes
 []
IsMixin
 true
HasOrderableChildNodes
 false
PrimaryItemName
 null
PropertyDefinition
 Name jcr:uuid
 RequiredType STRING
 ValueConstraints []
 DefaultValues null
 AutoCreated true
 Mandatory true
 OnParentVersion INITIALIZE
 Protected true
 Multiple false

This node type is optional.

This node type specifies an auto-created, mandatory, STRING
property called jcr:uuid. This property is set automatically by the
implementation when the mix:referenceable node is created or
when this mixin type is added to an existing node.

A node must be mix:referenceable in order to be the target of a
REFERENCE property.

6.7.21.3 mix:versionable

NodeTypeName
 mix:versionable

 154

Supertypes
 mix:referenceable
IsMixin
 true
HasOrderableChildNodes
 false
PrimaryItemName
 null
PropertyDefinition
 Name jcr:versionHistory
 RequiredType REFERENCE
 ValueConstraints ["nt:versionHistory"]
 DefaultValues null
 AutoCreated false
 Mandatory true
 OnParentVersion COPY
 Protected true
 Multiple false
PropertyDefinition
 Name jcr:baseVersion
 RequiredType REFERENCE
 ValueConstraints ["nt:version"]
 DefaultValues null
 AutoCreated false
 Mandatory true
 OnParentVersion IGNORE
 Protected true
 Multiple false
PropertyDefinition
 Name jcr:isCheckedOut
 RequiredType BOOLEAN
 ValueConstraints []
 DefaultValues [true]
 AutoCreated true
 Mandatory true
 OnParentVersion IGNORE
 Protected true
 Multiple false
PropertyDefinition
 Name jcr:predecessors
 RequiredType REFERENCE
 ValueConstraints ["nt:version"]
 DefaultValues null
 AutoCreated false
 Mandatory true
 OnParentVersion COPY
 Protected true
 Multiple true
PropertyDefinition
 Name jcr:mergeFailed
 RequiredType REFERENCE
 ValueConstraints ["nt:version"]
 DefaultValues null
 AutoCreated false
 Mandatory false
 OnParentVersion ABORT
 Protected true
 Multiple true

This node type is optional.

 155

This mixin node type supports the versioning system. For a node to
be versionable, it must be of this mixin node type. See 8.2
Versioning for details.

6.7.22 Predefined Primary Node Types

The primary node types described here are optional, except for
nt:base, which is required. Every node in the repository must be of
at least this type. Any custom, implementation-specific primary
node types must be subtypes of nt:base.

nt:version and nt:versionHistory are required for versioning
support.

nt:nodeType, nt:propertyDefinition and
nt:childNodeDefinition are required if storage of node type
definitions in the repository content itself is supported.

 156

6.7.22.1 Node Type Inheritance Hierarchy

The node type names below are arranged in a hierarchy showing
their inheritance structure.

nt:base
|
|--nt:unstructured
|
|--nt:hierarchyNode
| |
| |--nt:file
| |
| |--nt:linkedFile
| |
| |--nt:folder
|
|--nt:nodeType
|
|--nt:propertyDefinition
|
|--nt:childNodeDefinition
|
|--nt:versionHistory*
|
|--nt:versionLabels
|
|--nt:version*
|
|--nt:frozenNode
|
|--nt:versionedChild
|
|--nt:query
|
|--nt:resource*

* these node types also have mix:referenceable as a supertype.

6.7.22.2 Additions to the Hierarchy

An implementation may extend the definition of any predefined
node type by adding supertypes to those defined in this
specification. These additional supertypes may be either predefined
mixin node types or implementation-specific mixin or primary node
types.

For example, a repository may require that all nodes of type
nt:file be, additionally, mix:versionable. In such a repository
the definition of nt:file, when introspected, would report an
additional supertype of mix:versionable.

The hierarchy above and the definitions below, therefore, reflect
the minimal set of supertypes for each predefined node type.

Note that this extension mechanism is distinct from the automatic
addition of mixin types that may be done on node creation in level

 157

2 (see 7.4.4 Automatic Addition and Removal of Mixins). Though
the two features may both be employed in the same repository,
they differ in that one affects the actual hierarchy of the supported
node types, while the other works on a node-by-node basis.

6.7.22.3 nt:base

NodeTypeName
 nt:base
Supertypes
 []
IsMixin
 false
HasOrderableChildNodes
 false
PrimaryItemName
 null
PropertyDefinition
 Name jcr:primaryType
 RequiredType NAME
 ValueConstraints []
 DefaultValues null
 AutoCreated true
 Mandatory true
 OnParentVersion COMPUTE
 Protected true
 Multiple false
PropertyDefinition
 Name jcr:mixinTypes
 RequiredType NAME
 ValueConstraints []
 DefaultValues null
 AutoCreated false
 Mandatory false
 OnParentVersion COMPUTE
 Protected true
 Multiple true

This node type is required.

All node types inherit from nt:base. As its name suggests it is the
base type for all other types, and hence has no supertypes.

This node type specifies the special properties jcr:primaryType,
and jcr:mixinTypes.

The jcr:primaryType property is a NAME property holding the
name of the primary node type of its node. This property is
mandatory.

The jcr:mixinTypes is a multi-value NAME property that holds the
names of the node’s assigned mixin node types, if any. This
property may not exist if the node in question has no mixin types
assigned.

Since this information is itself stored as content, it will be serialized
and deserialized along with all other content. This allows the

 158

preservation of node type information across
serialization/deserialization cycles. See 7.4.5 Serialization and Node
Types.

These properties are protected and are therefore maintained
entirely by the repository itself. An application using the API can
read the properties but cannot remove or alter them.

6.7.22.4 nt:unstructured

NodeTypeName
 nt:unstructured
Supertypes
 nt:base
IsMixin
 false
HasOrderableChildNodes
 true
PrimaryItemName
 null
ChildNodeDefinition
 Name *
 RequiredPrimaryTypes [nt:base]
 DefaultPrimaryType nt:unstructured
 AutoCreated false
 Mandatory false
 OnParentVersion VERSION
 Protected false
 SameNameSiblings true
PropertyDefinition
 Name *
 RequiredType UNDEFINED
 ValueConstraints []
 DefaultValues null
 AutoCreated false
 Mandatory false
 OnParentVersion COPY
 Protected false
 Multiple true
PropertyDefinition
 Name *
 RequiredType UNDEFINED
 ValueConstraints []
 DefaultValues null
 AutoCreated false
 Mandatory false
 OnParentVersion COPY
 Protected false
 Multiple false

This node type is optional.

This is the most flexible node type. It allows any number of child
nodes or properties with any names. It also allows multiple nodes
having the same name as well as both multi-value and single value
properties with any names.

This node type supports client-orderable child nodes.

 159

Like all node types, it inherits the special jcr:primaryType and
jcr:mixinTypes properties from nt:base.

6.7.22.5 nt:hierarchyNode

NodeTypeName
 nt:hierarchyNode
Supertypes
 nt:base
IsMixin
 false
HasOrderableChildNodes
 false
PrimaryItemName
 null
PropertyDefinition
 Name jcr:created
 RequiredType DATE
 ValueConstraints []
 DefaultValues null
 AutoCreated true
 Mandatory false
 OnParentVersion INITIALIZE
 Protected true
 Multiple false

This node type is optional.

This node type serves primarily as the supertype of nt:file and
nt:folder. It defines one property inherited by these node types:
jcr:created.

6.7.22.6 nt:file

NodeTypeName
 nt:file
Supertypes
 nt:hierarchyNode
IsMixin
 false
HasOrderableChildNodes
 false
PrimaryItemName
 jcr:content
ChildNodeDefinition
 Name jcr:content
 RequiredPrimaryTypes [nt:base]
 DefaultPrimaryType null
 AutoCreated false
 Mandatory true
 OnParentVersion COPY
 Protected false
 SameNameSiblings false

This node type is optional.

Nodes of this node type may be used to represent files. This node
type inherits the child nodes and properties of nt:hierarchyNode
and requires a single child node called jcr:content. The

 160

jcr:content node is used to hold the actual content of the file.
This child node is mandatory, but not auto-created. Its node type
will be application-dependent and therefore it must be added by the
client. A common approach is to make the jcr:content a node of
type nt:resource.

The strategy in separating the nt:file node from its jcr:content
child node is to divide hierarchy from content. The idea is to
provide a common indicator that indicates a cut off point below
which the nodes and properties have a different semantic
interpretation than they do above. This type of division is common
to many hierarchical information structures, such as file systems.

The jcr:content child node is also designated as the primary child
item of its parent.

6.7.22.7 nt:linkedFile

NodeTypeName
 nt:linkedFile
Supertypes
 nt:hierarchyNode
IsMixin
 false
HasOrderableChildNodes
 false
PrimaryItemName
 jcr:content
PropertyDefinition
 Name jcr:content
 RequiredType REFERENCE
 ValueConstraints []
 DefaultValues null
 AutoCreated false
 Mandatory true
 OnParentVersion COPY
 Protected false
 Multiple false

This node type is optional.

The nt:linkedFile node type is similar to nt:file, except that
the content node is not stored directly as a child node, but rather is
specified by a REFERENCE property. In other words the content node
can reside anywhere in the repository. In addition, because of the
extra level of indirection, the same content node can be referenced
by multiple nt:linkedFile nodes. This feature can be used, for
example, to present multiple orthogonal hierarchical views of the
same content.

6.7.22.8 nt:folder

NodeTypeName
 nt:folder
Supertypes
 nt:hierarchyNode

 161

IsMixin
 false
HasOrderableChildNodes
 false
PrimaryItemName
 null
ChildNodeDefinition
 Name *
 RequiredPrimaryTypes [nt:hierarchyNode]
 DefaultPrimaryType null
 AutoCreated false
 Mandatory false
 OnParentVersion VERSION
 Protected false
 SameNameSiblings false

This node type is optional.

Nodes of this node type can be used to represent folders. This node
type inherits the child nodes and properties of nt:hierarchyNode
and adds the ability to have any number of other
nt:hierarchyNode child nodes. This means, in particular, that it
can have child nodes of nt:file or nt:folder. In this way, it is
analogous to a folder in a conventional file system.

6.7.22.9 nt:resource

NodeTypeName
 nt:resource
Supertypes
 nt:base
mix:referenceable

IsMixin
 false
HasOrderableChildNodes
 false
PrimaryItemName
 jcr:data
PropertyDefinition
 Name jcr:encoding
 RequiredType STRING
 ValueConstraints []
 DefaultValues null
 AutoCreated false
 Mandatory false
 OnParentVersion COPY
 Protected false
 Multiple false
PropertyDefinition
 Name jcr:mimeType
 RequiredType STRING
 ValueConstraints []
 DefaultValues null
 AutoCreated false
 Mandatory true
 OnParentVersion COPY
 Protected false
 Multiple false
PropertyDefinition
 Name jcr:data

 162

 RequiredType BINARY
 ValueConstraints []
 DefaultValues null
 AutoCreated false
 Mandatory true
 OnParentVersion COPY
 Protected false
 Multiple false
PropertyDefinition
 Name jcr:lastModified
 RequiredType DATE
 ValueConstraints []
 DefaultValues null
 AutoCreated false
 Mandatory true
 OnParentVersion IGNORE
 Protected false
 Multiple false

This node type is optional.

This node type can be used to represent the content of a file. In
particular, the jcr:content subnode of an nt:file node will often
be an nt:resource. The jcr:encoding property indicates the
character set encoding used. If this resource is does not contain
character data then this property will not be present. If the
resource does hold character data then this property should hold
one of the character set names defined in
http://www.iana.org/assignments/character-sets. The
jcr:mimeType should contain the name of the media type of this
resource as defined in http://www.iana.org/assignments/media-
types/.

6.7.22.10 nt:nodeType

NodeTypeName
 nt:nodeType
Supertypes
 nt:base
IsMixin
 false
HasOrderableChildNodes
 false
PrimaryItemName
 null
PropertyDefinition
 Name jcr:nodeTypeName
 RequiredType NAME
 ValueConstraints []
 DefaultValues null
 AutoCreated false
 Mandatory true
 OnParentVersion COPY
 Protected false
 Multiple false
PropertyDefinition
 Name jcr:supertypes
 RequiredType NAME

 163

 ValueConstraints []
 DefaultValues null
 AutoCreated false
 Mandatory false
 OnParentVersion COPY
 Protected false
 Multiple true
PropertyDefinition
 Name jcr:isMixin
 RequiredType BOOLEAN
 ValueConstraints []
 DefaultValues null
 AutoCreated false
 Mandatory true
 OnParentVersion COPY
 Protected false
 Multiple false
PropertyDefinition
 Name jcr:hasOrderableChildNodes
 RequiredType BOOLEAN
 ValueConstraints []
 DefaultValues null
 AutoCreated false
 Mandatory true
 OnParentVersion COPY
 Protected false
 Multiple false
PropertyDefinition
 Name jcr:primaryItemName
 RequiredType NAME
 ValueConstraints []
 DefaultValues null
 AutoCreated false
 Mandatory false
 OnParentVersion COPY
 Protected false
 Multiple false
ChildNodeDefinition
 Name jcr:propertyDefinition
 RequiredPrimaryTypes [nt:propertyDefinition]
 DefaultPrimaryType nt:propertyDefinition
 AutoCreated false
 Mandatory false
 OnParentVersion VERSION
 Protected false
 SameNameSiblings true
ChildNodeDefinition
 Name jcr:childNodeDefinition
 RequiredPrimaryTypes [nt:childNodeDefinition]
 DefaultPrimaryType nt:childNodeDefinition
 AutoCreated false
 Mandatory false
 OnParentVersion VERSION
 Protected false
 SameNameSiblings true

This node type is optional.

This is the node type for the nodes that store node type definitions
themselves (see 6.7.20 Storage of Node Type Definitions).

 164

6.7.22.11 nt:propertyDefinition

NodeTypeName
 nt:propertyDefinition
Supertypes
 nt:base
IsMixin
 false
HasOrderableChildNodes
 false
PrimaryItemName
 null
PropertyDefinition
 Name jcr:name
 RequiredType NAME
 ValueConstraints []
 DefaultValues null
 AutoCreated false
 Mandatory false
 OnParentVersion COPY
 Protected false
 Multiple false
PropertyDefinition
 Name jcr:autoCreated
 RequiredType BOOLEAN
 ValueConstraints []
 DefaultValues null
 AutoCreated false
 Mandatory true
 OnParentVersion COPY
 Protected false
 Multiple false
PropertyDefinition
 Name jcr:mandatory
 RequiredType BOOLEAN
 ValueConstraints []
 DefaultValues null
 AutoCreated false
 Mandatory true
 OnParentVersion COPY
 Protected false
 Multiple false
PropertyDefinition
 Name jcr:onParentVersion
 RequiredType STRING
 ValueConstraints ["COPY", "VERSION", "INITIALIZE",
 "COMPUTE", "IGNORE", "ABORT"]
 DefaultValues null
 AutoCreated false
 Mandatory true
 OnParentVersion COPY
 Protected false
 Multiple false
PropertyDefinition
 Name jcr:protected
 RequiredType BOOLEAN
 ValueConstraints []
 DefaultValues null
 AutoCreated false
 Mandatory true
 OnParentVersion COPY

 165

 Protected false
 Multiple false
PropertyDefinition
 Name jcr:requiredType
 RequiredType STRING
 ValueConstraints ["STRING", "BINARY", "LONG", "DOUBLE",
 "BOOLEAN", "DATE", "NAME", "PATH",
 "REFERENCE", "UNDEFINED"]
 DefaultValues null
 AutoCreated false
 Mandatory true
 OnParentVersion COPY
 Protected false
 Multiple false
PropertyDefinition
 Name jcr:valueConstraints
 RequiredType STRING
 ValueConstraints []
 DefaultValues null
 AutoCreated false
 Mandatory false
 OnParentVersion COPY
 Protected false
 Multiple true
PropertyDefinition
 Name jcr:defaultValues
 RequiredType UNDEFINED
 ValueConstraints []
 DefaultValues null
 AutoCreated false
 Mandatory false
 OnParentVersion COPY
 Protected false
 Multiple true
PropertyDefinition
 Name jcr:multiple
 RequiredType BOOLEAN
 ValueConstraints []
 DefaultValues null
 AutoCreated false
 Mandatory true
 OnParentVersion COPY
 Protected false
 Multiple false

This node type is optional.

A node type used in conjunction with nt:nodeType for storing node
type definitions themselves. See also nt:childNodeDefinition.

Note that in order to represent a residual property definition (see
6.7.15 Residual Definitions) the property jcr:name must not be
present in the nt:propertyDefinition node.

6.7.22.12 nt:childNodeDefinition

NodeTypeName
 nt:childNodeDefinition
Supertypes
 nt:base

 166

IsMixin
 false
HasOrderableChildNodes
 false
PrimaryItemName
 null
PropertyDefinition
 Name jcr:name
 RequiredType NAME
 ValueConstraints []
 DefaultValues null
 AutoCreated false
 Mandatory false
 OnParentVersion COPY
 Protected false
 Multiple false
PropertyDefinition
 Name jcr:autoCreated
 RequiredType BOOLEAN
 ValueConstraints []
 DefaultValues null
 AutoCreated false
 Mandatory true
 OnParentVersion COPY
 Protected false
 Multiple false
PropertyDefinition
 Name jcr:mandatory
 RequiredType BOOLEAN
 ValueConstraints []
 DefaultValues null
 AutoCreated false
 Mandatory true
 OnParentVersion COPY
 Protected false
 Multiple false
PropertyDefinition
 Name jcr:onParentVersion
 RequiredType STRING
 ValueConstraints ["COPY", "VERSION", "INITIALIZE",
 "COMPUTE", "IGNORE", "ABORT"]
 DefaultValues null
 AutoCreated false
 Mandatory true
 OnParentVersion COPY
 Protected false
 Multiple false
PropertyDefinition
 Name jcr:protected
 RequiredType BOOLEAN
 ValueConstraints []
 DefaultValues null
 AutoCreated false
 Mandatory true
 OnParentVersion COPY
 Protected false
 Multiple false
PropertyDefinition
 Name jcr:requiredPrimaryTypes
 RequiredType NAME
 ValueConstraints []

 167

 DefaultValues [nt:base]
 AutoCreated false
 Mandatory true
 OnParentVersion COPY
 Protected false
 Multiple true
PropertyDefinition
 Name jcr:defaultPrimaryType
 RequiredType NAME
 ValueConstraints []
 DefaultValues null
 AutoCreated false
 Mandatory false
 OnParentVersion COPY
 Protected false
 Multiple false
PropertyDefinition
 Name jcr:sameNameSiblings
 RequiredType BOOLEAN
 ValueConstraints []
 DefaultValues null
 AutoCreated false
 Mandatory true
 OnParentVersion COPY
 Protected false
 Multiple false

This node type is optional.

A node type used in conjunction with nt:nodeType for storing node
type definitions themselves. See also nt:propertyDefinition.

6.7.22.13 nt:versionHistory

NodeTypeName
 nt:versionHistory
Supertypes
 nt:base
 mix:referenceable
IsMixin
 false
HasOrderableChildNodes
 false
PrimaryItemName
 null
PropertyDefinition
 Name jcr:versionableUuid
 RequiredType STRING
 ValueConstraints []
 DefaultValues null
 AutoCreated true
 Mandatory true
 OnParentVersion ABORT
 Protected true
 Multiple false
ChildNodeDefinition
 Name jcr:rootVersion
 RequiredPrimaryTypes [nt:version]
 DefaultPrimaryType nt:version
 AutoCreated true
 Mandatory true

 168

 OnParentVersion ABORT
 Protected true
 SameNameSiblings false
ChildNodeDefinition
 Name jcr:versionLabels
 RequiredPrimaryTypes [nt:versionLabels]
 DefaultPrimaryType nt:versionLabels
 AutoCreated true
 Mandatory true
 OnParentVersion ABORT
 Protected true
 SameNameSiblings false
ChildNodeDefinition
 Name *
 RequiredPrimaryTypes [nt:version]
 DefaultPrimaryType nt:version
 AutoCreated false
 Mandatory false
 OnParentVersion ABORT
 Protected true
 SameNameSiblings false

This node type is optional.

This node type is used in the versioning system. It is required in
those implementations that support versioning. See 8.2 Versioning,
for more details.

6.7.22.14 nt:versionLabels

NodeTypeName
 nt:versionLabels
Supertypes
 nt:base
IsMixin
 false
HasOrderableChildNodes
 false
PrimaryItemName
 null
PropertyDefinition
 Name *
 RequiredType REFERENCE
 ValueConstraints ["nt:version"]
 DefaultValues null
 AutoCreated false
 Mandatory false
 OnParentVersion ABORT
 Protected true
 Multiple false

This node type is optional.

This node type is used in the versioning system. It is required in
those implementations that support versioning. See 8.2 Versioning,
for more details.

 169

6.7.22.15 nt:version

NodeTypeName
 nt:version
Supertypes
 nt:base
 mix:referenceable
IsMixin
 false
HasOrderableChildNodes
 false
PrimaryItemName
 null
PropertyDefinition
 Name jcr:created
 RequiredType DATE
 ValueConstraints []
 DefaultValues null
 AutoCreated true
 Mandatory true
 OnParentVersion ABORT
 Protected true
 Multiple false
PropertyDefinition
 Name jcr:predecessors
 RequiredType REFERENCE
 ValueConstraints ["nt:version"]
 DefaultValues null
 AutoCreated false
 Mandatory false
 OnParentVersion ABORT
 Protected true
 Multiple true
PropertyDefinition
 Name jcr:successors
 RequiredType REFERENCE
 ValueConstraints ["nt:version"]
 DefaultValues null
 AutoCreated false
 Mandatory false
 OnParentVersion ABORT
 Protected true
 Multiple true
ChildNodeDefinition
 Name jcr:frozenNode
 RequiredPrimaryTypes [nt:frozenNode]
 DefaultPrimaryType null
 AutoCreated false
 Mandatory false
 OnParentVersion ABORT
 Protected true
 SameNameSiblings false

This node type is optional.

This node type is used in the versioning system. It is required in
those implementations that support versioning. See 8.2 Versioning,
for more details.

 170

6.7.22.16 nt:frozenNode

NodeTypeName
 nt:frozenNode
Supertypes
 nt:base
 mix:referenceable
IsMixin
 false
HasOrderableChildNodes
 true
PrimaryItemName
 null
PropertyDefinition
 Name jcr:frozenPrimaryType
 RequiredType NAME
 ValueConstraints []
 DefaultValues null
 AutoCreated true
 Mandatory true
 OnParentVersion ABORT
 Protected true
 Multiple false
PropertyDefinition
 Name jcr:frozenMixinTypes
 RequiredType NAME
 ValueConstraints []
 DefaultValues null
 AutoCreated false
 Mandatory false
 OnParentVersion ABORT
 Protected true
 Multiple true
PropertyDefinition
 Name jcr:frozenUuid
 RequiredType STRING
 ValueConstraints []
 DefaultValues null
 AutoCreated true
 Mandatory true
 OnParentVersion ABORT
 Protected true
 Multiple false
PropertyDefinition
 Name *
 RequiredType UNDEFINED
 ValueConstraints []
 DefaultValues null
 AutoCreated false
 Mandatory false
 OnParentVersion ABORT
 Protected true
 Multiple false
PropertyDefinition
 Name *
 RequiredType UNDEFINED
 ValueConstraints []
 DefaultValues null
 AutoCreated false
 Mandatory false
 OnParentVersion ABORT

 171

 Protected true
 Multiple true
ChildNodeDefinition
 Name *
 RequiredPrimaryTypes [nt:base]
 DefaultPrimaryType null
 AutoCreated false
 Mandatory false
 OnParentVersion ABORT
 Protected true
 SameNameSiblings true

This node type is optional.

This node type is used in the versioning system. It is required in
those implementations that support versioning. See 8.2 Versioning,
for more details.

6.7.22.17 nt:versionedChild

NodeTypeName
 nt:versionedChild
Supertypes
 nt:base
IsMixin
 false
HasOrderableChildNodes
 false
PrimaryItemName
 null
PropertyDefinition
 Name jcr:childVersionHistory
 RequiredType REFERENCE
 ValueConstraints ["nt:versionHistory"]
 DefaultValues null
 AutoCreated true
 Mandatory true
 OnParentVersion ABORT
 Protected true
 Multiple false

This node type is optional.

This node type is used in the versioning system. It is required in
those implementations that support versioning. See 8.2 Versioning,
for more details.

6.7.22.18 nt:query

NodeTypeName
 nt:query
Supertypes
 nt:base
IsMixin
 false
HasOrderableChildNodes
 false
PrimaryItemName
 null

 172

PropertyDefinition
 Name jcr:statement
 RequiredType STRING
 ValueConstraints []
 DefaultValues null
 AutoCreated false
 Mandatory false
 OnParentVersion COPY
 Protected false
 Multiple false
PropertyDefinition
 Name jcr:language
 RequiredType STRING
 ValueConstraints []
 DefaultValues null
 AutoCreated false
 Mandatory false
 OnParentVersion COPY
 Protected false
 Multiple false

This node type is optional.

This node type may be used to store a persistent query. See 6.6
Searching Repository Content, or more details

 173

6.8 System Node

The location /jcr:system is reserved for use as a “system folder”.
Some implementations may use this location for storing or exposing
repository-internal data in content. For example, if a repository
exposes node type definitions in content, then those node type
definitions should be located at /jcr:system/jcr:nodeTypes.

If a repository supports versioning, then it must expose the version
storage at /jcr:system/jcr:versionStorage (see 8.2.2.1
jcr:versionStorage).

If /jcr:system is supported its node type is left up to the
implementation.

 174

6.9 Access Control

A level 1 compliant implementation must support the access control
discovery method Session.checkPermission (see below).

In the simplest cases, where an implementation does not actually
support access control, the behavior of this method can be
hardcoded.

In repositories that do support access control, this method reports
whether a particular Session has permission to perform a particular
action according to the relevant access control policies. However,
the specification does not attempt to define mechanisms for the
setting of access control policies.

As mentioned above (see 6.1 Accessing the Repository), the
Session object returned by Repository.login reflects a particular
set of access permissions. These permissions may be determined
by the Credentials passed on login or by some external
authentication and authorization mechanism within which the
repository implementation is embedded.

6.9.1 JAAS

If an external mechanism is employed, a likely candidate is the
Java Authentication and Authorization Service (JAAS) (see
http://java.sun.com/products/jaas/).

By providing a signature of Repository.login that does not
require Credentials, the content repository allows for
authorization and authentication to be handled by JAAS (or another
external mechanism) if the implementer so chooses.

To use JAAS authentication to create Sessions with end-user
identity, invocations of the Repository.login method that do not
specify Credentials (i.e., either a null Credentials is passed or
a signature without the Credentials parameter is used) should
obtain the identity of the already-authenticated user by calling the
static getSubject method of javax.security.auth.Subject.

The discovery mechanism for finding what permissions apply is also
JAAS-compatible since it uses the JAAS-like concept of actions.

6.9.2 Checking Permissions

Permission checking is done through the method Session.checkPermission:

javax.jcr.
Session

void checkPermission(String absPath,
 String actions)

Determines whether this Session has permission to

 175

perform the specified actions at the specified
absPath. This method quietly returns if the access
request is permitted, or throws a suitable
java.security.AccessControlException
otherwise.

The actions parameter is a comma separated list of
action strings. The following action strings are
defined:

add_node
If checkPermission(path, "add_node") returns
quietly, then this Session has permission to add a
node at path, otherwise permission is denied.

set_property
If checkPermission(path, "set_property")
returns quietly, then this Session has permission to
set (add or change) a property at path, otherwise
permission is denied.

remove
If checkPermission(path, "remove") returns
quietly, then this Session has permission to remove
an item at path, otherwise permission is denied.

read
If checkPermission(path, "read") returns quietly,
then this Session has permission to retrieve (and
read the value of, in the case of a property) an item
at path, otherwise permission is denied.

When more than one action is specified in the
actions parameter, this method will only return
quietly if this Session has permission to perform all
of the listed actions at the specified path.

The information returned through this method will
only reflect access control policies and not other
restrictions that may exist. For example, even
though checkPermission may indicate that a
particular Session may add a property at /A/B/C,
the node type of the node at /A/B may prevent the
addition of a property called C.

A RepositoryException is thrown if an error occurs.

 176

7 Level 2 Repository Features
The following section explains level 2 of the content repository API
on a functional basis. For an explanation organized on an interface-
by-interface basis, see the accompanying Javadoc.

Level 2 defines a read/write repository. This includes all features of
level 1, as well as the following:

• Adding and removing nodes and properties

• Writing the values of properties

• Persistent namespace changes

• Import from XML/SAX

• Assigning node types to nodes

Where a level 1-only repository would differ in behavior from a level
2 repository, this is indicated.

 177

7.1 Writing Repository Content

Methods for writing content to the repository fall into two
categories: those that write directly to the workspace and those
that write to the transient storage associated with the session. The
latter require a save for their changes to be written to the
workspace, the former do not.

7.1.1.1 Writing to Transient Storage

The purpose behind the transient storage in the session is to
provide a space in which complex changes can be made to content
without having these changes validated at every step. When a
node/property structure is fully assembled it can be saved and
validated against node type and other constraints. This allows
structures of nodes and properties to be temporarily invalid while
they are being built.

The methods that write to the transient layer are:

• Node.addNode, setProperty, orderBefore, addMixin and
removeMixin.

• Property.setValue.

• Item.remove.

• Session.move and importXML.

• Query.storeAsNode.

Changes made though these methods will only be pushed to the
workspace when a save is called that includes the change within its
scope.

Session.save persists all pending changes currently stored in the
Session object. Conversely, Session.refresh(false) discards all
pending changes currently stored in the Session.

For more fine-grained control over which changes are persisted or
discarded, the methods Item.save and Item.refresh(false) are
also provided. Item.save saves all pending changes that apply to
that particular item and its subtree. Analogously, Item.refresh
discards all pending changes that apply to that item and its
subtree.

To persist any change that involves the addition, removal or re-
ordering of nodes or the addition or removal of properties, the
scope of the save must include the parent node affected.

To persist a change that involves only a change to the value of an
existing property, only that property itself needs to be within the
scope of the save.

 178

Note that this means that the minimal scope required to persist the
effect of Node.setProperty depends on whether the property in
question already exists or not. If it does not, then the parent node
must be saved. If it does, then only the property itself needs to be
saved.

7.1.1.2 Writing Directly to the Workspace

The methods that write changes directly to the workspace are :

• Node.checkin, checkout, restore, restoreByLabel,
merge, cancelMerge, doneMerge, update, lock and unlock.

• Workspace.move, copy, clone, restore and importXML

• VersionHistory.addVersionLabel, removeVersionLabel,
removeVersion.

(some of these are relevant only in repositories that support the
relevant feature: locking or versioning)

7.1.1.3 Effect of Transactions

In repositories that support transactions, all changes, whether
workspace-direct or session-mediated, may be further insulated
from persistent storage by their transaction context. If a set of
write methods is within the scope of a transaction then the changes
they make will only be reflected in persistent storage upon commit
of that transaction.

7.1.1.4 Invalid States

If an item has been modified in the Session but not yet saved, and
its corresponding item in the persistent workspace is altered
through a direct-to-workspace method, this has no effect on the
transient state of the Session. The altered item in the Session
remains and may be saved later. Of course, the change made to
the workspace may render the attempt to save the session-change
invalid (for example if the workspace-change removed the parent of
the session-change item). Note that this is precisely the same
situation as would arise if a change were made to a workspace
through another Session. In both cases the save on this Session
may throw an InvalidItemStateException.

7.1.1.5 Timing of Validation

For those write methods that require a save, implementers have
considerable flexibility in deciding whether a particular validation is
to be performed immediately during the invocation of the write
method or later on save. For example, in the case Node.addNode,
an implementer might immediately check that the path given is
valid while postponing validation of node type constraints until
save-time.

 179

The suggestion is that an implementation should perform each
validation as soon as possible, given the underlying design of the
repository.

The requirement is that an implementation must prohibit the
emergence of a persistent state in violation the validation rules
defined by this specification. Therefore at the latest, all validation
must be done on save.

In the context of a particular change to an item, we often refer to
save generically, as in, “the change will be persisted on save”.
Such statements refer to any invocation of save, (Session.save or
Item.save) that include the changed item within its scope.

7.1.1.6 Session

Session has the following save- and Value-related methods:

javax.jcr.
Session

void save()

Validates all pending changes currently recorded in this
Session. If validation of all pending changes succeeds,
then this change information is cleared from the Session.
If the save occurs outside a transaction, the changes are
persisted and thus made visible to other Sessions. If the
save occurs within a transaction, the changes are not
persisted until the transaction is committed (see 8.1
Transactions for more details).

If validation fails, then no pending changes are saved and
they remain recorded on the Session. There is no best-
effort or partial save.

The item in persistent storage to which a transient item is
saved is determined by matching UUIDs and paths. See
7.1.2 Saving by UUID and Path, for details.

An AccessDeniedException will be thrown if any of the
changes to be persisted would violate the access
permissions of the Session.

If any of the changes to be persisted would cause the
removal of a node that is currently the target of a
REFERENCE property then a
ReferentialIntegrityException is thrown, provided that
this Session has read access to that REFERENCE property.
If, on the other hand, this Session does not have read
access to the REFERENCE property in question, then an
AccessDeniedException is thrown instead.

 180

An ItemExistsException will be thrown if any of the
changes to be persisted would be prevented by the
presence of an already existing item in the workspace.

A ConstraintViolationException will be thrown if any of
the changes to be persisted would violate a node type
restriction. Additionally, a repository may use this
exception to enforce implementation- or configuration-
dependant restrictions.

An InvalidItemStateException is thrown if any of the
changes to be persisted conflicts with a change already
persisted through another session and the implementation
is such that this conflict can only be detected at save-time
and therefore was not detected earlier, at change-time.

A VersionException is thrown if the save would result in
a change to persistent storage that would violate the read-
only status of a checked-in node.

A LockException is thrown if the save would result in a
change to persistent storage that would violate a lock.

A NoSuchNodeTypeException is thrown if the save would
result in the addition of a node with an unrecognized node
type.

A RepositoryException will be thrown if another error
occurs.

void refresh(boolean keepChanges)

If keepChanges is false, this method discards all pending
changes currently recorded in this Session and returns all
items to reflect the current saved state. Outside a
transaction this state is simply the current state of
persistent storage. Within a transaction, this state will
reflect persistent storage as modified by changes that
have been saved but not yet committed.

If keepChanges is true then pending changes are not
discarded but items that do not have changes pending
have their state refreshed to reflect the current saved
state, thus revealing changes made by other sessions. In
some implementations this may be a null operation. See
7.1.3.4 Seeing Changes Made by Other Sessions, for more
details.

A RepositoryException is thrown if another error occurs.

boolean hasPendingChanges()

Returns true if this Session holds pending (that is,

 181

unsaved) changes; otherwise returns false.

A RepositoryException is thrown if an error occurs.

ValueFactory getValueFactory()

This method returns a ValueFactory that is used to create
Value objects for use when setting repository properties
(see 7.1.5 Adding and Writing Properties and 7.1.5.3
Creating Value Objects).

If writing to the repository is not supported (because this
is a level 1-only implementation, for example) an
UnsupportedRepositoryOperationException will be
thrown.

7.1.1.7 Item

There are also the more fine-grained save and refresh methods on
Item.

javax.jcr.
Item

void save()

Validates all pending changes currently recorded in this
Session that apply to this Item or any of its descendants
(that is, the subtree rooted at this Item). If validation of all
pending changes succeeds, then this change information is
cleared from the Session. If the save occurs outside a
transaction, the changes are persisted and thus made visible
to other Sessions. If the save occurs within a transaction,
the changes are not persisted until the transaction is
committed (see 8.1 Transactions for more details).

If validation fails, then no pending changes are saved and
they remain recorded on the Session. There is no best-effort
or partial save.

The item in persistent storage to which a transient item is
saved is determined by matching UUIDs and paths. See 7.1.2
Saving by UUID and Path, for details.

An AccessDeniedException will be thrown if any of the
changes to be persisted would violate the access permissions
of the Session.

If any of the changes to be persisted would cause the
removal of a node that is currently the target of a REFERENCE
property then a ReferentialIntegrityException is thrown,
provided that this Session has read access to that REFERENCE
property. If, on the other hand, this Session does not have

 182

read access to the REFERENCE property in question, then an
AccessDeniedException is thrown instead.

An ItemExistsException will be thrown if any of the
changes to be persisted would be prevented by the presence
of an already existing item in the workspace.

A ConstraintViolationException will be thrown if any of
the changes to be persisted would violate a node type
restriction. Additionally, a repository may use this exception
to enforce implementation- or configuration-dependant
restrictions.

An InvalidItemStateException is thrown if any of the
changes to be persisted conflicts with a change already
persisted through another session and the implementation is
such that this conflict can only be detected at save-time and
therefore was not detected earlier, at change-time.

A ReferentialIntegrityException is thrown if any of the
changes to be persisted would cause the removal of a node
that is currently referenced by a REFERENCE property that this
Session has read access to.

A VersionException is thrown if the save would result in a
change to persistent storage that would violate the read-only
status of a checked-in node.

A LockException is thrown if the save would result in a
change to persistent storage that would violate a lock.

A NoSuchNodeTypeException is thrown if the save would
result in the addition of a node with an unrecognized node
type.

A RepositoryException will be thrown if another error
occurs.

void refresh(boolean keepChanges)

If keepChanges is false, this method discards all pending
changes currently recorded in this Session that apply to this
Item or any of its descendants (that is, the subtree rooted at
this Item) and returns these items to reflect the current
saved state. Outside a transaction this state is simply the
current state of persistent storage. Within a transaction, this
state will reflect persistent storage as modified by changes
that have been saved but not yet committed.

If keepChanges is true then pending changes are not
discarded but items (within the subtree rooted at this Item)
that do not have changes pending have their state refreshed
to reflect the current saved state, thus revealing changes

 183

made by other sessions. In some implementations this may
be a null operation. See 7.1.3.4 Seeing Changes Made by
Other Sessions, for more details.

An InvalidItemStateException is thrown if this Item object
represents a workspace item that has been removed (either
by this session or another).

A RepositoryException is thrown if another error occurs.

7.1.2 Saving by UUID and Path

When an item is saved (either through Item.save or
Session.save) the item in persistent storage to which pending
changes are written is determined using the same principles as
those that govern correspondence of nodes between workspaces
(see 4.10.2 Multiple Workspaces and Corresponding Nodes).
The difference in this case is that the correspondence is not
between two workspaces but between the transient storage of the
session and the persistent storage of its associated workspace. In
the context of saving a node, those principles amount to the
following:

• If the transient item has a UUID, then the changes are
written to the persistent item with the same UUID.

• If the transient item does not have a UUID, then a
combination of the UUID of its nearest UUID-bearing
ancestor and its relative path from that ancestor is used to
determine the persistent item to which the changes will be
written. For example, if

o node /a/b/c and node /a/b do not have UUIDs;

o node /a has UUID u;

o then, pending changes to transient node /a/b/c are
written to the persistent node located at path b/c
relative to the persistent node with UUID u.

7.1.3 Reflecting Item State

Every Item object (instance of a Node or Property) is associated
with the Session object through which it was acquired. When
changes are made to an Item object, those changes are recorded in
its associated Session and immediately reflected in the Item object
itself. In other words, after a change is made, a subsequent re-
retrieval of the same item entity through the same Session, will
return an Item object reflecting the recent change. In this context
“retrieval through the same Session” includes not just acquisition
of nodes and properties through the getter methods (like getNode,

 184

getProperty etc.) but also items returned through other means,
such as within the result set of a query.

7.1.3.1 Re-using Item Objects

Whether the second Item object is the same actual Java object
instance as the first is an implementation issue. However, the state
reflected by the object must at all times be consistent with any
other Item object (associated with the same Session) representing
the same actual item entity. Note that the criteria of item identity in
this context are those described above in 7.1.2 Saving by UUID and
Path.

7.1.3.2 Effect of Save and Refresh

When a save is performed on an Item, any changes recorded for
that Item in the Session are persisted and the record of that
change in the Session is removed. From the perspective of the
application, the apparent state of the Item itself does not change
(apart from the values returned by isNew or isModified), since the
item has reflected the changes since they were initially made. If
one or more of the pending changes cause an exception to be
thrown on save, then no pending changes are saved, not even
those which did not cause the problem. In this case the set of
pending changes recorded on the session is left unaffected.

When a refresh(false) is performed on an Item, any pending
changes recorded for that Item in the Session are discarded and
the state of the Item object reverts to its current saved state in the
workspace. If an exception occurs on refresh, the set of pending
changes recorded on the session is left unaffected and Item state is
similarly unaffected.

7.1.3.3 Invalid Items

Methods of an Item object (i.e., Node or Property) may throw an
InvalidItemStateException in certain circumstances.

The first case is if Item.remove has been called on the item. In this
case any subsequent calls to any read or write methods or
invocations of save or refresh on that Item will throw an
InvalidItemStateException.

Before the removal is persisted (by a save on the parent of the
removed node) it may be cancelled by a refresh(false) on the
parent of the removed node. This has the effect of reverting the
parent node to its current saved state in the workspace. At this
point the invalid Item object may become valid again, or the
repository may require a new Item object to be acquired. Which
approach is taken is a matter of implementation.

 185

An InvalidItemStateException may be thrown on a write method
of an Item if the change being made would (upon save) conflict
with a change made, and persisted, through another Session. If
detection of the conflict is only possible at save-time, then save will
throw an InvalidItemStateException.

Whether a conflict is detected when the change is made to the Item
or later, when an attempt is made to save that change, depends on
the implementation. The key issue is when a particular Session
sees changes made in the persistent storage by other sessions.

7.1.3.4 Seeing Changes Made by Other Sessions

When recording pending changes to an Item in the Session at least
two approaches are possible. Which approach is taken is up to the
implementation.

• Copy-on-Read: When an Item object is acquired, its state
in persistent storage is copied to transient storage
associated with the Session. Any subsequent changes are
applied to the transient state object. Upon save, the
transient state object is copied back to persistent storage
and removed from transient storage. In such an
implementation, when an Item is retrieved through a
particular Session, any changes made to the persistent
state of that item by another Session will not be visible to
the first Session until a refresh and reacquisition of the
item in question. Under this system, conflicts with persistent
state will only be detected upon save, meaning that
InvalidItemStateException will only be thrown on save,
not earlier. The copy-on-read approach also has some
repercussions in the context of transactions (in those
implementations that support this feature). See 8.1.4 Single
Session Across Multiple Transactions.

• Copy-on-Write: An alternative approach is not to
immediately copy the state of a newly acquired Item object
to transient storage, but rather to only copy the state when
a change is made to that state. In this case, as long as no
changes are made to an Item object, its state always
reflects the current state in persistent storage and thus any
changes in that persistent state made by other sessions are
immediately visible through the methods of that Item. If, on
the other hand, a change is made to the Item state by this
Session then the item state is copied from persistent storage
to transient storage and the change is applied to that copy.
From this point until a refresh or save, changes made to
the persistent item will not be visible through the Item
object. Note that in copy-on-write implementations a
refresh(true) (a refresh that does not discard pending
changes) will, by definition, have no effect.

 186

This specification does not prescribe either of these approaches.
Implementations are free to use either one (or indeed any other
that may be suitable) as long as the minimal requirement is met of
never allowing two Item objects acquired through the same
Session to reflect conflicting state information.

7.1.3.5 Resolving Conflicts with Persistent State

When an InvalidItemStateException is thrown (either at write-
time or save-time) an application may wish to resolve the conflict.
The standard solution is to do the following:

• If the Item in question has unsaved changes pending, make
a temporary copy of it.

• refresh(false) the original Item, thus discarding the
recent changes (including the one which caused the
conflict).

• Merge the changes recorded in the temporary copy with the
now up-to-date Item object.

In those repositories that support it, applications may avoid such
conflicts by using the locking mechanism (see 8.4 Locking).

7.1.3.6 Item Status

This specification provides the following methods on Item for
determining whether a particular item has pending changes
(isModified) or constitutes part of the pending changes of its
parent (isNew).

javax.jcr.
Item

boolean isNew()

Returns true if this is a new item, meaning that it exists
only in transient storage on the Session and has not yet
been saved. Within a transaction, isNew on an Item may
return false (because the item has been saved) even if
that Item is not in persistent storage (because the
transaction has not yet been committed).

Note that in level 1 (that is, read-only) implementations,
this method will always return false.

boolean isModified()

Returns true if this Item has been saved but has
subsequently been modified through the current session
and therefore the state of this item as recorded in the
session differs from the state of this item as saved.
Within a transaction, isModified on an Item may return

 187

false (because the Item has been saved since the
modification) even if the modification in question is not
in persistent storage (because the transaction has not
yet been committed).

Note that in level 1 (that is, read-only) implementations,
this method will always return false.

7.1.3.7 Save vs Direct

The direct-to-workspace methods should not be thought of
automatically “doing a save”. The effect of a directly-persistent
method happens one level deeper and is therefore not necessarily
equivalent to making the same change transiently and then
immediately calling save. For example:

Following A.addNode("B") we have:

A (transient state differs from persistent because of B)
|
|--B (transient)

If we now import C as child of A (using the importXML method,
though this would apply to any direct-to-workspace child addition)
we have:

A (transient state still differs from persistent because
| of B)
|
|--B (transient)
|
|--C (persistent)

If we now do an A.save we get an InvalidItemStateException
because A's state on the persistent layer has changed due to the
import. We would now have to do an A.refresh(false), discarding
the effect of the A.addNode("B") and reverting the situation to:

A (persistent)
|
|--C (persistent)

At this point we could do the A.addNode("B") again and, as long as
we saved it before making an further direct-to-workspace changes
to A, the save would succeed.

7.1.4 Adding Nodes

The methods for adding nodes are:

 188

javax.jcr.
Node

Node addNode(String relPath)

Creates a new node at relPath. The new node will only be
persisted on save if it meets the constraint criteria of the
parent node's node type.

In order to save a newly added node, save must be called
either on the Session, or on the new node's parent or
higher-order ancestor (grandparent, etc.). An attempt to
call save only on the newly added node will throw a
RepositoryException.

In the context of this method the relPath provided must
not have an index on its final element. If it does then a
RepositoryException is thrown.

Strictly speaking, the parameter is actually a relative path
to the parent node of the node to be added, appended
with the name desired for the new node (if the node is
being added directly below this node then only the name
need be specified). It does not specify a position within the
child node ordering (if such ordering is supported). If
ordering is supported by the node type of the parent node
then the new node is appended to the end of the child
node list.

Since this signature does not allow explicit node type
assignment, the new node's primary node type will be
determined (either immediately or on save depending on
the implementation) by the child node definitions in the
node types of its parent. See 7.4.2 Assigning a Primary
Node Type.

An ItemExistsException will be thrown either
immediately (by this method), or on save, if an item at
the specified path already exists and same-name siblings
are not allowed. Implementations may differ on when this
validation is performed.

A PathNotFoundException will be thrown either
immediately (by this method), or on save, if the specified
path implies intermediary nodes that do not exist.
Implementations may differ on when this validation is
performed.

A ConstraintViolationException will be thrown either
immediately (by this method), or on save, if adding the
node would violate a node type or implementation-specific
constraint or if an attempt is made to add a node as the

 189

child of a property. Implementations may differ on when
this validation is performed.

A VersionException will be thrown either immediately (by
this method), or on save, if the node to which the new
child is being added is versionable and checked-in or is
non-versionable but its nearest versionable ancestor is
checked-in. Implementations may differ on when this
validation is performed.

A LockException will be thrown either immediately (by
this method), or on save, if a lock prevents the addition of
the node. Implementations may differ on when this
validation is performed.

A RepositoryException is thrown if another error occurs.

Node addNode(String relPath,
 String primaryNodeTypeName)

Creates a new node at relPath of the specified primary
node type.

The same as addNode(String relPath) except that the
primary node type of the new node is explicitly specified.

An ItemExistsException will be thrown either
immediately (by this method), or on save, if an item at
the specified path already exists and same-name siblings
are not allowed. Implementations may differ on when this
validation is performed.

A PathNotFoundException will be thrown either
immediately (by this method), or on save, if the specified
path implies intermediary nodes that do not exist.
Implementations may differ on when this validation is
performed.

A NoSuchNodeTypeException will be thrown either
immediately (by this method), or on save, if the specified
node type is not recognized. Implementations may differ
on when this validation is performed.

A ConstraintViolationException will be thrown either
immediately (by this method), or on save, if adding the
node would violate a node type or implementation-specific
constraint or if an attempt is made to add a node as the
child of a property. Implementations may differ on when
this validation is performed.

A VersionException will be thrown either immediately (by
this method), or on save, if the node to which the new
child is being added is versionable and checked-in or is

 190

non-versionable but its nearest versionable ancestor is
checked-in. Implementations may differ on when this
validation is performed.

A LockException will be thrown either immediately (by
this method), or on save, if a lock prevents the addition of
the node. Implementations may differ on when this
validation is performed.

A RepositoryException is thrown if another error occurs.

7.1.4.1 Example

If we wish to add a new “shape” to our product information, we
might do it like this:

Node productsNode = root.getNode("products");
Node triangleNode = productsNode.addNode("triangle");
Node contentNode = triangleNode.addNode("jcr:content");
contentNode.setProperty("myapp:title", "Triangle: an
 economical choice");
contentNode.setProperty("myapp:price", 50);
contentNode.setProperty("myapp:lead", "Triangles have
 three sides, but they're not always
 equal!");
productsNode.save();

This would add the new node triangle below the products node
and add to triangle's jcr:content node the properties
myapp:title, myapp:price and myapp:lead with the specified
values.

As another example, suppose we wish to iterate through a
collection of strings and add each as a new paragraph under the
node triangle/jcr:content. In that case, we might do the
following:

Node contentNode = triangleNode.getNode("jcr:content");
for (Iterator i = strings.iterator(); i.hasNext();) {
 String text = (String) i.next();
 Node paraNode = contentNode.addNode("paragraph");
 paraNode.setProperty("text", text);
}

For each string retrieved from strings a new node is created called
paragraph which is given a new property called text, which, in
turn, is assigned the retrieved string.

7.1.5 Adding and Writing Properties

To add new properties or change the values of existing properties
of a node we use the setProperty methods of Node:

 191

javax.jcr.
Node

Property setProperty(String name,
 Value value)

Sets the specified (single value) property of this node
to the specified value. If the property does not yet
exist, it is created. The property type of the property
will be that specified by the node type of this node.

If the property type of the supplied Value object is
different from that required, then a best-effort
conversion is attempted. If the conversion fails, a
ValueFormatException is thrown. If another error
occurs, a RepositoryException is thrown.

If the node type of this node does not indicate a
specific property type, then the property type of the
supplied Value object is used and if the property
already exists (has previously been set) it assumes
both the new value and new property type.

If the property is multi-valued, a
ValueFormatException is thrown.

Passing a null as the second parameter removes the
property. It is equivalent to calling remove on the
Property object itself. For example,
N.setProperty("P", (Value)null) would remove
property called "P" of the node in N.

To save the addition or removal of a property, a save
call must be performed that includes the parent of the
property in its scope: that is, a save on either the
session, this node, or an ancestor of this node. To save
a change to an existing property, a save call that
includes that property in its scope is required. This
means that in addition to the above-mentioned save
options, a save on the changed property itself will also
work.

A ConstraintViolationException will be thrown
either immediately (by this method), or on save, if the
change would violate a node type or implementation-
specific constraint. Implementations may differ on
when this validation is performed.

A VersionException will be thrown either immediately
(by this method), or on save, if this node is
versionable and checked-in or is non-versionable but
its nearest versionable ancestor is checked-in.

 192

Implementations may differ on when this validation is
performed.

A LockException will be thrown either immediately
(by this method), or on save, if a lock prevents the
setting of the property. Implementations may differ on
when this validation is performed.

A RepositoryException is thrown if another error
occurs.

Property setProperty(String name, Value[] values)

Sets the specified (multi-value) property to the
specified array of values. If the property does not yet
exist, it is created. Same as

setProperty(String name, Value value)

except that an array of Value objects is assigned
instead of a single Value.

The property type of the property will be that specified
by the node type of this node. If the property type of
the supplied Value objects is different from that
required, then a best-effort conversion is attempted. If
the conversion fails, a ValueFormatException is
thrown. All Value objects in the array must be of the
same type, otherwise a ValueFormatException is
thrown. If the property is not multi-valued then a
ValueFormatException is also thrown. If another error
occurs, a RepositoryException is thrown.

If the node type of this node does not indicate a
specific property type, then the property type of the
supplied Value objects is used and if the property
already exists it assumes both the new values and the
new property type.

Passing a null as the second parameter removes the
property. It is equivalent to calling remove on the
Property object itself. For example,
N.setProperty("P", (Value[])null) would remove
property called "P" of the node in N.

Note that this is different from passing an array that
contains null elements. In such a case, the array is
compacted by removing the nulls. The resulting set of
values of the property never contains nulls. However,
the set may be empty: N.setProperty("P", new
Value[]{null}) would set the property to the empty
set of values.

 193

To save the addition or removal of a property, a save
call must be performed that includes the parent of the
property in its scope: that is, a save on either the
session, this node, or an ancestor of this node. To save
a change to an existing property, a save call that
includes that property in its scope is required. This
means that in addition to the above-mentioned save
options, a save on the changed property itself will also
work.

A ConstraintViolationException will be thrown
either immediately (by this method), or on save, if the
change would violate a node type or implementation-
specific constraint. Implementations may differ on
when this validation is performed.

A VersionException will be thrown either immediately
(by this method), or on save, if this node is
versionable and checked-in or is non-versionable but
its nearest versionable ancestor is checked-in.
Implementations may differ on when this validation is
performed.

A LockException will be thrown either immediately
(by this method), or on save, if a lock prevents the
setting of the property. Implementations may differ on
when this validation is performed.

A RepositoryException is thrown if another error
occurs.

Property setProperty(String name,
 Value[] values,
 int type)

Sets the specified (multi-value) property to the
specified array of values. If the property does not yet
exist, it is created. The type of the property is
determined by the type parameter specified.

If the property type of the supplied Value objects is
different from that specified, then a best-effort
conversion is attempted. If the conversion fails, a
ValueFormatException is thrown.

If the property already exists it assumes both the new
values and the new property type.

All Value objects in the array must be of the same
type, otherwise a ValueFormatException is thrown. If
the property is not multi-valued then a
ValueFormatException is also thrown. If another error

 194

occurs, a RepositoryException is thrown.

Passing a null as the second parameter removes the
property. It is equivalent to calling remove on the
Property object itself. For example,
N.setProperty("P", (Value[])null, type) would
remove property called "P" of the node in N.

Note that this is different from passing an array that
contains null elements. In such a case, the array is
compacted by removing the nulls. The resulting set of
values of the property never contains nulls. However,
the set may be empty: N.setProperty("P", new
Value[]{null}, type) would set the property to the
empty set of values.

To save the addition or removal of a property, a save
call must be performed that includes the parent of the
property in its scope: that is, a save on either the
session, this node, or an ancestor of this node. To save
a change to an existing property, a save call that
includes that property in its scope is required. This
means that in addition to the above-mentioned save
options, a save on the changed property itself will also
work.

A ConstraintViolationException will be thrown
either immediately (by this method), or on save, if the
change would violate a node type or implementation-
specific constraint. Implementations may differ on
when this validation is performed.

A VersionException will be thrown either immediately
(by this method), or on save, if this node is
versionable and checked-in or is non-versionable but
its nearest versionable ancestor is checked-in.
Implementations may differ on when this validation is
performed.

A LockException will be thrown either immediately
(by this method), or on save, if a lock prevents the
setting of the property. Implementations may differ on
when this validation is performed.

A RepositoryException is thrown if another error
occurs.

Property setProperty(String name, String[] values)

Sets the specified property to the specified array of
values. Same as

 195

setProperty(String name, Value[] values)

except that the values are specified as String objects
instead of Value objects.

Property setProperty(String name,
 String[] values,
 int type)

Sets the specified property to the specified array of
values and to the specified type. Same as

setProperty(String name,
 Value[] values,
 int type)

except that the values are specified as String objects
instead of Value objects.

Property setProperty(String name,
 Value value,
 int type)

Sets the specified (single-value) property to the
specified value. If the property does not yet exist, it is
created. The type of the property is determined by the
type parameter specified.

If the property type of the supplied Value object is
different from that required, then a best-effort
conversion is attempted. If the conversion fails, a
ValueFormatException is thrown.

If the property is not single-valued then a
ValueFormatException is also thrown.

If the property already exists it assumes both the new
value and the new property type.

Passing a null as the second parameter removes the
property. It is equivalent to calling remove on the
Property object itself. For example,
N.setProperty("P", (Value)null, type) would
remove property called "P" of the node in N.

To save the addition or removal of a property, a save
call must be performed that includes the parent of the
property in its scope: that is, a save on either the
session, this node, or an ancestor of this node. To save
a change to an existing property, a save call that
includes that property in its scope is required. This
means that in addition to the above-mentioned save
options, a save on the changed property itself will also

 196

work.

A ConstraintViolationException will be thrown
either immediately (by this method), or on save, if the
change would violate a node type or implementation-
specific constraint. Implementations may differ on
when this validation is performed.

A VersionException will be thrown either immediately
(by this method), or on save, if this node is
versionable and checked-in or is non-versionable but
its nearest versionable ancestor is checked-in.
Implementations may differ on when this validation is
performed.

A LockException will be thrown either immediately
(by this method), or on save, if a lock prevents the
setting of the property. Implementations may differ on
when this validation is performed.

If another error occurs, a RepositoryException is
thrown.

Property setProperty(String name,
 String value,
 int type)

Sets the specified property to the specified value.
Same as

setProperty(String name,
 Value value,
 int type)

except that the value is specified as a String object
instead of a Value object.

Property setProperty(String name, String value)

setProperty(String name, InputStream value)

setProperty(String name, boolean value)

setProperty(String name, Calendar value)

setProperty(String name, double value)

setProperty(String name, long value)

setProperty(String name, Node value)

Sets the specified property to the specified value. In
the context of these methods, each Java type implies a
particular property type. The correspondence is:

 197

String: PropertyType.STRING

InputStream: PropertyType.BINARY

boolean: PropertyType.BOOLEAN

Calendar: PropertyType.DATE

double: PropertyType.DOUBLE

long: PropertyType.LONG

Node: PropertyType.REFERENCE

In the case of the signature that takes a Node, the
REFERENCE property in question is set to refer to the
supplied node (see 6.2.5.4 Reference).

The property type of the property being set is
determined by the node type of this node. If this
property type is something other than that implied by
the (Java) type of the passed value, a best-effort
conversion is attempted. If the conversion fails, a
ValueFormatException is thrown. If the property is
multi-valued, a ValueFormatException is also thrown.
If another error occurs, a RepositoryException is
thrown.

If the node type of this node does not specify a
particular property type for the property being set then
the property type implied by the (Java) type of the
passed value is used and if the property already exists
(has previously been set) it assumes both the new
value and new type.

Passing a null as the second parameter removes the
property. It is equivalent to calling remove on the
Property object itself. For example,
N.setProperty("P", (Calendar)null) would remove
property called "P" of the node in N. Obviously, a null
cannot be passed to the signatures that take the
primitive types boolean, long or double.

To save the addition or removal of a property, a save
call must be performed that includes the parent of the
property in its scope: that is, a save on either the
session, this node, or an ancestor of this node. To save
a change to an existing property, a save call that
includes that property in its scope is required. This
means that in addition to the above-mentioned save
options, a save on the changed property itself will also
work.

A property of type PropertyType.NAME or

 198

PropertyType.PATH may be created either by
explicitly specifying the property type using a three-
argument setProperty signature, or by using
ValueFactory to create a property of the desired type
and then calling setProperty(String, Value).

A ConstraintViolationException will be thrown
either immediately (by this method), or on save, if the
change would violate a node type or implementation-
specific constraint. Implementations may differ on
when this validation is performed.

A VersionException will be thrown either immediately
(by this method), or on save, if this node is
versionable and checked-in or is non-versionable but
its nearest versionable ancestor is checked-in.
Implementations may differ on when this validation is
performed.

A LockException will be thrown either immediately
(by this method), or on save, if a lock prevents the
setting of the property. Implementations may differ on
when this validation is performed.

A RepositoryException is thrown if another error
occurs.

To change the value of a property that has already been retrieved
you can also use the setValue methods in the Property Interface
itself:

javax.jcr.
Property

void setValue(Value value)

setValue(Value[] values)

setValue(String value)

setValue(String[] values)

setValue(InputStream value)

setValue(double value)

setValue(long value)

setValue(Calendar value)

setValue(boolean value)

setValue(Node node)

 199

Sets the value of this Property to the specified value. The
behavior of these methods is identical with their
corresponding Node.setProperty signature.

7.1.5.1 Example

To change the price of a rhombus to 200 we might do the following:

String path = "products/rhombus/jcr:content/myapp:price";
root.getProperty(path).setValue(200);

or, alternatively

String path = "products/rhombus/jcr:content";
Node rhombus = root.getNode(path);
rhombus.setProperty("myapp:price", 200);

7.1.5.2 Setting Multi-value vs. Single-value Properties

Multi-value and single-value properties are set using different
signatures of Node.setProperty and Property.setValue. Multi-
value properties must set using the signatures that take either a
Value[] or String[]. Single value properties must be set using the
signatures that take non-array value arguments. An attempt to set
a multi-value property with a non-array value argument, or a
single-value property with an array value argument, will throw a
ValueFormatException.

7.1.5.3 Creating Value Objects

In order to use methods that accept a Value object the application
needs a way to produce such objects. This is done by using the
methods of the ValueFactory object, which is acquired through
Session.getValueFactory() (see 7.1 Writing Repository Content).
ValueFactory provides the following methods:

javax.jcr.
ValueFactory

Value createValue(String value)

Returns a Value object of PropertyType.STRING with the
specified value.

Value createValue(String value, int type)

Returns a Value object of the PropertyType specified by type
with the specified value.

A ValueFormatException is thrown if the specified value cannot
be converted to the specified type.

 200

Value createValue(long value)

Returns a Value object of PropertyType.LONG with the specified
value.

Value createValue(double value)

Returns a Value object of PropertyType.DOUBLE with the
specified value.

Value createValue(boolean value)

Returns a Value object of PropertyType.BOOLEAN with the
specified value.

Value createValue(Calendar value)

Returns a Value object of PropertyType.DATE with the specified
value.

Value createValue(InputStream value)

Returns a Value object of PropertyType.BINARY with a value
consisting of the content of the specified InputStream.

Value createValue(Node value)

Returns a Value object of PropertyType.REFERENCE that holds
the UUID of the specified Node. This Value object can then be
used to set a property that will be a reference to that Node.

A RepositoryException is thrown if the specified Node is not
referenceable, the current Session is no longer active, or
another error occurs.

7.1.6 Removing Nodes and Properties

Removing a node or property is done with the Item.remove
method:

javax.jcr.
Item

void remove()

Removes this item (and its subtree).

To persist a removal, a save must be performed that includes the
(former) parent of the removed item within its scope.

A ReferentialIntegrityException will be thrown on save if this
item or an item in its subtree is currently the target of a
REFERENCE property located in this workspace but outside this
item's subtree and the current Session has read access to that

 201

REFERENCE property.

An AccessDeniedException will be thrown on save if this item or
an item in its subtree is currently the target of a REFERENCE
property located in this workspace but outside this item's subtree
and the current Session does not have read access to that
REFERENCE property.

A ConstraintViolationException will be thrown either
immediately (by this method), or on save, if removing this item
would violate a node type or implementation-specific constraint.
Implementations may differ on when this validation is performed.

A VersionException will be thrown either immediately (by this
method), or on save, if the parent node of this item is versionable
and checked-in or is non-versionable but its nearest versionable
ancestor is checked-in. Implementations may differ on when this
validation is performed.

A LockException will be thrown either immediately (by this
method), or on save, if a lock prevents the removal of this item.
Implementations may differ on when this validation is performed.

A RepositoryException is thrown if another error occurs.

A property can also be removed by setting its value to null. When
this is done, the null parameter must be cast to a non-array type
for single value properties and an array type for multi-value
properties.

Note that setting a multi-value property to an array containing null
values is different from setting it to a null cast to an array type. In
the former case, all null values within the array are removed and
the array is compacted to include only non-null values even if this
results in a multi-value property being set to an empty array. In the
latter case the entire property is removed. For example,

p.setValue((String[])null)

would remove property p, whereas

p.setValue(new String[]{"a", null, "b"}) would set p to
["a","b"]

and

p.setValue(new String[]{null}) would set p to the empty array,
[].

See also 4.7.3 No Null Values.

 202

7.1.7 Moving and Copying

Moving and copying of nodes is done through methods of the
Session and Workspace interfaces.

Session provides a move method:

javax.jcr.
Session

void move(String srcAbsPath, String destAbsPath)

Moves the node at srcAbsPath (and its entire subtree)
to the new location at destAbsPath.

In order to persist the change, save must be called on
either the session or a common ancestor to both the
source and destination locations.

A ConstraintViolationException is thrown either
immediately (by this method) or on save if performing
this operation would violate a node type or
implementation-specific constraint. Implementations
may differ on when this validation is performed.

As well, a ConstraintViolationException will be
thrown on save if an attempt is made to save only
either the source or destination node separately.

Note that this behavior differs from that of
Workspace.move (see below), which operates directly in
the persistent workspace and does not require a save.

The destAbsPath provided must not have an index on
its final element. If it does then a
RepositoryException is thrown immediately. Strictly
speaking, the destAbsPath parameter is actually an
absolute path to the parent node of the new location,
appended with the new name desired for the moved
node. It does not specify a position within the child
node ordering. If ordering is supported by the node
type of the parent node of the new location, then the
newly moved node is appended to the end of the child
node list.

This method cannot be used to move just an individual
property by itself. It moves an entire node and its
subtree (including, of course, any properties contained
therein).

If no node exists at srcAbsPath or no node exists one
level above destAbsPath (in other words, there is no
node that will serve as the parent of the moved item)
then a PathNotFoundException is thrown either

 203

immediately or on save. Implementations may differ on
when this validation is performed.

An ItemExistsException is thrown either immediately
or on save if a property already exists at destAbsPath
or a node already exists there and same-name siblings
are not allowed. Implementations may differ on when
this validation is performed.

A VersionException is thrown either immediately or on
save if the parent node of destAbsPath or the parent
node of srcAbsPath is versionable and checked-in, or is
non-versionable and its nearest versionable ancestor is
checked-in. Implementations may differ on when this
validation is performed.

A LockException is thrown either immediately or on
save if a lock prevents the move. Implementations may
differ on when this validation is performed.

A RepositoryException is thrown if another error
occurs.

Workspace provides a move method as well as the methods copy
and clone:

javax.jcr.
Workspace

void copy(String srcAbsPath,
 String destAbsPath)

This method copies the node at srcAbsPath and its
entire subtree to the new location at destAbsPath.
This operation is performed entirely within the
persistent workspace, it does not involve transient
storage and therefore does not require a save.

Copies of referenceable nodes are automatically
given new UUIDs.

The destAbsPath provided must not have an index
on its final element. If it does, then a
RepositoryException is thrown. Strictly speaking,
the destAbsPath parameter is actually an absolute
path to the parent node of the new location,
appended with the new name desired for the copied
node. It does not specify a position within the child
node ordering. If ordering is supported by the node
type of the parent node of the new location, then the
newly moved node is appended to the end of the

 204

child node list.

This method cannot be used to copy just an
individual property by itself. It copies an entire node
and its subtree (including, of course, any properties
contained therein).

A ConstraintViolationException is thrown if the
operation would violate a node-type or other
implementation-specific constraint.

A VersionException is thrown if the parent node of
destAbsPath is versionable and checked-in, or is
non-versionable but its nearest versionable ancestor
is checked-in.

An AccessDeniedException is thrown if the current
session (i.e., the session that was used to acquire
this Workspace object) does not have sufficient
access permissions to complete the operation.

A PathNotFoundException is thrown if the node at
srcAbsPath or the parent of destAbsPath does not
exist.

An ItemExistsException is thrown if a property
already exists at destAbsPath or a node already
exists there and same-name siblings are not allowed.

A LockException is thrown if a lock prevents the
copy.

A RepositoryException is thrown if another error
occurs.

void copy(String srcWorkspace,
 String srcAbsPath,
 String destAbsPath)

This method copies the subtree at srcAbsPath in
srcWorkspace to destAbsPath in this workspace.
Unlike clone, this method does assign new UUIDs to
the new copies of referenceable nodes. This
operation is performed entirely within the persistent
workspace, it does not involve transient storage and
therefore does not require a save.

The destAbsPath provided must not have an index
on its final element. If it does, then a
RepositoryException is thrown. Strictly speaking,
the destAbsPath parameter is actually an absolute
path to the parent node of the new location,
appended with the new name desired for the copied

 205

node. It does not specify a position within the child
node ordering. If ordering is supported by the node
type of the parent node of the new location, then the
new copy of the node is appended to the end of the
child node list.

This method cannot be used to copy just an
individual property by itself. It copies an entire node
and its subtree (including, of course, any properties
contained therein).

A NoSuchWorkspaceException is thrown if
srcWorkspace does not exist.

A ConstraintViolationException is thrown if the
operation would violate a node-type or other
implementation-specific constraint.

A VersionException is thrown if the parent node of
destAbsPath is versionable and checked-in, or is
non-versionable but its nearest versionable ancestor
is checked-in.

An AccessDeniedException is thrown if the current
session (i.e., the session that was used to acquire
this Workspace object) does not have sufficient
access permissions to complete the operation.

A PathNotFoundException is thrown if the node at
srcAbsPath in srcWorkspace or the parent of
destAbsPath in this workspace does not exist.

An ItemExistsException is thrown if a property
already exists at destAbsPath or a node already
exists there and same-name siblings are not allowed.

A LockException is thrown if a lock prevents the
copy.

A RepositoryException is thrown if another error
occurs.

void clone(String srcWorkspace,
 String srcAbsPath,
 String destAbsPath,
 boolean removeExisting)

Clones the subtree at the node srcAbsPath in
srcWorkspace workspace to destAbsPath in this
workspace. Unlike the signature of copy that copies
between workspaces, this method does not assign
new UUIDs to new referenceable nodes but
preserves the UUIDs of their respective source

 206

nodes.

If removeExisting is true and an existing node in
this workspace (the destination workspace) has the
same UUID as a node being cloned from
srcWorkspace, then the incoming node takes
precedence, and the existing node (and its subtree)
is removed. If removeExisting is false then a UUID
collision causes this method to throw a
ItemExistsException and no changes are made.

If successful, the changes are persisted immediately,
there is no need to call save.

The destAbsPath provided must not have an index
on its final element. If it does, then a
RepositoryException is thrown. Strictly speaking,
the destAbsPath parameter is actually an absolute
path to the parent node of the new location,
appended with the new name desired for the copied
node. It does not specify a position within the child
node ordering. If ordering is supported by the node
type of the parent node of the new location, then the
new clone of the node moved node is appended to
the end of the child node list.

This method cannot be used to clone just an
individual property by itself. It clones an entire node
and its subtree (including, of course, any properties
contained therein).

A NoSuchWorkspaceException is thrown if
srcWorkspace does not exist.

A ConstraintViolationException is thrown if the
operation would violate a node-type or other
implementation-specific constraint

A VersionException is thrown if the parent node of
destAbsPath is versionable and checked-in, or is
non-versionable but its nearest versionable ancestor
is checked-in.

An AccessDeniedException is thrown if the current
session (i.e. the session that was used to acquire
this Workspace object) does not have sufficient
access permissions to complete the operation.

A PathNotFoundException is thrown if the node at
srcAbsPath in srcWorkspace or the parent of
destAbsPath in this workspace do not exist.

An ItemExistsException is thrown if a property

 207

already exists at destAbsPath or a node already
exists there and same-name siblings are not allowed
or if removeExisting is false and a UUID conflict
occurs.

A LockException is thrown if a lock prevents the
clone.

A RepositoryException if another error occurs.

void move(String srcAbsPath, String destAbsPath)

Moves the node at srcPath (and its entire subtree)
to the new location at destPath. If successful, the
change is persisted immediately, there is no need to
call save. Note that this is in contrast to
Session.move which operates within the transient
space and hence requires a save.

The destAbsPath provided must not have an index
on its final element. If it does then a
RepositoryException is thrown. Strictly speaking,
the destAbsPath parameter is actually an absolute
path to the parent node of the new location,
appended with the new name desired for the moved
node. It does not specify a position within the child
node ordering. If ordering is supported by the node
type of the parent node of the new location, then the
newly moved node is appended to the end of the
child node list.

This method cannot be used to move just an
individual property by itself. It moves an entire node
and its subtree (including, of course, any properties
contained therein).

A ConstraintViolationException is thrown if the
operation would violate a node-type or other
implementation-specific constraint

A VersionException is thrown if the parent node of
destAbsPath or the parent node of srcAbsPath is
versionable and checked-in, or is non-versionable
but its nearest versionable ancestor is checked-in.

An AccessDeniedException is thrown if the current
session does not have sufficient access permissions
to complete the operation.

A PathNotFoundException is thrown if the item at
srcAbsPath or the parent of destAbsPath does not
exist.

 208

An ItemExistsException is thrown if a property
already exists at destAbsPath or a node already
exists there and same-name siblings are not allowed.

A LockException is thrown if a lock prevents the
move.

A RepositoryException is thrown if another error
occurs.

7.1.7.1 Example

The following code,

Workspace workspace = ...;
workspace.move("/products/TV/Paragraph",
 "/products/Radio/Paragraph");

would move a paragraph from one location to another.
Workspace.copy works analogously.

7.1.8 Updating and Cloning Nodes across Workspaces

In repositories that have multiple workspaces, a node in one
workspace may have corresponding nodes in other workspaces.

As mentioned in 4.10.2 Multiple Workspaces and
Corresponding Nodes, a node's corresponding node is defined as
follows:

• A node's corresponding nodes are those with the same
correspondence identifier.

• The correspondence identifier of a referenceable node is its
UUID.

• The correspondence identifier of a non-referenceable node
with at least one referenceable ancestor is the pair
consisting of the UUID of its nearest referenceable ancestor
and its relative path from that ancestor.

• The correspondence identifier of a non-referenceable node
with no referenceable ancestor is its absolute path.

Note also that (as stated in 4.9 Referenceable Nodes) if a
repository has a workspace with a referenceable root node then all
its workspaces must have referenceable root nodes and those root
nodes must all have the same UUID.

Apart from having the same correspondence identifier,
corresponding nodes need have nothing else in common. They can
have entirely different properties and child nodes, for example.

 209

While a node may have a corresponding node in another
workspace, it is not required to.

7.1.8.1 Creating a Corresponding Node

Corresponding nodes can be created by “cloning” a node (or
subtree of nodes) from one workspace to another using the
Workspace.clone method:

Workspace.clone(String srcWorkspace,
 String srcAbsPath,
 String destAbsPath,
 boolean removeExisting)

This method clones the subtree at srcAbsPath in srcWorkspace to
destAbsPath in this workspace. The clone method clones both
referenceable and nonreferenceable nodes. In the case of
referenceable nodes clone preserves the node's UUID so that the
new node in the destination workspace has the same UUID as the
node in the source workspace.

For a non-referenceable node, a corresponding node in another
workspace can be created either through clone, or simply by
creating a node in the destination workspace (using Node.addNode)
with the same relative path to the nearest referenceable node.

However, the use of clone is required for the creation
corresponding referenceable nodes because simply creating a new
referenceable node at the same path in the other workspace will
not work, since the new node will automatically be assigned a new
UUID and not the same UUID as its correspondee.

If there already exists anywhere in this workspace a node with the
same UUID as an incoming node from srcWorkspace, and
removeExisting is false, then clone will throw an
ItemExistsException.

If removeExisting is true then the existing node is removed from
its current location and the cloned node with the same UUID from
srcWorkspace is copied to this workspace as part of the copied
subtree (that is, not into the former location of the old node). The
subtree of the cloned node will reflect the clones state in
srcWorkspace, in other words the existing node will be moved and
changed. If the existing node cannot be moved and changed
because of node type constraints, access control constraints or
because its parent is checked-in (or its parent is non-versionable
but its nearest versionable ancestor is checked-in), then the
appropriate exception is thrown (ConstraintViolationException,
AccessControlException or VersionException, respectively).

 210

7.1.8.2 Update

Node correspondence governs the behavior of the update method.
This method causes this node to be updated to reflect the state of
its corresponding node in srcWorkspace.

javax.jcr.
Node

void update(String srcWorkspaceName)

If this node does have a corresponding node in the
workspace srcWorkspaceName, then this replaces this
node and its subtree with a clone of the corresponding
node and its subtree.

If this node does not have a corresponding node in the
workspace srcWorkspaceName, then the update method
has no effect.

If the update succeeds, the changes made to this node
and its subtree are persisted immediately, there is no
need to call save.

Note that update does not respect the checked-in
status of nodes. An update may change a node even if
it is currently checked-in (this fact is only relevant in an
implementation that supports versioning, see 8.2
Versioning).

If the specified srcWorkspace does not exist, a
NoSuchWorkspaceException is thrown.

If the current session does not have sufficient
permissions to perform the operation, then an
AccessDeniedException is thrown.

An InvalidItemStateException is thrown if this
Session (not necessarily this Node) has pending
unsaved changes.

A LockException is thrown if a lock prevents the
update.

A RepositoryException is thrown if another error
occurs.

7.1.8.3 getCorrespondingNodePath

The API also provides a method for quickly finding the path of a
node's corresponding node (if it exists) in another workspace:

 211

javax.jcr.
Node

String getCorrespondingNodePath(String workspaceName)

Returns the absolute path of the node in the specified
workspace that corresponds to this node.

If no corresponding node exists then an
ItemNotFoundException is thrown.

If the specified workspace does not exist then a
NoSuchWorkspaceException is thrown.

If the current Session does not have sufficient
permissions to perform this operation, an
AccessDeniedException is thrown.

Throws a RepositoryException if another error occurs.

7.1.9 Referenceable Nodes

A node that is referenceable has an independent identity from its
position in the workspace hierarchy (by virtue of its UUID): it
maintains its identity regardless of where it is moved in the
hierarchy.

Non-referenceable nodes, on the other hand, are intrinsically tied
to their position in the hierarchy relative to their nearest
referenceable ancestor. If a non-referenceable node is moved from
its position it becomes, in effect, a different node.

Consequently, a referenceable node and its non-referenceable sub-
nodes form a natural unit within the WS hierarchy. It is this unit
that is respected during a save, update and merge.

7.1.10 Treatment of UUIDs

A number of different methods in the API transfer node state from
one location to another. They often differ in how they treat the
UUID of the node. Some methods always behave the same way in
this regard, others have various options that control their behavior.
The following table summarizes the behaviors of the methods.

Keep UUID (3
behaviors on conflict)

Method New
UUID

Throw Remove

from

existing

location

Replace

at

existing

location

Comments

Workspace.copy yes no no no copy (both within

 212

(see 7.1.7 Moving and
Copying)

and between
workspaces) simply
creates a new UUID
for any
referenceable nodes
it copies.

Session.save
Item.save
(see 7.1 Writing Repository
Content)

no no no yes save pushes items
to the persistent
workspace,
replacing existing
items using UUID
matching, wherever
they may be in
terms of path (non-
referenceable nodes
are kept bound to
their UUID-bearing
ancestor, however).

Node.update
(see 7.1.8 Updating and
Cloning Nodes across
Workspaces)

no no no yes update pulls the
state of this node
from another
workspace using
UUID matching,
regardless of where
(in terms of path)
the source node is
in the source
workspace.

Workspace.clone
(see 7.1.7 Moving and
Copying)

no yes yes no clone keeps UUIDs.
There are two
options to deal with
cases where this
workspace already
contains a node
with the same UUID
as one being cloned
over: either throw,
or remove the
existing node in this
workspace.

Node.restore
Node.restoreByLabel
Workspace.restore
(see 8.2 Versioning)

no yes yes no restore and
restoreByLabel
keep UUIDs. Similar
to clone, there are
two options to deal
with cases where
this workspace

 213

already contains a
node with the same
UUID as being
copied in as part of
a restored version:
either throw, or
remove the existing
node in this
workspace.

Workspace.importXML
Session.importXML
Session.
getImportContentHandler,
Workspace.
getImportContentHandler
(see 7.3 Importing
Repository Content)

yes yes yes yes All four options are
supported.

7.1.11 Ordering Child Nodes

If a node supports orderable child nodes then the following method
can be used to arrange the order of its child nodes.

javax.jcr.
Node

void orderBefore(String srcChildRelPath,
 String destChildRelPath)

If this node supports child node ordering, this method inserts the
child node at srcChildRelPath before its sibling, the child node
at destChildRelPath, in the child node list. To place the node
srcChildRelPath at the end of the list, a destChildRelPath of
null is used.

Note that (apart from the case where destChildRelPath is null)
both of these arguments must be relative paths of depth one, in
other words they are the names of the child nodes, possibly
suffixed with an index (see 4.6.1 Names vs. Paths).

If srcChildRelPath and destChildRelPath are the same, then
no change is made.

Changes to ordering of child nodes are persisted on save of the
parent node.

If this node does not support child node ordering, then a
UnsupportedRepositoryOperationException thrown.

If srcChildRelPath is not the relative path to a child node of this

 214

node then an ItemNotFoundException is thrown.

If destChildRelPath is neither the relative path to a child node
of this node nor null, then an ItemNotFoundException is also
thrown.

A ConstraintViolationException will be thrown either
immediately (by this method), or on save, if this operation would
violate a implementation-specific constraint. Implementations
may differ on when this validation is performed.

A VersionException will be thrown either immediately (by this
method), or on save, if this node is versionable and checked-in or
is non-versionable but its nearest versionable ancestor is
checked-in. Implementations may differ on when this validation is
performed.

A LockException will be thrown either immediately (by this
method), or on save, if a lock prevents the re-ordering.
Implementations may differ on when this validation is performed.

If another error occurs a RepositoryException is thrown.

If a node type returns true on a call to
NodeType.hasOrderableChildNodes(), then all nodes of that node
type must support the method Node.orderBefore. If a node type
returns false on a call to this method, then nodes of that node
type may support Node.orderBefore. Only the primary node type
of a node controls that node's status in this regard. This setting on
a mixin node type will not have any effect on the node.

If a node has orderable child nodes then at any time the current
order of its child nodes is reflected in the order of nodes in the
iterator returned by Node.getNodes.

If a node does not have orderable child nodes then the order of
nodes returned by Node.getNodes is not guaranteed and may
change at any time.

Note that the order of properties returned by Node.getProperties
is never client-controllable.

See 4.4 Orderable Child Nodes.

 215

7.2 Adding and Deleting Namespaces

As discussed in 6.3 Namespaces, above, each content repository
has a single, persistent namespace registry represented by the
NamespaceRegistry object accessed via
Workspace.getNamespaceRegistry(). In level 1 only the
NamespaceRegistry methods related to discovering information
must function. In level 2 the NamespaceRegistry additionally
allows for persistent changes to namespace mappings using the
following methods:

javax.jcr.
NamespaceRegistry

void registerNamespace(String prefix, String uri)

Sets a one-to-one mapping between prefix and uri in the
global namespace registry of this repository.

Assigning a new prefix to a URI that already exists in the
namespace registry erases the old prefix. In general this can
be done, though an implementation is free to prevent
particular remappings by throwing a NamespaceException.

On the other hand, taking a prefix that is already assigned to
a URI and re-assigning it to a new URI in effect unregisters
that URI. Therefore, the same restrictions apply to this
operation as to NamespaceRegistry.unregisterNamespace:

• Attempting to re-assign a built-in prefix (jcr, nt, mix,
xml or the empty prefix) to a new URI will throw a
NamespaceException.

• Attempting to re-assign a prefix that is currently
assigned to an “in-use” URI, i.e., one that is present in
content, will throw a NamespaceException. This
applies to URIs in use within item names and those
within the values of NAME or PATH properties (including
those in in-content node type definitions). However,
one can change the prefix for an existing URI to any
available new unique prefix, thus replacing the existing
shorthand for that URI.

• Attempting to register a namespace with a prefix that
begins with the characters “xml” (in any combination of
case) will throw a NamespaceException.

• An implementation may prevent the re-assignment of
any other namespace prefixes for implementation-
specific reasons by throwing a NamespaceException.

In a level 1 implementation, this method always throws an
UnsupportedRepositoryOperationException.

 216

If the session associated with the Workspace object through
which this registry was acquired does not have sufficient
permissions to register the namespace an
AccessDeniedException is thrown.

A RepositoryException is thrown if another error occurs.

void unregisterNamespace(String prefix)

Removes a namespace mapping from the registry. The
following restrictions apply:

• Attempting to unregister a built-in namespace (jcr,
nt, mix, xml or the empty namespace) will throw a
NamespaceException.

• Attempting to unregister a namespace that is currently
present in content (either within an item name or
within the value of a NAME or PATH property) will throw
a NamespaceException. This includes prefixes in use
within in-content node type definitions.

• An attempt to unregister a namespace that is not
currently registered will throw a NamespaceException.

• An implementation may prevent the unregistering of
any other namespace for implementation-specific
reasons by throwing a NamespaceException.

In a level 1 implementation, this method always throws an
UnsupportedRepositoryOperationException.

If the session associated with the Workspace object through
which this registry was acquired does not have sufficient
permissions to unregister the namespace an
AccessDeniedException is thrown.

A RepositoryException is thrown if another error occurs.

Once registered, a prefix can be used in the name of any node or
property in the repository. The prefix serves as shorthand for the
URI to which it is mapped. Because the space of URIs is universal
managed, the combination of the per-repository namespace and
the larger URI namespace can be used to provide universally
uniqueness of node or property names. Of course, just as in the
case of XML namespaces, ensuring this universal uniqueness
requires applications to map their application-specific prefixes to
URIs that are uniquely identified with that particular application.

The namespace registry always contains at least the following built-
in mappings, which cannot be removed through the API:

 217

• jcr -> http://www.jcp.org/jcr/1.0
Reserved for items defined within built-in node types. For
example jcr:content.

• nt -> http://www.jcp.org/jcr/nt/1.0
Reserved for the names of built-in primary node types.

• mix -> http://www.jcp.org/jcr/mix/1.0
Reserved for the names of built-in mixin node types.

• xml -> http://www.w3.org/XML/1998/namespace
Reserved for reasons of compatibility with XML.

• “” (the empty prefix) -> “”(the empty URI)
This makes the default namespace the empty URI. In effect
this means that a name without a prefix is identical in both
its prefixed form and in its fully qualified form (i.e. when it is
stored internally as URI plus local name). See 6.3.3 Internal
Storage of Names and Values.

7.2.1 Visibility of Namespace Registry Changes

A content repository implementation must ensure that changes to
the persistent namespace registry are immediately visible to all
sessions.

 218

7.3 Importing Repository Content

Level 2 repositories must support the import of content from either
of the standard XML mappings, system view and document view
(see 6.4 XML Mappings).

7.3.1 Import from System View

Given a system view XML document the subtree constructed upon
import is determined by reversing the mapping discussed in 6.4.1
System View XML Mapping. The mapping is largely straightforward
(though see 7.3.3 Respecting Property Semantics and 7.3.8
Importing jcr:root).

7.3.2 Import from Document View

One of the applications for which the document view mapping is
designed is to allow the import of arbitrary XML into a content
repository (another application is to provide a context in which
XPath queries are more readable than they would be in system
view, see 6.6.1 XPath over Document View). On import, the
repository first checks if the incoming XML appears to be a system
view document. If it does not then it is assumed to be in document
view form, and the following occurs:

1. Namespace declarations in the incoming XML document that
do not already exist in the repository namespace registry
are added to the repository namespace registry.

2. Each XML element E becomes a content repository node of
the same name, E.

3. The node type of the content repository node E is
determined by the implementation in accordance with its
policy on respecting property semantics (see 7.3.3
Respecting Property Semantics and 7.3.4 Determining Node
Types).

4. Each child XML element C of XML element E becomes a
content repository child node C of node E.

5. Each XML attribute A within an XML element E becomes a
property A of content repository node E. The value of each
XML attribute A becomes the value of the corresponding
property A.

6. The type of each imported property is determined by the
implementation in accordance with its policy on respecting
property semantics (see 7.3.3 Respecting Property
Semantics and 7.3.4 Determining Node Types).

7. Escape sequences representing non-XML-valid characters in
element names and whitespace in attribute values may be

 219

encountered if the incoming XML stream is the product of an
earlier document view export (see 6.4.2 Document View
XML Mapping). In these cases, whether the escape
sequences are decoded is left up to the implementation.
Note that the predefined entity references &, <,
>, ' and ", as well as all other entity and
character references, must be decoded in any case, in
accordance with the XML specification).

8. An implementation that respects node type information may
be able to determine whether a particular attribute is
intended to be a single or multi value property, and treat
any spaces embedded in the value according (either as
delimiters or as literal spaces). Implementations are also
free to rely on other out-of-band information (such as any
schema associated by the incoming XML) to help determine
the intended interpretation of whitespace with a particular
incoming attribute value.

9. Text within an XML element E becomes a STRING property
called jcr:xmlcharacters of a node called jcr:xmltext,
which itself becomes a child node of the node E.

10. If import is done through the ContentHandler returned by
getImportContentHandler, the value of
E/jcr:xmltext/jcr:xmlcharacters will be the character
data passed to ContentHandler.characters. Data passed
to ContentHandler.ignorableWhitespace is ignored. If
import is done through importXML, pure whitespace
between elements (that is, containing no non-whitespace
characters) is ignored. However, whitespace leading, trailing
and between non-whitespace characters is included in the
text that is stored in E/jcr:xmltext/jcr:xmlcharacters.

11. An XML element can have a child element and an attribute
with the same name while a content repository node cannot
have a child node and property with the same name. For
example, would imply a content
repository node with one property called b and one child
node also called b, which is not allowed. Therefore if such a
fragment of XML is encountered on import it is an
implementation issue as to how to deal with it.

7.3.2.1 Roundtripping

Upon document view import, a content repository will automatically
add repository metadata in the form of extra properties (at least
jcr:primaryType, for example) if these are not already present in
the incoming XML, and of course, in the case of an arbitrary XML
document, they will not be.

 220

When re-exported using document view, the resulting XML will
contain these extra properties in the form of XML attributes that
may not have been present in the imported XML. As a result, if
roundtripping of arbitrary XML is desired, the application must take
care of stripping out unwanted repository-related meta-data like
the jcr:primaryType.

7.3.2.2 Example

The following XML document

<?xml version="1.0" encoding="UTF-8"?>
<myapp:document xmlns:myapp="http://mycorp.com/myapp"
 myapp:title="JSR 170"
 myapp:lead="Content Repository">
 <myapp:body>
 <myapp:paragraph myapp:title="Node Types">
 myapp:text="An important feature..."/>
 </myapp:body>
</myapp:document>

when imported in document view would result in the addition of the
following mapping to the repository namespace registry:

myapp -> http://mycorp.com/myapp

and the creation of the following subtree

Node
Property = "value"

myapp:document
├─jcr:primaryType = "nt:unstructured"
├─myapp:title = "JSR 170"
├─myapp:lead = "Content Repository"
└─myapp:body
 ├─jcr:primaryType = "nt:unstructured"
 └─myapp:paragraph
 ├─jcr:primaryType = "nt:unstructured"
 ├─myapp:title = "Node Types"

└─myapp:text = "An important feature..."

Note that the use of nt:unstructured as the default node type is
an implementation-level issue, so the example is a valid outcome of
the import, but not the only one.

7.3.3 Respecting Property Semantics

During either system or document view import, elements (in
system view) or attributes (in document view) may be encountered
that correspond to properties with repository-level semantics. This
includes, in particular, the properties that are defined in nt:base,
mix:lockable, mix:referenceable or mix:versionable (that is
properties such as jcr:primaryType, jcr:mixinTypes, jcr:uuid,
jcr:lockIsDeep, and so forth).

 221

When an element or attribute representing such a property is
encountered, an implementation may either skip it or respect it.

To respect it means to import it and alter the internal state of the
repository in accordance with the semantics of the property in the
given implementation. For example, to respect jcr:primaryType
means to attempt to create a node of the indicated primary node
type. If the node type in question is not supported by the
implementation, an exception is thrown (see 7.3.6 Workspace
Import Methods for details).

To skip the element or attribute means not to import it all. It does
not mean to import it but then ignore its semantic implications.

The implementation-specific policy regarding what to skip and what
to respect must be internally consistent. For example, it makes no
sense to skip jcr:mixinTypes (thus missing the presence of
mix:lockable, for example) and yet respect jcr:lockOwner and
jcr:lockIsDeep.

If an implementation chooses to skip jcr:primaryType, the node
type of the imported node is determined by the implementation
(see 7.3.4 Determining Node Types, immediately below).

7.3.4 Determining Node Types

In cases of XML import where primary node type information is
unavailable, either because it is skipped (see 7.3.3 Respecting
Property Semantics, immediately above) or because it is not
available in the first place (as is the case on document view import
of arbitrary XML), the implementation must determine an
appropriate node type to assign to each newly created node. This
specification does not attempt to define or restrict how this is done.
However, simply for the sake of illustration, some of the
possibilities include:

• Making all imported nodes nt:unstructured (obviously this
will only work if the implementation in question supports
that node type).

• Dynamically creating node types appropriate to the incoming
nodes. This approach might be suitable in cases where the
incoming structures all fall into a few well defined and easily
recognized patterns.

• Use node types created according to structure information
provided to the repository from an external source such as a
schema.

7.3.5 Determining Property Types

In document view import (unlike system view import) property type
information is not explicitly recorded. As a result, the

 222

implementation must determine a suitable property type for each
incoming property. The determination of the property type for a
particular incoming property must be done according to the
following principles:

• If the property type is determinable from the node type
assigned to its node (regardless of how this node type is
itself determined; see 7.3.4 Determining Node Types) then
that property type is used.

• If the property type is not determinable from the node type
assigned to its node then the determination of the property
is left up to the implementation. The most common
possibility is to default to the type STRING, though this is
not required. Some implementations may choose, for
example, to attempt “guess” the type according to an
analysis of the content. This specification does not attempt
to define or restrict how an implementation handles this
case.

7.3.6 Workspace Import Methods

The Workspace interface provides the following methods for
importing content into the repository:

javax.jcr.
Workspace

ContentHandler getImportContentHandler(
 String parentAbsPath,
 int uuidBehavior)

Returns an org.xml.sax.ContentHandler which can
be used to push SAX events into the repository. If
the incoming XML stream (in the form of SAX
events) does not appear to be a system view XML
document then it is interpreted as a document view
XML document.

The incoming XML is deserialized into a subtree of
items immediately below the node at
parentAbsPath.

This method simply returns the ContentHandler
without altering the state of the repository; the
actual deserialization is done through the methods of
the ContentHandler. Invalid XML data will cause the
ContentHandler to throw a SAXException.

As SAX events are fed into the ContentHandler,
changes are made directly at the workspace level,
without going through the Session. As a result,
there is not need to call save. The advantage of this

 223

direct-to-workspace method is that a large import
will not result in a large cache of pending nodes in
the Session. The disadvantage is that structures
that violate node type constraints cannot be
imported, fixed and then saved. Instead, a constraint
violation will cause the ContentHandler to throw a
SAXException. See
Session.getImportContentHandler for a version of
this method that does go through the Session.

The flag uuidBehavior governs how the UUIDs of
incoming (deserialized) nodes are handled. There are
four options (defined as constants in the interface
javax.jcr.ImportUUIDBehavior):

• IMPORT_UUID_CREATE_NEW: Incoming
referenceable nodes are assigned newly
created UUIDs upon addition to the
workspace. As a result UUID collisions never
occur.

• IMPORT_UUID_COLLISION_REMOVE_EXISTING:
If an incoming referenceable node has the
same UUID as a node already existing in the
workspace then the already existing node
(and its subtree) is removed from wherever it
may be in the workspace before the incoming
node is added. Note that this can result in
nodes “disappearing” from locations in the
workspace that are remote from the location
to which the incoming subtree is being
written.

• IMPORT_UUID_COLLISION_REPLACE_EXISTING:
If an incoming referenceable node has the
same UUID as a node already existing in the
workspace, then the already existing node is
replaced by the incoming node in the same
position as the existing node. Note that this
may result in the incoming subtree being
disaggregated and “spread around” to
different locations in the workspace. In the
most extreme case this behavior may result
in no node at all being added as child of
parentAbsPath. This will occur if the topmost
element of the incoming XML has the same
UUID as an existing node elsewhere in the
workspace.

• IMPORT_UUID_COLLISION_THROW: If an
incoming referenceable node has the same

 224

UUID as a node already existing in the
workspace then a SAXException is thrown by
the ContentHandler during deserialization.

A SAXException will be thrown by the returned
ContentHandler during deserialization if the top-
most element of the incoming XML would deserialize
to a node with the same name as an existing child of
parentAbsPath and that child does not allow same-
name siblings.

A SAXException will also be thrown by the returned
ContentHandler during deserialization if
uuidBehavior is set to
IMPORT_UUID_COLLISION_REMOVE_EXISTING and an
incoming node has the same UUID as the node at
parentAbsPath or one of its ancestors.

A PathNotFoundException is thrown if no node
exists at parentAbsPath.

A ConstraintViolationException is thrown if the
new subtree cannot be added to the node at
parentAbsPath due to node-type or other
implementation-specific constraints, and this can be
determined before the first SAX event is sent.

Unlike Session.getImportContentHandler, this
method will also enforce node type constraints by
having the returned ContentHandler throw a
SAXException during deserialization. However,
which node type constraints are enforced depends
upon whether node type information in the imported
data is respected, and this is an implementation-
specific issue (see 7.3.3 Respecting Property
Semantics).

A VersionException is thrown if the node at
parentAbsPath is versionable and checked-in, or is
non-versionable but its nearest versionable ancestor
is checked-in.

A LockException is thrown if a lock prevents the
addition of the subtree.

An AccessDeniedException is thrown if the session
associated with this Workspace object does not have
sufficient permissions to perform the import.

A RepositoryException is thrown if another error
occurs.

 225

void importXML(String parentAbsPath,
 InputStream in,
 int uuidBehavior)

Deserializes an XML document and adds the resulting
item subtree as a child of the node at
parentAbsPath.

If the incoming XML stream does not appear to be a
system view XML document then it is interpreted as
a document view XML document.

Changes are made directly at the workspace level,
without going through the Session. As a result,
there is not need to call save. The advantage of this
direct-to-workspace method is that a large import
will not result in a large cache of pending nodes in
the Session. The disadvantage is that invalid data
cannot be imported, fixed and then saved. Instead,
invalid data will cause this method to throw an
InvalidSerializedDataException. See
Session.importXML for a version of this method that
does go through the Session.

The flag uuidBehavior governs how the UUIDs of
incoming (deserialized) nodes are handled. There are
four options (defined as constants in the interface
javax.jcr.ImportUUIDBehavior):

• IMPORT_UUID_CREATE_NEW: Incoming
referenceable nodes are assigned newly
created UUIDs upon addition to the
workspace. As a result UUID collisions never
occur.

• IMPORT_UUID_COLLISION_REMOVE_EXISTING:
If an incoming referenceable node has the
same UUID as a node already existing in the
workspace then the already existing node
(and its subtree) is removed from wherever it
may be in the workspace before the incoming
node is added. Note that this can result in
nodes “disappearing” from locations in the
workspace that are remote from the location
to which the incoming subtree is being
written.

• IMPORT_UUID_COLLISION_REPLACE_EXISTING:
If an incoming referenceable node has the
same UUID as a node already existing in the
workspace then the already existing node is
replaced by the incoming node in the same

 226

position as the existing node. Note that this
may result in the incoming subtree being
disaggregated and “spread around” to
different locations in the workspace. In the
most extreme edge case this behavior may
result in no node at all being added as child of
parentAbsPath. This will occur if the topmost
element of the incoming XML has the same
UUID as an existing node elsewhere in the
workspace.

• IMPORT_UUID_COLLISION_THROW: If an
incoming referenceable node has the same
UUID as a node already existing in the
workspace then an ItemExistsException is
thrown.

An ItemExistsException will be thrown if the top-
most element of the incoming XML would deserialize
to a node with the same name as an existing child of
parentAbsPath and that child does not allow same-
name siblings.

An IOException is thrown if an I/O error occurs.

If no node exists at parentAbsPath, a
PathNotFoundException is thrown.

If node-type or other implementation-specific
constraints prevent the addition of the subtree, a
ConstraintViolationException is thrown.

A ConstraintViolationException will also be
thrown if uuidBehavior is set to
IMPORT_UUID_COLLISION_REMOVE_EXISTING and an
incoming node has the same UUID as the node at
parentAbsPath or one of its ancestors.

A VersionException is thrown if the node at
parentAbsPath is versionable and checked-in, or is
non-versionable but its nearest versionable ancestor
is checked-in.

A LockException is thrown if a lock prevents the
addition of the subtree.

An AccessDeniedException is thrown if the session
associated with this Workspace object does not have
sufficient permissions to perform the import.

If another error occurs, a RepositoryException is
thrown.

 227

7.3.7 Session Import Methods

The Session contains the following methods for importing and
exporting content:

javax.jcr.
Session

ContentHandler getImportContentHandler(String parentAbsPath,
 int uuidBehavior)

Returns an org.xml.sax.ContentHandler which can be
used to push SAX events into the repository. If the
incoming XML stream (in the form of SAX events) does
not appear to be a system view XML document then it is
interpreted as a document view XML document.

The incoming XML is deserialized into a subtree of items
immediately below the node at parentAbsPath.

This method simply returns the ContentHandler
without altering the state of the session; the actual
deserialization to the session transient space is done
through the methods of the ContentHandler. Invalid
XML data will cause the ContentHandler to throw a
SAXException.

As SAX events are fed into the ContentHandler, the
tree of new items is built in the transient storage of the
session. In order to persist the new content, save must
be called. The advantage of this through-the- session
method is that (depending on what constraint checks
the implementation leaves until save) structures that
violate node type constraints can be imported, fixed and
then saved. The disadvantage is that a large import will
result in a large cache of pending nodes in the session.
See Workspace.getImportContentHandler for a
version of this method that does not go through the
session.

The flag uuidBehavior governs how the UUIDs of
incoming (deserialized) nodes are handled. There are
four options (defined as constants in the interface
javax.jcr.ImportUUIDBehavior):

• IMPORT_UUID_CREATE_NEW: Incoming
referenceable nodes are added in the same way
that new node is added with Node.addNode. That
is, they are either assigned newly created UUIDs
upon addition or upon save (depending on the
implementation, see 4.9.1.1 When UUIDs are

 228

Assigned). In either case, UUID collisions will not
occur.

• IMPORT_UUID_COLLISION_REMOVE_EXISTING: If
an incoming referenceable node has the same
UUID as a node already existing in the
workspace then the already existing node (and
its subtree) is removed from wherever it may be
in the workspace before the incoming node is
added. Note that this can result in nodes
“disappearing” from locations in the workspace
that are remote from the location to which the
incoming subtree is being written. Both the
removal and the new addition will be persisted
on save.

• IMPORT_UUID_COLLISION_REPLACE_EXISTING: If
an incoming referenceable node has the same
UUID as a node already existing in the
workspace, then the already-existing node is
replaced by the incoming node in the same
position as the existing node. Note that this may
result in the incoming subtree being
disaggregated and “spread around” to different
locations in the workspace. In the most extreme
case this behavior may result in no node at all
being added as child of parentAbsPath. This will
occur if the topmost element of the incoming
XML has the same UUID as an existing node
elsewhere in the workspace. The change will be
persisted on save.

• IMPORT_UUID_COLLISION_THROW: If an incoming
referenceable node has the same UUID as a
node already existing in the workspace then a
SAXException is thrown by the ContentHandler
during deserialization.

Unlike Workspace.getImportContentHandler, this
method does not necessarily enforce all node type
constraints during deserialization. Those that would be
immediately enforced in a normal write method
(Node.addNode, Node.setProperty etc.) of this
implementation cause the returned ContentHandler to
throw an immediate SAXException during
deserialization. All other constraints are checked on
save, just as they are in normal write operations.
However, which node type constraints are enforced also
depends upon whether node type information in the
imported data is respected, and this is an
implementation-specific issue (see 7.3.3 Respecting

 229

Property Semantics).

A SAXException will also be thrown by the returned
ContentHandler during deserialization if uuidBehavior
is set to IMPORT_UUID_COLLISION_REMOVE_EXISTING
and an incoming node has the same UUID as the node
at parentAbsPath or one of its ancestors.

A PathNotFoundException is thrown either immediately
or on save if no node exists at parentAbsPath.
Implementations may differ on when this validation is
performed.

A ConstraintViolationException is thrown either
immediately or on save if the new subtree cannot be
added to the node at parentAbsPath due to node-type
or other implementation-specific constraints.
Implementations may differ on when this validation is
performed.

A VersionException is thrown either immediately or on
save if the node at parentAbsPath is versionable and
checked-in, or is non-versionable but its nearest
versionable ancestor is checked-in. Implementations
may differ on when this validation is performed.

A LockException is thrown either immediately or on
save if a lock prevents the addition of the subtree.
Implementations may differ on when this validation is
performed.

A RepositoryException is thrown if another error
occurs.

void importXML(String parentAbsPath,
 InputStream in,
 int uuidBehavior)

Deserializes an XML document and adds the resulting
item subtree as a child of the node at parentAbsPath.

If the incoming XML stream does not appear to be a
system view XML document then it is interpreted as a
document view XML document.

The tree of new items is built in the transient storage of
the Session. In order to persist the new content, save
must be called. The advantage of this through-the-
session method is that (depending on what constraint
checks the implementation leaves until save) structures
that violate node type constraints can be imported,
fixed and then saved. The disadvantage is that a large
import will result in a large cache of pending nodes in

 230

the session. See Workspace.importXML for a version
of this method that does not go through the Session.

The flag uuidBehavior governs how the UUIDs of
incoming (deserialized) nodes are handled. There are
four options (defined as constants in the interface
javax.jcr.ImportUUIDBehavior):

• IMPORT_UUID_CREATE_NEW: Incoming
referenceable nodes are added in the same way
that new node is added with Node.addNode. That
is, they are either assigned newly created UUIDs
upon addition or upon save (depending on the
implementation, see 4.9.1.1 When UUIDs are
Assigned). In either case, UUID collisions will not
occur.

• IMPORT_UUID_COLLISION_REMOVE_EXISTING: If
an incoming referenceable node has the same
UUID as a node already existing in the
workspace then the already existing node (and
its subtree) is removed from wherever it may be
in the workspace before the incoming node is
added. Note that this can result in nodes
“disappearing” from locations in the workspace
that are remote from the location to which the
incoming subtree is being written. Both the
removal and the new addition will be persisted
on save.

• IMPORT_UUID_COLLISION_REPLACE_EXISTING: If
an incoming referenceable node has the same
UUID as a node already existing in the
workspace, then the already-existing node is
replaced by the incoming node in the same
position as the existing node. Note that this may
result in the incoming subtree being
disaggregated and “spread around” to different
locations in the workspace. In the most extreme
case this behavior may result in no node at all
being added as child of parentAbsPath. This will
occur if the topmost element of the incoming
XML has the same UUID as an existing node
elsewhere in the workspace. The change will be
persisted on save.

• IMPORT_UUID_COLLISION_THROW: If an incoming
referenceable node has the same UUID as a
node already existing in the workspace then an
ItemExistsException is thrown.

 231

Unlike Workspace.importXML, this method does not
necessarily enforce all node type constraints during
deserialization. Those that would be immediately
enforced in a normal write method (Node.addNode,
Node.setProperty etc.) of this implementation cause
an immediate ConstraintViolationException during
deserialization. All other constraints are checked on
save, just as they are in normal write operations.
However, which node type constraints are enforced
depends upon whether node type information in the
imported data is respected, and this is an
implementation-specific issue (see 7.3.3 Respecting
Property Semantics).

A ConstraintViolationException will also be thrown
immediately if uuidBehavior is set to
IMPORT_UUID_COLLISION_REMOVE_EXISTING and an
incoming node has the same UUID as the node at
parentAbsPath or one of its ancestors.

A PathNotFoundException is thrown either immediately
or on save if no node exists at parentAbsPath.
Implementations may differ on when this validation is
performed.

A VersionException is thrown either immediately or on
save if the node at parentAbsPath is versionable and
checked-in, or is non-versionable but its nearest
versionable ancestor is checked-in. Implementations
may differ on when this validation is performed.

A LockException is thrown either immediately or on
save if a lock prevents the addition of the subtree.
Implementations may differ on when this validation is
performed.

A RepositoryException is thrown if another error
occurs.

7.3.8 Importing jcr:root

If the root node of a workspace is exported it will be rendered in
XML (in either view) under the name jcr:root (see 6.4 XML
Mappings). In addition, if the root node has a UUID (in many
implementations it will, see 4.9 Referenceable Nodes) this will also
be recorded in the serialization.

If this XML document is imported back into the workspace a
number of different results may occur, depending on the methods
and settings used to perform the import. The following summarizes
the possible results of using various uuidBehavior values (in either

 232

using either Workspace.getImportContentHandler or
Workspace.importXML) when a node with the same UUID as the
existing root node is encountered on import (the constants below
are defined in the interface javax.jcr.ImportUUIDBehavior).

IMPORT_UUID_CREATE_NEW: The XML element representing
jcr:root is rendered as a normal node at the position specified
(with the name jcr:root). It gets a new UUID, so there is no
effect on the existing root node of the workspace.

IMPORT_UUID_COLLISION_REMOVE_EXISTING: If deserialization is
done through a ContentHandler (acquired by
getImportContentHandler) a SAXException will be thrown.
Similarly, if deserialization is done through importXML a
ConstraintViolationException will be thrown. Note that this is
simply a special case of the general rule that under this
uuidBehavior setting, an exception will be thrown on any attempt
to import a node with the same UUID as the node at
parentAbsPath or any of its ancestors (which, of course, includes
the root node).

IMPORT_UUID_COLLISION_REPLACE_EXISTING: This setting is
equivalent to importing into the Session and then calling save
since save always operates according to UUID (plus relative path,
for non-referenceables). In both cases the result is that the root
node of the workspace will be replaced along with its subtree (i.e.,
the whole workspace), just as if the root node had been altered
through the normal getNode, change, save cycle.

IMPORT_UUID_COLLISION_THROW: Under this setting a
ContentHandler will throw a SAXException and the importXML
method will throw ItemExistsException.

Note that an implementation is always free to prevent the
replacement of a root node (or indeed any node) either through
access control restrictions or other implementation-specific
restrictions.

 233

7.4 Assigning Node Types

Level 2 compliant implementations must support the assignment of
primary and mixin node types to nodes upon creation and,
optionally, the assignment and removal of mixin node types from
existing nodes.

7.4.1 The Special Properties jcr:primaryType and jcr:mixinTypes

When a node is created, its jcr:primaryType property is
automatically created and set to the name of the assigned primary
node type. When a mixin type is assigned, its name is added to the
multi-valued jcr:mixinTypes property, which is created if it does
not yet exist.

7.4.2 Assigning a Primary Node Type

Assignment of a node type to a node on creation is done by
supplying the node type name alongside the new node's path in a
call to

Node.addNode(String relPath, String primaryNodeTypeName)

(see 7.1.4 Adding Nodes).

Alternatively, in many cases the application using the API will not
need to explicitly supply a node type since the very name of the
new child node will be enough to unambiguously determine its node
type by reference to one of the node definitions contained in the
node type of the parent node. In such cases,
Node.addNode(String relPath) will be sufficient.

Automatic determination of node types is only required to work if
the name of the node being added is explicitly named in a child
node definition of the parent node type (or one of that type's
supertypes; see 6.7.14 NodeDefinition). The implementation is not
required to take residual definitions into account (see 6.7.15
Residual Definitions).

If the node type of the new child node cannot be determined
automatically and no primary node type is explicitly specified, then
a ConstraintViolationException is thrown (see 7.1.4 Adding
Nodes).

7.4.3 Assigning Mixin Node Types

To assign a mixin type, the method
Node.addMixin(String mixinName) is used. The mixin type adds
additional child node or property definitions to a node (i.e., either
permitting or requiring additional child nodes or properties).

Conflicts with other mixin node types or with the primary node type
that are detected immediately will cause a
ConstraintViolationException to be thrown on the addMixin

 234

call. Conflicts detected upon save will cause a
ConstraintViolationException to be thrown at that time. Which
conflicts are detected at which stage may differ across
implementations.

Note that the orderable child nodes status of a mixin node type has
no effect, so it will never conflict with the orderable child nodes
status of the primary node type.

In some implementations it may be possible to add mixin types to a
node only before the first save of that node (in effect, at node
creation). Other implementations may support dynamic addition,
and possibly removal, of mixin node types during a node's lifetime.
The method Node.removeMixin is provided for those cases that
support dynamic removal. If an implementation does not support
dynamic addition or removal, the addMixin or removeMixin method
will throw a ConstraintViolationException.

javax.jcr.
Node

void addMixin(String mixinName)

Adds the specified mixin node type to this node. Also
adds mixinName to this node's jcr:mixinTypes property
immediately. Semantically, the mixin node type
assignment may take effect immediately and at the very
least, it must take effect on save.

A ConstraintViolationException is thrown either
immediately or on save if a conflict with another assigned
mixin or the primary node type or for an implementation-
specific reason. Implementations may differ on when this
validation is done.

In some implementations it may only be possible to add
mixin types before a node is first saved, and not after. In
such cases any later calls to addMixin will throw a
ConstraintViolationException either immediately or
on save.

If the specified mixin node type is not recognized a
NoSuchNodeTypeException is thrown either immediately
or on save. Implementations may differ on when this
validation is done.

A VersionException is thrown either immediately or on
save if this node is versionable and checked-in, or is
non-versionable but its nearest versionable ancestor is
checked-in. Implementations may differ on when this
validation is done.

A LockException is thrown either immediately or on save

 235

if a lock prevents the addition of the mixin.
Implementations may differ on when this validation is
done.

A RepositoryException will be thrown if another error
occurs.

void removeMixin(String mixinName)

Removes the specified mixin node type from this node.
Also removes mixinName from this node's
jcr:mixinTypes property immediately. Semantically, the
mixin node type removal may take effect immediately
and at the very least, it must take effect on save.

If this node does not have the specified mixin, a
NoSuchNodeTypeException is thrown either immediately
or on save. Implementations may differ on when this
validation is done.

A ConstraintViolationException will be thrown either
immediately or on save if the removal of a mixin is not
allowed. Implementations are free to enforce any policy
they like with regard to mixin removal and may differ on
when this validation is done.

A VersionException is thrown either immediately or on
save if this node is versionable and checked-in or is
non-versionable but its nearest versionable ancestor is
checked-in. Implementations may differ on when this
validation is done.

A LockException is thrown either immediately or on
save if a lock prevents the removal of the mixin.
Implementations may differ on when this validation is
done.

A RepositoryException will be thrown if another error
occurs.

boolean canAddMixin(String mixinName)

Returns true if the specified mixin node type, mixinName,
can be added to this node. Returns false otherwise. A
result of false must be returned in each of the following
cases:

• The mixin's definition conflicts with an existing
primary or mixin node type of this node.

• This node is versionable and checked-in or is non-
versionable and its nearest versionable ancestor is
checked-in.

 236

• This node is protected (as defined in this node's
NodeDefinition, found in the node type of this
node's parent).

• An access control restriction would prevent the
addition of the mixin.

• A lock would prevent the addition of the mixin.

• An implementation-specific restriction would
prevent the addition of the mixin.

A NoSuchNodeTypeException is thrown if the specified
mixin node type name is not recognized.

A RepositoryException will be thrown if another error
occurs.

7.4.4 Automatic Addition and Removal of Mixins

A repository may automatically assign a mixin type to a node upon
creation. For example if, as a matter of configuration, all nt:file
nodes in a repository are to be versionable, then the repository
may automatically assign the mixin type mix:versionable to each
such node as it is created.

Similarly, a repository may automatically strip incoming
deserialized nodes of any mixin node types that the repository does
not support (see 7.3.3 Respecting Property Semantics).

7.4.5 Serialization and Node Types

When deserializing content from another content repository, each
imported node will come with its attached jcr:primaryType and
jcr:mixinTypes properties. This information may be used while
deserializing to validate the node according to the specified node
types (and to do whatever internal bookkeeping the implementation
requires in terms of noting the node types of the incoming nodes).

Any node types referenced by the imported content that are not
skipped (see 7.3.3 Respecting Property Semantics) will have to
be already registered with the target repository. This implies that it
will be necessary to first import and register those node types
referenced by the content that are not already registered with the
target repository.

Though this specification does not attempt to define the details of
the process of importing node type definitions, the fact that node
type definitions may themselves be stored as normal content (see
6.7.22.10 nt:nodeType) means that the standard
serialization/deserialization mechanism can be used to export and
import their definitions (see 6.5 Exporting Repository Content and

 237

7.3 Importing Repository Content). Actually registering them is, as
mentioned, outside the scope of this specification (see 6.7.1 Node
Type Configuration).

 238

7.5 Thread-Safety Requirements

A content repository implementation is required to provide a
thread-safe implementation of all methods of
javax.jcr.Repository.

A content repository implementation is not required to provide
thread-safe implementations of other interfaces. As a consequence,
an application which concurrently or sequentially operates against
objects having affinity to a particular Session through more than
one thread must provide synchronization sufficient to ensure no
more than one thread concurrently operates against that Session
and changes made by one thread are visible to other threads.

 239

8 Optional Repository Features
This section provides an overview of optional features that may be
supported by a content repository implementation. These are:
Transactions, Versioning, Observation, Locking and SQL Search.
None of these features have any dependencies on each other or on
any level 2 feature, therefore any combination of these five may be
supported by either a level 1 or level 2 repository.

Like the sections above, this section is arranged into topics based
on functional categories. For an overview of the specification by
Java interface, please consult the accompanying Javadoc.

 240

8.1 Transactions

A compliant content repository may support transactions. If it does
so, it must adhere to the Java Transaction API (JTA) specification
(see http://java.sun.com/products/jta/index.html).

Whether a particular implementation supports transactions can be
determined by querying the repository descriptor table with
Repository.getDescriptor("OPTION_TRANSACTIONS_SUPPORTED")
(a return value of true indicates support for transactions, see
 6.1.1.1 Repository Descriptors).

The actual methods used to control transaction boundaries are not
defined by this specification (that is why there are no begin,
commit or rollback methods in this API). These methods are defined
by the JTA specification.

The JTA provides for two general approaches to transactions,
container managed transactions and user managed transactions. In
the first case, container managed transactions, the transaction
management is taken care of by the application server and it is
entirely transparent to the application using the API. The JTA
interfaces javax.transaction.TransactionManager and
javax.transaction.Transaction are the relevant ones in this
context (though the client, as mentioned, will never have a need to
use these).

In the second case, user managed transactions, the application
using the API may choose to control transaction boundaries from
within the application. In this case the relevant interface is
javax.transaction.UserTransaction. This is the interface that
provides the methods begin, commit, rollback and so forth. Note
that behind the scenes the
javax.transaction.TransactionManager and
javax.transaction.Transaction are still employed, but again,
the client does not deal with these.

A content repository implementation must support both of these
approaches.

 241

8.1.1 Container Managed Transactions: Sample Request Flow

8.1.2 User Managed Transactions: Sample Code

// Get user transaction (for example, through JNDI)
UserTransaction utx = ...

// Get a node
Node n = ...

// Start a user transaction
utx.begin();

// Do some work
n.setProperty("myapp:title", "A Tale of Two Cities")
n.save();

Transactional
Application

Application
Server

Transaction
Manager

XARepository XASession XAResource

begin

getSession

login

new

new

getXAResource

enlistResource

start

application performs operations

logout

delistResource

end

commit

prepare

commit

 242

// Do some more work
n.setProperty("myapp:author", "Charles Dickens")
n.save();

// Commit the user transaction
utx.commit();

8.1.3 Save vs. Commit

Throughout this specification we often mention the distinction
between transient and persistent levels. The persistent level refers
to the (one or more) workspaces that make up the actual content
storage of the repository. The transient level refers to in-memory
storage associated with a particular Session object.

In these discussions we usually assume that operations occur
outside the context of transactions; it is assumed that save and
other workspace-altering methods immediately effect changes to
the persistent layer, causing those changes to be made visible to
other sessions.

This is not the case, however, once transactions are introduced.
Within a transaction, changes made by save (or other, workspace-
direct, methods) are transactionalized and are only persisted and
published (made visible to other sessions), upon commit of the
transaction. A rollback will, conversely, revert the effects of any
saves or workspace-direct methods called within the transaction.

Note, however, that changes made in the transient storage are not
recorded by a transaction. This means that a rollback will not revert
changes made to the transient storage of the Session. After a
rollback the Session object state will still contain any pending
changes that were present before the rollback.

8.1.4 Single Session Across Multiple Transactions

Because modifications in the transient layer are not
transactionalized, the possibility exists for some implementations to
allow a Session to be shared across transactions. This possibility
arises because in JTA, an XAResource may be successively
associated with different global transactions and in many
implementations the natural mapping will be to make the Session
implement the XAResource. The following code snippet illustrates
how an XAResource may be shared across two global transactions:

// Associate the resource (our Session) with a global
// transaction xid1
res.start(xid1, TMNOFLAGS);

// Do something with res, on behalf of xid1
// ...

// Suspend work on this transaction
res.end(xid1, TMSUSPEND);

 243

// Associate (the same!) resource with another
// global transaction xid2
res.start(xid2, TMNOFLAGS);

// Do something with res, on behalf of xid2
// ...

// End work
res.end(xid2, TMSUCCESS);

// Resume work with former transaction
res.start(xid1, TMRESUME);

// Commit work recorded when associated with xid2
res.commit(xid2, true);

In cases where the XAResource corresponds to a Session (that is,
probably most implementations), items that have been obtained in
the context of xid1 would still be valid when the Session is
effectively associated with xid2. In other words, all transactions
working on the same Session would share the transient items
obtained through that Session.

In those implementations that adopt a copy-on-read approach to
transient storage (see 7.1.3.4 Seeing Changes Made by Other
Sessions) this will mean that the transient layer reflects an
unchanged item's state in the transaction
context in which the item was acquired. As soon as an item is
refreshed or changed, the session will then reflect the state of that
item in the transaction context within which that refresh or change
took place.

Some implementers may choose to circumvent any problems with
shared transient items by undoing changes inside the transient
layer when a session is disassociated from a global transaction. This
is however, outside the scope of this specification.

8.1.5 Mention of Transactions within this Specification

In order to avoid the awkwardness of qualifying every statement
about save with the phrase “unless the operation occurs within a
transaction” we simply assume the absence of transactions
throughout most of the specification and note the qualification here.

 244

8.2 Versioning

A compliant content repository may support versioning. This feature
allows the state of a node to be recorded in such a way that it can
later be restored. The versioning system is modelled after the
Workspace Versioning and Configuration Management (WVCM) API
defined by JSR 147.

Whether a particular implementation supports versioning can be
determined by querying the repository descriptor table with
Repository.getDescriptor("OPTION_VERSIONING_SUPPORTED") (a
return value of true indicates support for versioning, see 6.1.1.1
Repository Descriptors).

A versioning repository has, in addition to one or more workspaces,
a special version storage area. The version storage consists of
version histories. Versionable nodes in different workspaces share
the same version history if and only if they have the same UUID
(see 4.10.2 Multiple Workspaces and Corresponding Nodes).

A version history is a collection of versions connected to one
another by the successor relationship. A new version is added to
the version history of a versionable node when one of its workspace
instances is checked-in. Every new version is attached to the
version history as the successor of one (or more) of the existing
versions. The result is that a version history is a directed acyclic
graph of versions, where the arcs in the graph represent the
successor relation.

The version storage objects are themselves defined as nodes.
Though there is only one version storage per repository, the version
storage data is reflected in each workspace as a special, protected,
sub-tree of nodes of types nt:versionHistory and nt:version
(see 8.2.2 Version Storage).

When a versionable node is checked-in (using Node.checkin) a
new version is created in the version history of that node. The
versionable node is also set to be read-only. In order to alter it with
a regular write method, it must be checked-out (using
Node.checkout). A versionable node can also be restored to the
state recorded in one of its versions using Node.restore.

8.2.1 Versionable Nodes

To be versionable, a node must have mix:versionable as one of
its mixin node types. Recall from 6.7.21.3 mix:versionable, that
this node type has the following definition:

NodeTypeName
 mix:versionable
Supertypes
 mix:referenceable
IsMixin
 true

 245

HasOrderableChildNodes
 false
PrimaryItemName
 null
PropertyDefinition
 Name jcr:versionHistory
 RequiredType REFERENCE
 ValueConstraints ["nt:versionHistory"]
 DefaultValues null
 AutoCreated false
 Mandatory true
 OnParentVersion COPY
 Protected true
 Multiple false
PropertyDefinition
 Name jcr:baseVersion
 RequiredType REFERENCE
 ValueConstraints ["nt:version"]
 DefaultValues null
 AutoCreated false
 Mandatory true
 OnParentVersion IGNORE
 Protected true
 Multiple false
PropertyDefinition
 Name jcr:isCheckedOut
 RequiredType BOOLEAN
 ValueConstraints []
 DefaultValues [true]
 AutoCreated true
 Mandatory true
 OnParentVersion IGNORE
 Protected true
 Multiple false
PropertyDefinition
 Name jcr:predecessors
 RequiredType REFERENCE
 ValueConstraints ["nt:version"]
 DefaultValues null
 AutoCreated false
 Mandatory true
 OnParentVersion COPY
 Protected true
 Multiple true
PropertyDefinition
 Name jcr:mergeFailed
 RequiredType REFERENCE
 ValueConstraints ["nt:version"]
 DefaultValues null
 AutoCreated false
 Mandatory false
 OnParentVersion ABORT
 Protected true
 Multiple true

As the definition indicates, mix:versionable is a subtype of
mix:referenceable which mandates the property jcr:uuid,
exposing a universally unique identifier for the node (see 6.7.21.2,
mix:referenceable). The result is that all versionable nodes are
guaranteed to have a UUID.

 246

In addition to this inherited property, a mix:versionable node has
the properties jcr:versionHistory, jcr:baseVersion,
jcr:isCheckedOut, jcr:predecessors and jcr:mergeFailed.

jcr:versionHistory is a REFERENCE property which points to the
nt:versionHistory node that holds as its children the nt:version
nodes that make up this versionable node’s version history. Note
that the UUID of the nt:versionHistory node is different from the
UUID shared by the set of corresponding versionable nodes (at
most one per workspace) that it serves.

jcr:baseVersion is also a REFERENCE property. It points to the
current base version of this node. The base version is one of the
nt:version nodes within the version history pointed to by
jcr:versionHistory, above. The base version (like all versions) is
an nt:version node, and this property stores the UUID of that
node. Again, the UUID of the version node is different from that
shared by the set of corresponding versionable nodes in the
workspaces, and from all other version nodes.

jcr:isCheckedOut is a BOOLEAN property that records whether this
versionable node is checked-out or checked-in. When a versionable
node is in the checked-in state, it is read-only, and cannot be
altered by the regular write methods of the API. Note that this
status is distinct from the node type-enforced protected status.
When a versionable node is checked-out it can (if it is not
protected) be altered by the API write methods. The checked-out
status provides an indicator to other sessions on the same
workspace telling them when a particular versionable node is “being
worked on”. The read-only status enforced when a versionable node
is checked-in propagates to all its non-versionable descendants.
When a versionable node is checked in, it and its non-versionable
subtree become read-only; when it is checked-out, it and its non-
versionable subtree lose their read-only status.

jcr:predecessors is a multi-value REFERENCE property that points
to one or more versions within the version graph of the version
history pointed by jcr:versionHistory. These versions are those
that are currently scheduled to become the predecessors of this
versionable node when it is checked-in (and recorded in a version
of its own).

jcr:mergeFailed is a multi-value REFERENCE property that is used
in the context of the merge method. A merge compares the base
version of this versionable node with the base version of its
corresponding node in some other workspace. If the system can
determine which base version is a successor of the other, then it
either leaves this versionable node alone (if this node's base
version is the successor of the other node's base version) or
updates it to reflect the corresponding node (if the corresponding
node's base version is a successor of this node's base version). In

 247

cases where the system cannot determine which node is the
successor, the merge is said to “fail”. When that happens, a
reference to the base version of the corresponding node in the
other workspace is added to this node's jcr:mergeFailed
property, thus keeping a record of which nodes could not be
merged, and therefore allowing the application to deal with these
nodes appropriately. See 8.2.10 Merge, for more details.

All of these properties that store the versioning-related meta-data
are protected (though of course the versionable node itself, and its
other application-specific subitems may or may not be protected).
This guarantees that the client cannot alter the meta-data values;
they are maintained by the repository implementation itself.

8.2.2 Version Storage

A version history consists of a single nt:versionHistory node with
a set of immediate child nodes all of type nt:version, representing
all the versions within that version history.

An nt:versionHistory has at least one child, the nt:version node
representing the root version. From the root version the version
graph proceeds through a network of REFERENCE properties linking
any additional child nt:version nodes into a version graph defining
the successor relations among the versions. The version graph
within any given version history must include all and only the
children of that version history’s nt:versionHistory node. The
following diagram illustrates a single version history:

VH

Vroot VA VB VC

 248

The solid arrows represent parent node to child node relations while
the dotted arrows represent the successor relations between
versions, implemented through REFERENCE properties.

Here we see an nt:versionHistory node, VH with child
nt:version nodes Vroot VA VB and VC. The version graph begins at
Vroot, which has successors VA and VB, both of which, in turn, have
VC as their respective successor.

8.2.2.1 jcr:versionStorage

The full set of version histories in the version storage, though
stored in a single location in the repository, must be reflected in
each workspace as a subtree below the node
/jcr:system/jcr:versionStorage. This subtree must be read-
only. That is, applications cannot alter this subtree through
standard write methods; though the implementation can, of course,
alter it as a side-effect of the application calling version-related
methods.

The read-only status of this subtree should be enforced by the
implementation as a matter of access control. As a result, the
protected status of parts of this subtree (enforced as a matter of
node type constraints) is not relevant since, in effect, the entire
subtree is protected.

Though the general repository-wide version history is reflected in
each workspace, the access that a particular Session gets to that
subtree is governed by that Session's authorization (which is
determined either by the Session's Credentials or an external
authorization mechanism), just as it is for any other part of the
workspace.

All nt:versionHistory nodes are found under
/jcr:system/jcr:versionStorage, though there may be a
structure of intervening subnodes that sort the version histories by
some implementation-specific criteria.

The node type of the node jcr:versionStorage is left up to the
implementation.

8.2.2.2 Searching and Traversing Version Storage

Exposing the version storage as content in the workspace allows
the stored versions and their associated version meta-data to be
searched or traversed just like any other part of the workspace.

This allows, for example, an application to search for a particular
version according to the value of its properties. In a repository that
supports SQL queries, the following query would return all versions
where productName is “Car” and price is greater than 30,000:

 249

SELECT *
FROM nt:version
WHERE productName = 'Car'
 AND price > 30000
 AND jcr:path LIKE
 '/jcr:system/jcr:versionStorage/%'

When an nt:versionHistory or nt:version node is acquired
through a query or directly through a getNode, the actual Java type
of the returned object must be VersionHistory (in the case
nt:versionHistory nodes) or Version (in the case of nt:version
nodes). This allows the application to then cast the returned object
down to either Version or VersionHistory and then use it in
methods that take those types, for example
Node.restore(Version version, boolean removeExisting).

8.2.2.3 nt:versionHistory

The nt:versionHistory node type has the following definition
(repeated from 6.7.22.13 nt:versionHistory):

NodeTypeName
 nt:versionHistory
Supertypes
 nt:base
 mix:referenceable
IsMixin
 false
HasOrderableChildNodes
 false
PrimaryItemName
 null
PropertyDefinition
 Name jcr:versionableUuid
 RequiredType STRING
 ValueConstraints []
 DefaultValues null
 AutoCreated true
 Mandatory true
 OnParentVersion ABORT
 Protected true
 Multiple false
ChildNodeDefinition
 Name jcr:rootVersion
 RequiredPrimaryTypes [nt:version]
 DefaultPrimaryType nt:version
 AutoCreated true
 Mandatory true
 OnParentVersion ABORT
 Protected true
 SameNameSiblings false
ChildNodeDefinition
 Name jcr:versionLabels
 RequiredPrimaryTypes [nt:versionLabels]
 DefaultPrimaryType nt:versionLabels
 AutoCreated true
 Mandatory true
 OnParentVersion ABORT

 250

 Protected true
 SameNameSiblings false
ChildNodeDefinition
 Name *
 RequiredPrimaryTypes [nt:version]
 DefaultPrimaryType nt:version
 AutoCreated false
 Mandatory false
 OnParentVersion ABORT
 Protected true
 SameNameSiblings false

nt:versionHistory, like all node types, is a subtype of nt:base,
so it inherits the jcr:primaryType and jcr:mixinTypes properties.

Additionally, all nt:versionHistory nodes must also have mixin
type mix:referenceable, which means that they have the property
jcr:uuid.

This node type defines a STRING property called
jcr:versionableUuid that stores the UUID of the versionable node
whose version history this is.

This node type also mandates a single auto-created subnode called
jcr:rootVersion. This is a version that serves as the starting point
for the version graph; it does not hold any state information (see
8.2.4, Initializing the Version History, below).

Every nt:versionHistory node also has an auto-created child
node called jcr:versionLabels of node type nt:versionLabels.
This node holds a set of reference properties that record all labels
that have been assigned to the versions within this version history.
Each label is represented by a single reference property which uses
the label itself as its name and which refers to that version within
this version history to which the label applies.

All additional versions are added as needed by the versioning
system as nt:version child nodes. These children are defined by
the second ChildNodeDefinition, with name attribute of "*" (i.e.,
making this a residual definition, see 6.7.15, Residual Definitions,
above). The names of the nt:version nodes are left up to the
implementation.

8.2.2.4 nt:versionLabels

The nt:versionLabels node type has the following definition
(repeated from 6.7.22.14 nt:versionLabels):

NodeTypeName
 nt:versionLabels
Supertypes
 nt:base
IsMixin
 false
HasOrderableChildNodes

 251

 false
PrimaryItemName
 null
PropertyDefinition
 Name *
 RequiredType REFERENCE
 ValueConstraints ["nt:version"]
 DefaultValues null
 AutoCreated false
 Mandatory false
 OnParentVersion ABORT
 Protected true
 Multiple false

8.2.2.5 nt:version

The nt:version node type has the following definition (repeated
from 6.7.22.15 nt:version):

NodeTypeName
 nt:version
Supertypes
 nt:base
 mix:referenceable
IsMixin
 false
HasOrderableChildNodes
 false
PrimaryItemName
 null
PropertyDefinition
 Name jcr:created
 RequiredType DATE
 ValueConstraints []
 DefaultValues null
 AutoCreated true
 Mandatory true
 OnParentVersion ABORT
 Protected true
 Multiple false
PropertyDefinition
 Name jcr:predecessors
 RequiredType REFERENCE
 ValueConstraints ["nt:version"]
 DefaultValues null
 AutoCreated false
 Mandatory false
 OnParentVersion ABORT
 Protected true
 Multiple true
PropertyDefinition
 Name jcr:successors
 RequiredType REFERENCE
 ValueConstraints ["nt:version"]
 DefaultValues null
 AutoCreated false
 Mandatory false
 OnParentVersion ABORT
 Protected true
 Multiple true
ChildNodeDefinition

 252

 Name jcr:frozenNode
 RequiredPrimaryTypes [nt:frozenNode]
 DefaultPrimaryType null
 AutoCreated false
 Mandatory false
 OnParentVersion ABORT
 Protected true
 SameNameSiblings false

nt:version is a subtype of nt:base, so it has the properties
jcr:primaryType and jcr:mixinTypes.

In addition, each nt:version node inherits the mixin type
mix:referenceable, providing it with a jcr:uuid property.

Additionally it has:

• jcr:created: This property records the date and time that
the version was created.

• jcr:predecessors: A multi-value REFERENCE property that
points to the immediate predecessors of this version in the
version history.

• jcr:successors: A multi-value REFERENCE property that
points to the immediate successors of this version in the
version history.

These properties store the meta-data that is needed by the
repository to manage the version. In addition to these properties,
of course, the version entity must also store the actual state of the
node that was versioned to produce it. This is done by storing a
“frozen” copy of the versionable node in the form of a special child
node of the version node, called jcr:frozenNode:

• jcr:frozenNode: A child node of type nt:frozenNode which
holds the actual state of the versionable node at the time
that this version was created.

8.2.2.6 nt:frozenNode

The nt:frozenNode node type has the following definition
(repeated from 6.7.22.16 nt:frozenNode):

NodeTypeName
 nt:frozenNode
Supertypes
 nt:base
 mix:referenceable
IsMixin
 false
HasOrderableChildNodes
 true
PrimaryItemName
 null
PropertyDefinition
 Name jcr:frozenPrimaryType

 253

 RequiredType NAME
 ValueConstraints []
 DefaultValues null
 AutoCreated true
 Mandatory true
 OnParentVersion ABORT
 Protected true
 Multiple false
PropertyDefinition
 Name jcr:frozenMixinTypes
 RequiredType NAME
 ValueConstraints []
 DefaultValues null
 AutoCreated false
 Mandatory false
 OnParentVersion ABORT
 Protected true
 Multiple true
PropertyDefinition
 Name jcr:frozenUuid
 RequiredType STRING
 ValueConstraints []
 DefaultValues null
 AutoCreated true
 Mandatory true
 OnParentVersion ABORT
 Protected true
 Multiple false
PropertyDefinition
 Name *
 RequiredType UNDEFINED
 ValueConstraints []
 DefaultValues null
 AutoCreated false
 Mandatory false
 OnParentVersion ABORT
 Protected true
 Multiple false
PropertyDefinition
 Name *
 RequiredType UNDEFINED
 ValueConstraints []
 DefaultValues null
 AutoCreated false
 Mandatory false
 OnParentVersion ABORT
 Protected true
 Multiple true
ChildNodeDefinition
 Name *
 RequiredPrimaryTypes [nt:base]
 DefaultPrimaryType null
 AutoCreated false
 Mandatory false
 OnParentVersion ABORT
 Protected true
 SameNameSiblings true

The properties and child nodes of the versioned node (call it N) are
dealt with according to their respective OnParentVersion attribute,

 254

as defined in the node type of N. Those child nodes and properties
of N with OnParentVersion=COPY are copied to jcr:frozenNode.
The residual property and child node definitions in nt:frozenNode
provide the “space” into which these copies are placed.

Those child nodes and properties of N with
OnParentVersion=IGNORE are not copied.

Those versionable child nodes of N (i.e., children of N that are
themselves also versionable) with OnParentVersion=VERSION are
dealt with in a special way: a node with the same name as the child
node but of type nt:versionedChild is placed as a child of
jcr:frozenNode. This special node is not a copy of the child node
of N but instead holds a single reference property (called
jcr:childVersionHistory) that points to the version history of
the child of N. The OnParentVersion mechanism has other options
as well, for a full discussion, see 8.2.11 The OnParentVersion
Attribute.

Among the properties of N that are copied over to jcr:frozenNode,
a special exception must be made for jcr:primaryType,
jcr:mixinTypes and jcr:uuid. These properties cannot be copied
to their corresponding jcr:frozenNode node without conflicting
with that node’s existing properties of the same name (recall for
example, that jcr:frozenNode is of type nt:frozenNode, and so
its jcr:primaryType property will, of course, hold the value
“nt:frozenNode”, not the node type of N). To address this problem,
the copies are renamed jcr:frozenPrimaryType,
jcr:frozenMixinTypes, and jcr:frozenUuid, respectively.

8.2.2.7 nt:versionedChild

The nt:versionedChild node type has the following definition
(repeated from 6.7.22.17 nt:frozenNode):

NodeTypeName
 nt:versionedChild
Supertypes
 nt:base
IsMixin
 false
HasOrderableChildNodes
 false
PrimaryItemName
 null
PropertyDefinition
 Name jcr:childVersionHistory
 RequiredType REFERENCE
 ValueConstraints ["nt:versionHistory"]
 DefaultValues null
 AutoCreated true
 Mandatory true
 OnParentVersion ABORT
 Protected true
 Multiple false

 255

8.2.2.8 Version Graph

The structure of the version graph is based on the following
principles:

• A version graph consists of one or more versions.

• A version graph has exactly one root version.

• The root version does not have a predecessor version.

• All other versions (apart from the root version) have one or
more predecessors (merges are allowed).

• Each version may have one or more successors (branches
are allowed).

• A version cannot be one of its own successors or
predecessors. The version graph is a directed acyclic graph.

8.2.2.9 Reference Properties within a Version

When a REFERENCE property is stored as part of the frozen state of
a version, the referential integrity requirement is lifted. For
example, given the following situation:

• Nodes A and B in a workspace WS (i.e., in the workspace
proper, not in the protected version storage subtree)

• A is (at least) versionable.

• B is (at least) referenceable.

• A has REFERENCE property P.

• P has an OnParentVersion setting of COPY.

• P holds a reference to B. B has no other references pointing
to it.

Assuming that A is checked in.

When A is checked in, P will be recorded as part of the frozen state
of the newly created version A' by being copied to version storage
as a property P' of A'.

At this point B cannot be removed from the workspace because it
has a reference (P) pointing to it. However, if P is removed from A,
then B can be removed. Because referential integrity is not enforced
for frozen reference properties in version storage, the reference
from P' will not prevent the removal of B. This is despite the fact
that P' does appear in the same workspace as B (though only in
the special version storage subtree at
/jcr:system/jcr:versionStorage). Note that this also means
that a call to getReferences on B will not return P'.

 256

8.2.2.10 Removal of Versions

In some implementations it may be possible to remove versions
from within a version history using
VersionHistory.removeVersion. In such cases the version graph
must be automatically repaired so that each successor of the
removed version becomes a successor of every predecessor of the
removed version. Note that allowing remove in this context would
not constitute an exception to the requirement that the version
storage be protected, since protected status applies to standard
write methods (e.g. like Node.addNode) and not version-specific
methods (like Node.checkin) that alter the version history as a
side-effect.

8.2.3 The Base Version

For a given version history, every versionable node that shares that
version history (there being at most one such node per workspace)
contains a reference to its particular base version within the version
history. Among any set of nodes with a common version history,
each node may identify a different version as its base version. The
base version of a particular node N is the one that will serve as the
default immediate predecessor of the next version of N that is
created.

8.2.4 Initializing the Version History

When a new versionable node is created, a new version history is
created for it. At first, the version history consists of only the
nt:versionHistory node and its single child, the nt:version node
representing the root version, which will serve as the starting point,
from which the version graph of successors will proceed. The root
version does not store any state information; it serves only to make
the semantics of subsequent operations consistent. Initially, the
root version also serves as the base version for the new versionable
node.

In terms of actual nodes and properties being created or changed,
here is what happens when a new mix:versionable node N is
created in workspace W1:

• N is created by the call M.addNode("N") where M is some
suitable parent node for N.

• Before being saved, N is made versionable by the call
N.addMixin("mix:versionable"). In some
implementations, dynamic assignments of mixins may be
supported, thus allowing a node to be rendered versionable
at any time in its lifecycle, not just upon creation. See 7.4.3
Assigning Mixin Node Types.

 257

• On save of N, a new version history is automatically created
for N. This means that the repository automatically creates
a new node of type nt:versionHistory (call it VH). VH
automatically gets a child node of type nt:version called
jcr:rootVersion (call it V0).

• V0 is the root version of VH. It is a dummy version that
serves as the starting point of the version graph. Like all
version nodes, it has a subnode called jcr:frozenNode.
But, in this case that frozen node does not contain any
state information about N (other than the node type and
UUID information found in the properties
jcr:frozenPrimaryType, jcr:frozenMixinTypes, and
jcr:frozenUuid).

• The REFERENCE property jcr:versionHistory of N is
initialized to the UUID of VH. This constitutes a reference
from N to its version history.

• The REFERENCE property jcr:baseVersion of N is initialized
to the UUID of V0. This constitutes a reference from N to its
current base version.

• The multi-value REFERENCE property jcr:predecessors of
N is initialized to contain a single UUID, that of V0 (the same
as jcr:baseVersion).

• The BOOLEAN property jcr:isCheckedOut is set to true.

8.2.5 Check In

To create a new version of a versionable node N, the application
calls N.checkin. If N is already checked-in, this method has no
effect but simply returns the current base version of this node. If N
is not versionable then a
UnsupportedRepositoryOperationException is thrown.
Otherwise, the following preconditions must hold:

• N must not have any unsaved changes pending, otherwise
an InvalidItemStateException is thrown.

• N's jcr:mergeFailed (multi-value) property must not be
present, otherwise a VersionException is thrown (notice
that this is enforced in any case due to the ABORT setting of
the jcr:mergeFailed property's OnParentVersion
attribute).

Given these preconditions, N.checkin will cause the following
series of events:

• A new nt:version node V is created and added as a child
node to VH, the nt:versionHistory pointed to by N’s
jcr:versionHistory property.

 258

• N’s current jcr:predecessors property is copied to V, and
N's jcr:predecessors property is then set to the empty
array (it is a multi-value property, therefore it can be set to
empty). Note that N's jcr:predecessors property also
forms part of the frozen state of N (because it has an
OnParentVersion attribute of COPY) and therefore will also
be copied to V/jcr:frozenNode.

• A reference to V is added to the jcr:successors property of
each of the versions identified in V’s jcr:predecessors
property.

• N’s jcr:baseVersion property is set to refer to V.

• N’s jcr:isCheckedOut property is set to false.

• The state of N is recorded in the form of the
jcr:frozenNode child of V. The extent of the state stored
(i.e. exactly which child items are included and which
ignored, etc.) will typically be partial, as prescribed by the
OnParentVersion attribute of each of N’s child items. See
8.2.11 OnParentVersion Attribute, for the details. The
jcr:primaryType, jcr:mixinTypes and jcr:uuid
properties of N are copied over to the child jcr:frozenNode
of V but renamed to jcr:frozenPrimaryType,
jcr:frozenMixinTypes and jcr:frozenUuid to avoid
conflict with jcr:frozenNode's own properties with these
names.

• V is given a automatically generated name. How this is done
is implementation specific.

• The node N and its connected non-versionable subtree
become read-only. N's connected non-versionable subtree is
the set of non-versionable descendant nodes reachable from
N through child links without encountering any versionable
nodes. In other words, the read-only status flows down from
the checked-in node along every child link until either a
versionable node is encountered or an item with no children
is encountered.

• Read-only status means that an item cannot be altered by
the client using standard API methods (addNode,
setProperty, etc.). The only exceptions to this rule are the
restore11, Node.merge and Node.update operations; these
do not respect read-only status due to check-in. Note that
remove of a read-only node is possible, as long as its parent

11 Workspace.restore, Node.restore (all signatures) and
Node.restoreByLabel.

 259

is not read-only (since removal is an alteration of the parent
node).

This method acts directly on the workspace and the version
storage. All changes are persisted immediately. There is no need to
call save.

8.2.6 Check Out

In order to alter a versionable node (and its non-versionable
subtree) the node must be checked-out. The checked-out state
indicates to the repository and other clients that the current base
version (the one pointed to be jcr:baseVersion) of N is “being
worked on” and will (usually) be checked-in again at some point in
the future, thus creating a new version. When a versionable node is
first created (or an existing node is first made versionable, in those
implementations that allow that) it will already be in the checked-
out state (its jcr:checkedOut property is set to true).

To check-out a versionable node N, the client calls N.checkout. If
the node is already checked out, this method has no effect. If N is
not versionable then an
UnsupportedRepositoryOperationException is thrown.
Otherwise, a N.checkout will cause the following series of events:

• The current value of N's jcr:baseVersion is copied to N's
jcr:predecessors property.

• N’s jcr:isCheckedOut property is set to true.

• N and N's connected non-versionable subtree lose their read-
only status (see 8.2.5 Check In, for an explanation of the
term “connected non-versionable subtree”).

This method acts directly on the workspace and the version
storage. All changes are persisted immediately. There is no need to
call save.

8.2.7 Restoring a Version

To restore a node N to the state recorded by its version with version
name “x.y”, the application calls N.restore("x.y",
removeExisting)12. Assuming that the version node representing
the version named “x.y” is node V, then the following will occur:

• The child node and properties of N will be changed, removed
or added to, depending on their corresponding copies in V
and their own OnParentVersion attributes (see 8.2.11

12 There is also a variant, Node.restoreByLabel, which allows the
version to be selected by (one of) its jcr:versionLabel value;
otherwise, the semantics are the same.

 260

OnParentVersion Attribute, for details). The second
parameter of Node.restore is the removeExisting flag
which governs what happens if nodes that are being
introduced into the subtree of N as a result of the restore
have the same UUID as existing node is in the workspace
outside the subtree of N (see 8.2.14.1 Node Versioning
Methods).

• N’s jcr:baseVersion property will be changed to point to V.

• N’s jcr:isCheckedOut property is set to false.

Unlike most other operations that alter the state of a node, restore
works regardless of whether the node in question is checked-out or
checked-in.

8.2.8 Restoring a Group of Versions

In certain circumstances a “chicken and egg” problem may arise
due to a cycle of REFERENCE properties when attempting to restore
a node that has been removed.

For example, let us say that there is a node /A with child nodes
/A/B and /A/C. Furthermore let there be REFERENCE properties
/A/B/X /A/C/Y such that X refers to /A/C and Y refers to /A/B.
Now assume that A, B and C are first checked-in (thus creating
versions of all three nodes) and then B and C are deleted from the
workspace.

In order to restore B or C the other must be restored first, since the
reference properties X and Y both require the existence of the node
to which they refer. This is the “chicken and egg” problem.

To deal with such situations the method

Workspace.restore(Version[] versions,
 boolean removeExisting)

is provided. This method allows the client to simultaneously restore
two or more versions. In this case the client must first find the
Version objects (call them Va, Vb and Vc) that correspond to the
versions of A, B and C that are to be restored and calling

ws.restore(new Version[]{Va, Vb, Vc}, removeExisting)

Notice that in order to restore B and C, the previous version of A
must also be restored because its state contains the child links to B
and C.

The removeExisting flag governs what happens in cases of UUID
collision.

See 8.2.14.2 Workspace Versioning Methods, for more information.

 261

8.2.9 Update

The method Node.update(String srcWorkspace) works in the
same way as it does in repositories without versioning: it replaces
this node and its subtree with a clone of the its corresponding
node and its subtree in srcWorkspace. Unlike most other methods
that change the state of a node, update will work if the node in
question is read-only due to a checked-in node. See also, 7.1.8
Updating and Cloning Nodes across Workspaces.

8.2.10 Merge

The method Node.merge can be thought of as a version-sensitive
Node.update. It works as follows:

The merge method can be called on a versionable or non-
versionable node.

Like update, merge does not respect the checked-in status of
nodes. A merge may change a node even if it is currently checked-
in.

If this node (the one on which merge is called) does not have a
corresponding node in the indicated workspace, then the merge
method returns quietly and no changes are made.

If this node does have a corresponding node, then the following
happens:

• For each versionable node N in the subtree rooted at this
node, a merge test is performed comparing N with its
corresponding node in srcWorkspace, N'.

• The merge test is done by comparing the base version of N
(call it V) and the base version of N' (call it V').

• For any versionable node N there are three possible
outcomes of the merge test: update, leave or failed.

• If N does not have a corresponding node then the merge
result for N is leave.

• If N is currently checked-in then:

o If V' is a successor (to any degree) of V, then the
merge result for N is update.

o If V' is a predecessor (to any degree) of V or if V and
V' are identical (i.e., are actually the same version),
then the merge result for N is leave.

o If V is neither a successor of, predecessor of, nor
identical with V', then the merge result for N is failed.
This is the case where N and N' represent divergent

 262

branches of the version graph, thus determining the
result of a merge is non-trivial.

• If N is currently checked-out then:

o If V' is a predecessor (to any degree) of V or if V and
V' are identical (i.e., are actually the same version),
then the merge result for N is leave.

o If any other relationship holds between V and V',
then the merge result for N is fail.

• If bestEffort is false then the first time a merge result of
fail occurs, the entire merge operation on this subtree is
aborted, no changes are made to the subtree and a
MergeException is thrown. If no merge result of fail occurs
then:

o Each versionable node N with result update is
updated to reflect the state of N'. The state of a node
in this context refers to its set of properties and child
node links.

o Each versionable node N with result leave is left
unchanged, unless N is the child of a node with status
update and N does not have a corresponding node in
srcWorkspace, in which case it is removed.

• If bestEffort is true then:

o Each versionable node N with result update is
updated to reflect the state of N'. The state of a node
in this context refers to its set of properties and child
node links.

o Each versionable node N with result leave is left
unchanged, unless N is the child of a node with status
update and N does not have a corresponding node in
srcWorkspace, in which case it is removed.

o Each versionable node N with result failed is left
unchanged except that the UUID of V' (which is, in
some sense, the “offending” version; the one that
caused the merge to fail on that N) is added to the
multi-value REFERENCE property jcr:mergeFailed of
N. If the UUID of V' is already in jcr:mergeFailed, it
is not added again. The jcr:mergeFailed property
never contains repeated references to the same
version. If the jcr:mergeFailed property does not
yet exist then it is created. If present, the
jcr:mergeFailed property will always contain at
least one value. If not present on a node, this
indicates that no merge failure has occurred on that

 263

node. Note that the presence of this property on a
node will in any case prevent it from being checked-
in because the OnParentVersion setting of
jcr:mergeFailed is ABORT.

o This property can later be used by the application to
find those nodes in the subtree that have failed to
merge and thus require special attention (see
8.2.10.2 Merging Branches, immediately below). This
property is multi-valued so that a record of
successive failed merges can be kept.

• In either case, (regardless of whether bestEffort is true or
false) for each non-versionable node (including both
referenceable and non-referenceable), if the merge result of
its nearest versionable ancestor is update, or if it has no
versionable ancestor, then it is updated to reflect the state
of its corresponding node. Otherwise, it is left unchanged.
The definition of corresponding node in this context is the
same as usual: the match is done by UUID (for a
referenceable nodes) or UUID plus relative path (for non-
referenceable nodes).

Note that as a result of the final rule, above, a merge performed on
a subtree with no versionable nodes at all (or indeed in a repository
that does not support versioning in the first place) will be
equivalent to an update.

The merge method returns a NodeIterator over all versionable
nodes in the subtree that received a merge result of fail.

Note that if bestEffort is false, then merge will either return an
empty iterator (since no merge failure occurred) or throw a
MergeException (on the first merge failure that was encountered).

If bestEffort is true, then the iterator will contain all nodes that
received a fail during the course of this merge operation.

8.2.10.1 Merge Algorithm

The above declarative description can also be expressed in pseudo-
code as follows:

let ws' be the workspace against which the merge is done.
let bestEffort be the flag passed to merge.
let failedset be a set of UUIDs, initially empty.
let startnode be the node on which merge was called.
domerge(startnode).
return the nodes with the UUIDs in failedset.

domerge(n)
 let n' be the corresponding node of n in ws'.
 if no such n' doleave(n).

 264

 else if n is not versionable doupdate(n, n').
 else if n' is not versionable doleave(n).
 let v be base version of n.
 let v' be base version of n'.
 if v' is a successor of v and
 n is not checked-in doupdate(n, n').
 else if v is equal to or a predecessor of v' doleave(n).
 else dofail(n, v').

dofail(n, v')
 if bestEffort = false throw MergeException.
 else add UUID of v' (if not already present) to the
 jcr:mergeFailed property of n,
 add UUID of n to failedset,
 doleave(n).

doleave(n)
 for each child node c of n domerge(c).

doupdate(n, n')
 replace set of properties of n with those of n'.
 let S be the set of child nodes of n.
 let S' be the set of child nodes of n'.
 judging by the name of the child node:
 let C be the set of nodes in S and in S'
 let D be the set of nodes in S but not in S'.
 let D' be the set of nodes in S' but not in S.
 remove from n all child nodes in D.
 for each child node of n' in D' copy it (and its subtree) to n
 as a new child node (if an incoming node has the same
 UUID as a node already existing in this workspace,
 the already existing node is removed).
 for each child node m of n in C domerge(m).

8.2.10.2 Merging Branches

As mentioned, when a merge test on a node N fails, this indicates
that the two base versions V and V' are on separate branches of
the version graph. Consequently, determining the result of the
merge is not simply a matter of determining which version is the
successor of the other in terms of version history. Instead, the
content (that is, the subtree) of N' must be merged into the
content of N according to some domain specific criteria which must
be performed at the application level, for example, through a
merge tool provided to the user.

The jcr:mergeFailed property is used to tag nodes that fail the
merge test so that an application can find them and deal
appropriately with them. The jcr:mergeFailed property is multi-
valued so that information about merge failures is not lost if more

 265

than one successive merge is attempted before being dealt with by
the application.

In the above example, after the content of N' is merged into N, the
application will want to also merge the two branches of the version
graph. This is done by calling N.doneMerge(V') where V' is
retrieved by following the reference stored in the jcr:mergeFailed
property of N. This has the effect of moving the reference-to-V'
from the jcr:mergeFailed property of N to its jcr:predecessors
property.

If, on the other hand, the application chooses not to join the two
branches, then cancelMerge(V') is performed. This has the effect
of removing the reference to V' from the jcr:mergeFailed
property of N without adding it to jcr:predecessors.

Once the last reference in jcr:mergeFailed has been either moved
to jcr:predecessors (with doneMerge) or just removed from
jcr:mergeFailed (with cancelMerge) the jcr:mergeFailed
property is automatically removed, thus enabling this node to be
checked-in, creating a new version (note that before the
jcr:mergeFailed is removed, its OnParentVersion setting of
ABORT prevents check in). This new version will have a predecessor
connection to each version for which doneMerge was called, thus
joining those branches of the version graph.

See 8.2.14 Versioning API.

8.2.11 OnParentVersion Attribute

Every item (node or property) in the repository has a status
indicator that governs what happens to that item when its parent
node is versioned. This status is defined by the onParentVersion
attribute in the PropertyDefinition or NodeDefinition that
applies to the item in question.

For example, let N be a versionable node, meaning it has mixin
node type mix:versionable. Also let N have a primary node type
that allows it to have one property called P and one child node
called C.

What happens to P and C when a new version of N is checked in
depends on their respective OnParentVersion attribute as defined
in the PropertyDefinition for P and the NodeDefinition for C.

The possible values for the OnParentVersion attribute are: COPY,
VERSION, INITIALIZE, COMPUTE, IGNORE and ABORT.

The sections below describe, for each possible value of the
OnParentVersion attribute, what happens to C and P when,

• N.checkin() is performed, creating the new version VN and
adding to the version history.

 266

• N.restore(VN, b) is performed, restoring the version VN
(the boolean parameter b governs what happens on UUID
collision).

8.2.11.1 COPY

Child Node

On checkin of N, C and all its descendent items, down to the leaves
of the subtree, will be copied to the version storage as a child
subtree of VN. The copy of C and its subtree will not have its own
version history but will be part of the state preserved in VN. C itself
need not be versionable.

On restore of VN, the copy of C and its subtree stored will be
restored as well, replacing the current C and its subtree in the
workspace.

Property

On checkin of N, P will be copied to the version storage as a child
of VN. This copy of P is part of the state preserved in VN.

On restore of VN, the copy of P stored as its child will be restored
as well, replacing the current P in the workspace.

8.2.11.2 VERSION

Child Node

On checkin of N, the node VN will get a subnode of type
nt:versionedChild with the same name as C. The single property
of this node, jcr:childVersionHistory is a REFERENCE to the
version history of C (not to C or any actual version of C). This also
requires that C itself be versionable (otherwise it would not have a
version history). If C is not versionable then the behavior of COPY
applies on checkin, however the recursive copy terminates at each
versionable node encountered further below in the subtree, at
which points the standard VERSION behavior is again followed.

NodeTypeName
 nt:versionedChild
Supertypes
 nt:base
IsMixin
 false
HasOrderableChildNodes
 false
PrimaryItemName
 null
PropertyDefinition
 Name jcr:childVersionHistory
 RequiredType REFERENCE
 ValueConstraints ["nt:versionHistory"]
 DefaultValues null
 AutoCreated true

 267

 Mandatory true
 OnParentVersion ABORT
 Protected true
 Multiple false

On restore of VN, if the workspace currently has an already
existing node corresponding to C’s version history and the
removeExisting flag of the restore is set to true, then that
instance of C becomes the child of the restored N.

If the workspace currently has an already existing node
corresponding to C’s version history and the removeExisting flag
of the restore is set to false then an ItemExistsException is
thrown.

If the workspace does not have an instance of C then one is
restored from C’s version history. The workspace in which the
restore is being performed will determine which particular version
of C will be restored. This determination depends on the
configuration of the workspace and is outside the scope of this
specification.

Property

In the case of properties, an OnParentVersion attribute of VERSION
has the same effect as COPY.

8.2.11.3 INITIALIZE

Child Node

On checkin of N, a new node C will be created and placed in version
storage as a child of VN. This new C will be initialized just as it
would be if created normally in a workspace. No state information
of the current C in the workspace is preserved.

On restore of VN, the C stored as its child will be ignored, and the
current C in the workspace will be left unchanged.

Property

On checkin of N, a new P will be created and placed in version
storage as a child of VN. The new P will be initialized just as it would
be if created normally in a workspace.

On restore of VN, the P stored as its child will be ignored, and the
current P in the workspace will be left unchanged.

8.2.11.4 COMPUTE

Child Node

On checkin of N, a new node C will be created and placed in version
storage as a child of VN. This new C will be initialized by some
procedure defined for that type of child node.

 268

On restore of VN, the C stored as its child will be ignored, and the
current C in the workspace will be left unchanged.

Property

On checkin of N, a new P will be created and placed in version
storage as a child of VN. The new P will be initialized by some
procedure defined for that type of property.

On restore of VN, the P stored as its child will be ignored, and the
current P in the workspace will be left unchanged.

8.2.11.5 IGNORE

Child Node

On checkin of N, no state information about C will be stored in VN.

On restore of VN, the child node C of the current N will remain and
not be removed.

Property

On checkin of N, no state information about P will be stored in VN.

On restore of VN, the property P of the current N will remain and
not be removed.

8.2.11.6 ABORT

Child Node or Property

On checkin of N a VersionException will be thrown. Having a
child node or property with an OnParentVersion attribute of ABORT
prevents the parent node from being checked-in.

8.2.12 The OnParentVersionAction Class

The above six legal values from the OnParentVersion attribute are
represented in the Java API by six integer constants defined by the
class OnParentVersionAction.

javax.jcr.version.
OnParentVersionAction

int COPY

int VERSION

int INITIALIZE

int COMPUTE

int IGNORE

int ABORT

 269

8.2.13 Removal of Versions

Though a version history is meant, in theory, to provide a
permanent record of a versionable node, in practice it sometimes
becomes necessary to clean-up a version history by removing a
version. To do this, this API provides the
VersionHistory.removeVersion method. See 8.2.14.3
VersionHistory Interface.

8.2.14 Versioning API

The versioning API consists the version-related methods in the Node
interface as well as two interfaces that extend the Node interface,
VersionHistory and Version. VersionHistory is the interface for
an nt:versionHistory node and Version is the interface for an
nt:version node.

8.2.14.1 Node Versioning Methods

The Node interface has the following version-related methods.

javax.jcr.
Node

Version checkin()

Creates a new version with a system generated name
and returns that version. The jcr:isCheckedOut
property of this node is set to false thus putting the
node into the checked-in state. This means that this
node and its connected non-versionable subtree become
read-only. A node's connected non-versionable subtree
is the set of non-versionable descendant nodes
reachable from that node through child links without
encountering any versionable nodes. In other words, the
read-only status flows down from the checked-in node
along every child link until either a versionable node is
encountered or an item with no children is encountered.

Read-only status means that an item cannot be altered
by the client using standard API methods (addNode,
setProperty, etc.). The only exceptions to this rule are
the restore13, Node.merge and Node.update
operations; these do not respect read-only status due to
check-in. Note that remove of a read-only node is
possible, as long as its parent is not read-only (since
removal is an alteration of the parent node).

13 Workspace.restore, Node.restore (all signatures) and
Node.restoreByLabel.

 270

See 8.2.5 Check In for more details.

If this node is already checked-in, this method has no
effect but returns the current base version of this node.

If this node is not versionable, an
UnsupportedRepositoryOperationException is
thrown.

A VersionException is thrown or if a child item of this
node has an OnParentVersion status of ABORT. This
includes the case where an unresolved merge failure
exists on this node, as indicated by the presence of the
jcr:mergeFailed property.

If checkin succeeds, the change to the jcr:checkedOut
property is automatically persisted (there is no need to
do an additional save).

If there are unsaved changes pending on this node, an
InvalidItemStateException is thrown.

A LockException is thrown if a lock prevents the
checkin.

A RepositoryException is thrown if an error occurs.

void checkout()

Sets this versionable node to checked-out status by
setting its jcr:isCheckedOut property to true, sets the
jcr:predecessors property to be a reference to the
current base version (the same value as held in
jcr:baseVersion). This method puts the node into the
checked-out state, making it and its connected non-
versionable subtree no longer read-only (see checkin,
above, for an explanation of the term “connected non-
versionable subtree”).

If successful, these changes are persisted immediately,
there is no need to call save.

See 8.2.6 Check Out for more details.

If this node is not versionable, an
UnsupportedRepositoryOperationException is
thrown.

A LockException is thrown if a lock prevents the
checkout.

A RepositoryException is thrown if an error occurs.

NodeIterator merge(String srcWorkspace, boolean bestEffort)

 271

This method can be thought of as a version-sensitive
update (see 7.1.8 Updating and Cloning Nodes across
Workspaces).

It recursively tests each versionable node in the subtree
of this node against its corresponding node in
srcWorkspace with respect to the relation between their
respective base versions and either updates the node in
question or not, depending on the outcome of the test.
For details see 8.2.10 Merge.

A MergeException is thrown if bestEffort is false and
a versionable node is encountered whose corresponding
node's base version is on a divergent branch from this
node's base version.

If successful, the changes are persisted immediately,
there is no need to call save.

This method returns a NodeIterator over all
versionable nodes in the subtree that received a merge
result of fail. If bestEffort is false, this iterator will be
empty (since if it merge returns successfully, instead of
throwing an exception, it will be because no failures
were encountered). If bestEffort is true, this iterator
will contain all nodes that received a fail during the
course of this merge operation.

If the specified srcWorkspace does not exist, a
NoSuchWorkspaceException is thrown.

If the current session does not have sufficient
permissions to perform the operation, then an
AccessDeniedException is thrown.

An InvalidItemStateException is thrown if this
Session (not necessarily this Node) has pending
unsaved changes.

A LockException is thrown if a lock prevents the
merge.

A RepositoryException is thrown if another error
occurs.

void doneMerge(Version version)

Completes the merge process with respect to this node
and the specified version.

See 8.2.10 Merge for more details.

If successful, the changes are persisted immediately,

 272

there is no need to call save.

A VersionException is thrown if the version specified is
not among those referenced in this node's
jcr:mergeFailed property or if this node is currently
checked-in.

An UnsupportedRepositoryOperationException is
thrown if this node is not versionable.

If there are unsaved changes pending on this node, an
InvalidItemStateException is thrown.

A LockException is thrown if a lock prevents the
operation.

A RepositoryException is thrown if another error
occurs.

void cancelMerge(Version version)

Cancels the merge process with respect to this node and
the specified version.

See 8.2.10 Merge for more details.

If successful, the changes are persisted immediately,
there is no need to call save.

A VersionException is thrown if the version specified is
not among those referenced in this node's
jcr:mergeFailed property or if this node is currently
checked-in.

An UnsupportedRepositoryOperationException is
thrown if this node is not versionable.

If there are unsaved changes pending on this node, an
InvalidItemStateException is thrown.

A LockException is thrown if a lock prevents the
operation.

A RepositoryException is thrown if another error
occurs.

boolean isCheckedOut()

Returns true if this node is either

• versionable and currently checked-out,

• non-versionable and its nearest versionable
ancestor is checked-out or

• non-versionable and it has no versionable

 273

ancestor.

Returns false if this node is either

• versionable and currently checked-in or

• non-versionable and its nearest versionable
ancestor is checked-in.

A RepositoryException is thrown if an error occurs.

void restore(String versionName,
 boolean removeExisting)

Restores this node to the state defined by the version
with the specified versionName.

If this node is not versionable, an
UnsupportedRepositoryOperationException is
thrown.

If successful, the change is persisted immediately and
there is no need to call save.

A VersionException is thrown if no version with the
specified versionName exists in this node's version
history or if an attempt is made to restore the root
version (jcr:rootVersion).

An InvalidItemStateException is thrown if this
Session (not necessarily this Node) has pending
unsaved changes.

This method will work regardless of whether this node is
checked-in or not.

A UUID collision occurs when a node exists outside the
subtree rooted at this node with the same UUID as a
node that would be introduced by the restore operation
into the subtree at this node. The result in such a case
is governed by the removeExisting flag. If
removeExisting is true, then the incoming node takes
precedence, and the existing node (and its subtree) is
removed. If removeExisting is false, then a
ItemExistsException is thrown and no changes are
made. Note that this applies not only to cases where the
restored node itself conflicts with an existing node but
also to cases where a conflict occurs with any node that
would be introduced into the workspace by the restore
operation. In particular conflicts involving subnodes of
the restored node that have OnParentVersion settings
of COPY or VERSION (see 8.2.11 OnParentVersion
Attribute) are also governed by the removeExisting

 274

flag.

A LockException is thrown if a lock prevents the
restore.

A RepositoryException is thrown if another error
occurs.

void restore(Version version,
 boolean removeExisting)

Restores this node to the state defined by the specified
version.

If this node is not versionable, an
UnsupportedRepositoryOperationException is
thrown.

If successful, the change is persisted immediately and
there is no need to call save.

A VersionException is thrown if the specified version
is not part of this node's version history.

An InvalidItemStateException is thrown if this
Session (not necessarily this Node) has pending
unsaved changes.

This method will work regardless of whether this node is
checked-in or not.

A UUID collision occurs when a node exists outside the
subtree rooted at this node with the same UUID as a
node that would be introduced by the restore operation
into the subtree at this node. The result in such a case
is governed by the removeExisting flag. If
removeExisting is true, then the incoming node takes
precedence, and the existing node (and its subtree) is
removed. If removeExisting is false, then a
ItemExistsException is thrown and no changes are
made. Note that this applies not only to cases where the
restored node itself conflicts with an existing node but
also to cases where a conflict occurs with any node that
would be introduced into the workspace by the restore
operation. In particular conflicts involving subnodes of
the restored node that have OnParentVersion settings
of COPY or VERSION (see 8.2.11 OnParentVersion
Attribute) are also governed by the removeExisting
flag.

A LockException is thrown if a lock prevents the
restore.

A RepositoryException is thrown if another error

 275

occurs.

void restore(Version version,
 String relPath,
 boolean removeExisting)

Restores the specified version to relPath, relative to
this node.

A node need not exist at relPath, though the parent of
relPath must exist, otherwise a
PathNotFoundException is thrown.

If a node does exist at relPath then it must correspond
to the version being restored (the version must be a
version of that node), otherwise a VersionException is
thrown.

If no node exists at relPath then a VersionException
is thrown if the parent node of relPath is versionable
and checked-in or is non-versionable but its nearest
versionable ancestor is checked-in.

If there is a node at relPath then the checked-in status
of that node itself and the checked-in status of its
parent are irrelevant. The restore will work even if one
or both are checked-in.

A UUID collision occurs when a node exists outside the
subtree rooted at relPath with the same UUID as a
node that would be introduced by the restore operation
into the subtree at relPath (note that in cases where
there is no node at relPath, this amounts to saying that
a UUID collision occurs if there exists a node anywhere
in this workspace with the same UUID as a node that
would be introduced by the restore). The result in such
a case is governed by the removeExisting flag. If
removeExisting is true then the incoming node takes
precedence, and the existing node (and its subtree) is
removed. If removeExisting is false, then a
ItemExistsException is thrown and no changes are
made. Note that this applies not only to cases where the
restored node itself conflicts with an existing node but
also to cases where a conflict occurs with any node that
would be introduced into the workspace by the restore
operation. In particular conflicts involving subnodes of
the restored node that have OnParentVersion settings
of COPY or VERSION (see 8.2.11 OnParentVersion
Attribute) are also governed by the removeExisting
flag.

If the would-be parent of the location relPath is

 276

actually a property, or if a node type restriction would
be violated, then a ConstraintViolationException is
thrown.

If the restore succeeds, the changes made to this node
are persisted immediately, there is no need to call save.

An InvalidItemStateException is thrown if this
Session (not necessarily this Node) has pending
unsaved changes.

An UnsupportedRepositoryOperationException is
thrown if versioning is not supported.

A LockException is thrown if a lock prevents the
restore.

A RepositoryException is thrown if another error
occurs.

void restoreByLabel(String versionLabel,
 boolean removeExisting)

Restores this node to the state defined by the version
with the specified versionLabel.

If this node is not versionable, an
UnsupportedRepositoryOperationException is
thrown.

If successful, the change is persisted immediately and
there is no need to call save.

A VersionException is thrown if no version with the
specified versionLabel exists in this node's version
history.

This method will work regardless of whether this node is
checked-in or not.

A UUID collision occurs when a node exists outside the
subtree rooted at this node with the same UUID as a
node that would be introduced by the restore operation
into the subtree at this node. The result in such a case
is governed by the removeExisting flag. If
removeExisting is true, then the incoming node takes
precedence, and the existing node (and its subtree) is
removed. If removeExisting is false, then a
ItemExistsException is thrown and no changes are
made. Note that this applies not only to cases where the
restored node itself conflicts with an existing node but
also to cases where a conflict occurs with any node that
would be introduced into the workspace by the restore
operation. In particular conflicts involving subnodes of

 277

the restored node that have OnParentVersion settings
of COPY or VERSION (see 8.2.11 OnParentVersion
Attribute) are also governed by the removeExisting
flag.

An InvalidItemStateException is thrown if this
Session (not necessarily this Node) has pending
unsaved changes.

A LockException is thrown if a lock prevents the
restore.

A RepositoryException is thrown if another error
occurs.

VersionHistory getVersionHistory()

Returns the VersionHistory object of this node. This
object provides access to the nt:versionHistory node
holding this node's versions.

If this node is not versionable, an
UnsupportedRepositoryOperationException is
thrown.

A RepositoryException is thrown if another error
occurs.

Version getBaseVersion()

Returns the current base version of this versionable
node.

If this node is not versionable, an
UnsupportedRepositoryOperationException is
thrown.

A RepositoryException is thrown if another error
occurs.

8.2.14.2 Workspace Versioning Methods

The Workspace object provides the "group restore" method.

javax.jcr.
Workspace

void restore(Version[] versions,
 boolean removeExisting)

Restores a set of versions at once. Used in cases
where a "chicken and egg" problem of mutually
referring REFERENCE properties would prevent the

 278

restore in any serial order.

If the restore succeeds, the changes made are
persisted immediately, there is no need to call save.

This method will work regardless of whether the
nodes corresponding to the specified versions are
checked-in or not.

The following restrictions apply to the set of versions
specified:

If S is the set of versions being restored
simultaneously,

• For every version V in S that corresponds to a
missing node in the workspace, there must
also be a parent of V in S.

• S must contain at least one version that
corresponds to an existing node in the
workspace.

• No V in S can be a root version
(jcr:rootVersion).

If any of these restrictions does not hold, the restore
will fail because the system will be unable to
determine the path locations to which one or more
versions are to be restored. In this case a
VersionException is thrown.

The versionable nodes in this workspace that
correspond to the versions being restored define a
set of (one or more) subtrees. A UUID collision
occurs when this workspace contains a node outside
these subtrees that has the same UUID as one of the
nodes that would be introduced by the restore
operation into one of these subtrees. The result in
such a case is governed by the removeExisting flag.
If removeExisting is true then the incoming node
takes precedence, and the existing node (and its
subtree) is removed. If removeExisting is false
then a ItemExistsException is thrown and no
changes are made. Note that this applies not only to
cases where the restored node itself conflicts with an
existing node but also to cases where a conflict
occurs with any node that would be introduced into
the workspace by the restore operation. In particular
conflicts involving subnodes of the restored node that
have OnParentVersion settings of COPY or VERSION
(see 8.2.11 OnParentVersion Attribute) are also

 279

governed by the removeExisting flag.

An UnsupportedRepositoryOperationException is
thrown if versioning is not supported.

A LockException is thrown if a lock prevents the
restore.

An InvalidItemStateException is thrown if this
Session (not necessarily this Node) has pending
unsaved changes.

Throws a RepositoryException if another error
occurs.

8.2.14.3 VersionHistory Interface

A VersionHistory object provides an interface for an
nt:versionHistory node. It provides convenient access to version
history information.

javax.jcr.version.
VersionHistory extends Node

String getVersionableUUID()

Returns the UUID of the versionable node for which
this is the version history.

A RepositoryException is thrown if an error occurs.

Version getRootVersion()

Returns the root version of this version history.

A RepositoryException is thrown if an error occurs.

VersionIterator getAllVersions()

Returns an iterator over all the versions within this
version history. The order of the returned objects will
not necessarily correspond to the order of versions in
terms of the successor relation. To traverse the version
graph one must traverse the jcr:successors
REFERENCE properties starting with the root version
(see above). A version history will always have at least
one version, the root version. Therefore, this method
will always return an iterator of at least size 1.

A RepositoryException is thrown if an error occurs.

Version getVersion(String versionName)

Retrieves a particular version from this version history

 280

by version name.

Throws a VersionException if the specified version is
not in this version history.

A RepositoryException is thrown if an error occurs.

Version getVersionByLabel(String label)

Retrieves a particular version from this version history
by version label.

Throws a VersionException if the specified label is
not in this version history.

A RepositoryException is thrown if an error occurs.

void addVersionLabel(String versionName,
 String label,
 boolean moveLabel)

Adds the specified label to the specified version. This
corresponds to adding a value to the
jcr:versionLabels multi-value property of the
nt:version node that represents the specified version.

Note that this change is made immediately; there is no
need to call save. In fact, since the version storage is
read-only with respect to normal repository methods,
save does not even function in this context.

Within a particular version history, a given label may
appear a maximum of once. If the specified label is
already assigned to a version in this history and
moveLabel is true then the label is removed from its
current location and added to the version with the
specified versionName. If moveLabel is false, then an
attempt to add a label that already exists in this
version history will throw a VersionException.

A VersionException is also thrown if the named
version is not in this VersionHistory or if it is the root
version (jcr:rootVersion).

A RepositoryException is thrown if another error
occurs.

boolean hasVersionLabel(String label)

Returns true if any version in the history has the given
label.

A RepositoryException is thrown if an error occurs.

 281

boolean hasVersionLabel(Version version, String label)

Returns true if the given version has the given label.

A RepositoryException is thrown if an error occurs.

String[] getVersionLabels()

Returns all version labels of the history or an empty
array if there are none.

A RepositoryException is thrown if an error occurs.

String[] getVersionLabels(Version version)

Returns all version labels of the given version - empty
array if none.

Throws a VersionException if the specified version is
not in this version history.

Throws a RepositoryException if another error
occurs.

Void removeVersionLabel(String label)

Removes the specified label from among the labels of
this version history. This corresponds to removing a
property from the jcr:versionLabels child node of
the nt:versionHistory node that represents this
version history.

Note that this change is made immediately; there is no
need to call save. In fact, since the version storage is
read-only with respect to normal repository methods,
save does not even function in this context.

If a label is specified that does not exist in this
version history, a VersionException is thrown.

A RepositoryException is thrown if another error
occurs.

Void removeVersion(String versionName)

Removes the named version from this version history
and automatically repairs the version graph. If the
version to be removed is V, V's predecessor set is P
and V's successor set is S, then the version graph is
repaired s follows:

• For each member of P, remove the reference to
V from its successor list and add references to
each member of S.

• For each member of S, remove the reference to

 282

V from its predecessor list and add references to
each member of P.

Note that this change is made immediately; there is no
need to call save. In fact, since the version storage is
read-only with respect to normal repository methods,
save does not even function in this context.

A ReferentialIntegrityException will be thrown if
the specified version is currently the target of a
REFERENCE property elsewhere in the repository (not
necessarily in this workspace) and the current Session
has read access to that REFERENCE property.

An AccessDeniedException will be thrown if the
current Session does not have permission to remove
the specified version or if the specified version is
currently the target of a REFERENCE property elsewhere
in the repository (not necessarily in this workspace)
and the current Session does not have read access to
that REFERENCE property.

Throws an
UnsupportedRepositoryOperationException if this
operation is not supported by the implementation.

Throws a VersionException if the named version is
not in this VersionHistory.

Throws a RepositoryException if another error
occurs.

8.2.14.4 The Version Interface

A Version object provides an interface for an nt:version node. It
provides convenient access to version information.

javax.jcr.version.
Version extends Node

VersionHistory getContainingHistory()

Returns the VersionHistory that contains this
Version.

Calendar getCreated()

Returns the date this version was created. This
corresponds to the value of the jcr:created property
in the nt:version node that represents this version.

A RepositoryException is thrown if an error occurs.

 283

Version[] getSuccessors()

Returns the successor versions of this version. This
corresponds to returning all the nt:version nodes
referenced by the jcr:successors multi-value
property in the nt:version node that represents this
version.

A RepositoryException is thrown if an error occurs.

Version[] getPredecessors()

Returns the predecessor versions of this version. This
corresponds to returning all the nt:version nodes
whose jcr:successors property includes a reference
to the nt:version node that represents this version.

A RepositoryException is thrown if an error occurs.

8.2.15 Serialization of Version Storage

Serialization of version information can be done in the same way as
normal serialization by serializing the subtree below
/jcr:system/jcr:versionStorage. The special status of these
nodes with respect to versioning is transparent to the serialization
mechanism.

The serialized content of the source version storage can be
deserialized as “normal” content on the target repository, but it will
not actually be interpreted and integrated into the repository as
version storage data unless it is integrated into or used to replace
the target repository's own version storage.

Methods for doing this kind of “behind the scenes” alteration to an
existing version storage (whether based on the serialized version
storage of another repository, or otherwise) are beyond the scope
of this specification.

8.2.16 Versioning within a Transaction

In a repository that supports both versioning and transactions, all
versioning operations must be fully transactional, meaning that
they can be bracketed within a transaction and rolled-back just like
any other set of operations.

 284

8.3 Observation

A compliant content repository may support observation. This
feature enables applications to register interest in events that
describe changes to a workspace, and then monitor and respond to
those events. The observation mechanism dispatches events when
a persistent change is made to the workspace.

Whether a particular implementation supports observation can be
determined by querying the repository descriptor table with
Repository.getDescriptor("OPTION_OBSERVATION_SUPPORTED")
(a return value of true indicates support for observation, see
 6.1.1.1 Repository Descriptors).

Note that (in those repositories that support transactions) in the
case of changes made within a transaction, the corresponding
events will only be dispatched upon commit of the transaction,
whereas in the case of changes made outside a transaction the
events will be dispatched upon save (or immediately in the case of
direct-to-workspace methods). See 8.3.4 Event Production.

An object implementing the Event interface represents an event
generated by a repository. It also contains the constants
representing the five event types.

javax.jcr.observation.
Event

int getType()

Returns the type of this event. A constant defined by
in this interface. One of NODE_ADDED, NODE_REMOVED,
PROPERTY_ADDED, PROPERTY_REMOVED and
PROPERTY_CHANGED.

String getPath()

Returns the absolute path of the item associated with
this event. The interpretation given to the returned
path depends upon the type of the event:

• If the event type is NODE_ADDED then this
method returns the absolute path of the node
that was added.

• If the event type is NODE_REMOVED then this
method returns the absolute path of the node
that was removed.

• If the event type is PROPERTY_ADDED then this
method returns the absolute path of the
property that was added.

• If the event type is PROPERTY_REMOVED then

 285

this method returns the path of the property
that was removed.

• If the event type is PROPERTY_CHANGED then
this method returns the absolute path of the
changed property.

A RepositoryException is thrown if an error occurs.

String getUserID()

Returns the user ID connected with this event. This
is the string returned by getUserID of the session
that caused the event.

int NODE_ADDED

An event of this type is generated when a node is
added.

int NODE_REMOVED

An event of this type is generated when a node is
removed.

int PROPERTY_ADDED

An event of this type is generated when a property is
added.

int PROPERTY_REMOVED

An event of this type is generated when a property is
removed.

int PROPERTY_CHANGED

An event of this type is generated when the value of
a property is changed.

8.3.1 Event Listeners

An application registers its interest in events by registering an
event listener with the workspace. Listeners are per workspace, not
repository-wide; they only receive events for the workspace in
which they are registered.

Note that it is up to the implementation whether changes made to
the subtree below jcr:system trigger events (6.8 System Node).

When an persistent change occurs, the repository calls the onEvent
method of each registered listener that is entitled (based on the
filters set for that listener) to receive notification, and passes it an
EventIterator object. The EventIterator contains the bundle of

 286

events (again, filtered for that particular listener) that describe the
persistent changes made to the workspace.

javax.jcr.observation.
EventListener

void onEvent(EventIterator event)

This method is called when a bundle of events is
dispatched. See 8.3.4 Event Production.

8.3.2 Listener Registration

Registration of event listeners is done through the
ObservationManager object acquired from the Workspace.

javax.jcr.
Workspace

Observation

Manager

getObservationManager()

Returns the ObservationManager object.

If the implementation does not support observation, an
UnsupportedRepositoryOperationException is thrown.

A RepositoryException is thrown if an error occurs.

8.3.3 Observation Manager

The ObservationManager interface supports listener registration
and deregistration.

javax.jcr.observation.
ObservationManager

void addEventListener(EventListener listener,
 int eventTypes,
 String absPath,
 boolean isDeep,
 String[] uuid,
 String[] nodeTypeName,
 boolean noLocal)

Adds an event listener that listens for the
specified eventTypes (a combination of one or
more event types encoded as a bit mask value).

The set of events can be filtered by specifying
restrictions based on characteristics of the
associated parent node of the event. The
associated parent node of an event is the parent
node of the item at (or formerly at) the path

 287

returned by Event.getPath. The following
restrictions are available:

• absPath, isDeep: Only events whose
associated parent node is at absPath (or
within its subtree, if isDeep is true) will be
received. It is permissible to register a
listener for a path where no node currently
exists.

• uuid: Only events whose associated parent
node has one of the UUIDs in this list will
be received. If this parameter is null then
no UUID-related restriction is placed on
events received. Note that specifying an
empty array instead of null would result
in no nodes being listened to.

• nodeTypeName: Only events whose
associated parent node has one of the
node types (or a subtype of one of the
node types) in this list will be received. If
this parameter is null then no node type-
related restriction is placed on events
received. Note that specifying an empty
array instead of null would result in no
node types being listened to.

The restrictions are "ANDed" together. In other
words, for a particular node to be listened to, it
must meet all the restrictions.

Additionally, if noLocal is true, then events
generated by the session through which the
listener was registered are ignored. Otherwise,
they are not ignored.

The filters of an already-registered
EventListener can be changed at runtime by re-
registering the same EventListener object (i.e.
the same actual Java object) with a new set of
filter arguments. The implementation must ensure
that no events are lost during the changeover.

A RepositoryException is thrown if an error
occurs.

void removeEventListener(EventListener
listener)

Deregisters an event listener.

A RepositoryException is thrown if an error

 288

occurs.

EventListenerIterator getRegisteredEventListeners()

Returns all event listeners that have been
registered through this session. If no listeners
have been registered, an empty iterator is
returned.

A RepositoryException is thrown if an error
occurs.

8.3.4 Event Production

Events are dispatched upon each persistent change to the
workspace. Changes that affect only the transient session level are
not tracked by the observation mechanism. This means that events
will be dispatched as follows:

• If a set of operations is within a transaction (see 8.1
Transactions) then the events reflecting the resulting
changes will only be dispatched after the changes are
persisted by a successful commit.

• If a set of operations is not within a transaction then:

o If an operation is immediately persistent (like
Workspace.copy, for example), the events reflecting
the resulting changes will be dispatched upon the
successful completion of the operation.

o If a set of operations is not immediately persistent
(like most Node and Session methods, for example)
then the events reflecting the resulting changes will
be dispatched upon the successful save of those
changes.

8.3.5 Event Filtering

An event listener will only receive events for which its session (the
session through which it was registered) has sufficient access
control permissions and which meet the filtering restrictions
specified upon registration. See 8.3.3 Observation Manager.

8.3.6 Event Bundles

On each persistent change, those listeners that are entitled to
receive one or more events will have their onEvent method called
and be passed an EventIterator.

The EventIterator will contain the event bundle reflecting the
persistent changes made but excluding those to which that

 289

particular listener is not entitled, according to the listeners access
permissions and filters.

8.3.7 Interpretation of Events

The set of available event types is small, consisting of only five
types: NODE_ADDED, NODE_REMOVED, PROPERTY_ADDED,
PROPERTY_REMOVED and PROPERTY_CHANGED. The intent of the event
notification system is to describe, for every persistent operation,
the resulting state change in the workspace, and not necessarily
the operational steps performed by the client that lead to that
change. The set of five event types and the bundling of those
events is sufficient to describe any state change and make that
change correctly interpretable by the consumer of the events. The
following describes the events generated as a result of a number of
common operations. Note that the following describes the events
that would be generated when the change caused by the operation
in question is persisted.

8.3.7.1 Creating a new Node

When a new node is created, distinct events are generated for the
addition of the actual new node itself (a NODE_ADDED event) as well
for each of the automatically created child nodes or properties
(either NODE_ADDED or PROPERTY_ADDED, as the case may be). This
includes properties required by the system, such as
jcr:primaryType.

8.3.7.2 Creating a Property

When a new property is created, a PROPERTY_ADDED event is
generated. No PROPERTY_CHANGED event is generated.

8.3.7.3 Changing a Property

When an existing property's value is changed, a
PROPERTY_CHANGED event is generated.

8.3.7.4 Removing a Child Node

When a node is removed, a NODE_REMOVED event must be generated
for the node on which the remove was called. Additionally, an
implementation should also generate a NODE_REMOVE or
PROPERTY_REMOVE (as appropriate) for each item in the removed
subtree.

8.3.7.5 Removing a Property

When a property is removed, a PROPERTY_REMOVED event is
generated.

 290

8.3.7.6 Copying a Subtree

When a subtree is copied, an implementation must generate a
single NODE_ADDED event reflecting the addition of the root of the
copied subtree at the destination location. Additionally, an
implementation should generate appropriate events for each
resulting node and property addition in the copied subtree.

8.3.7.7 Moving a Subtree

When a subtree is moved an implementation must generate a
NODE_REMOVED for the removal of the root of the moved subtree
from the source location and a NODE_ADDED for its addition at the
destination location. Additionally, an implementation should
generate a NODE_REMOVE or PROPERTY_REMOVE (as appropriate) for
each node and property removed from its source path location and
a NODE_ADDED or PROPERTY_ADDED (as appropriate) for each node
and property added at its destination path location.

8.3.7.8 Re-ordering a set of Child Nodes

When an orderBefore(A, B) is performed, an implementation
must generate a NODE_REMOVED for node A and a NODE_ADDED for
node A. Note that the paths associated with these two events will
either differ by the last index number (if the movement of A causes
it to be re-ordered with respect to its same-name siblings) or be
identical (if A does not have same-name siblings or if the
movement of A does not change its order relative to its same-name
siblings). Additionally, an implementation should generate
appropriate events reflecting the “shifting over” of the node B and
any nodes that come after it in the child node ordering. Each such
shifted node would also produce a NODE_REMOVED and NODE_ADDED
event pair with paths differing at most by a final index.

8.3.7.9 Adding a Mixin

If this is the first mixin to be added to this node, a PROPERTY_ADDED
event will be generated reflecting the addition of the multi-value
jcr:mixinTypes property. If this is not the first mixin to be added
then a PROPERTY_CHANGED event will be generated reflecting the
addition of the new value to jcr:mixinTypes.

8.3.7.10 Removing a Mixin

Assuming an implementation allows removal of mixin types then a
PROPERTY_CHANGED event is produced reflecting the removal of the
relevant value from jcr:mixinTypes.

8.3.7.11 Checking in a Node

In versioning repositories, the version storage appears as a
protected subtree of each workspace. By placing listeners on this

 291

subtree a client can be alerted to versioning events. The events
generated will reflect the changes made to the version storage area
(for example, the addition of a new nt:version node below an
nt:versionHistory node) as a result of the check-in operation.
From this information the source of the check-in can be determined
(for example, the nt:frozenNode's jcr:frozenUuid property
holds the UUID of the workspace node that was checked-in).

8.3.7.12 Restoring, Updating or Merging a Node

Restoring updating and merging of nodes will generate events that
reflect the changes made to those nodes as a result of the
operation.

8.3.7.13 Locking and Unlocking a Node

By listening for changes on mix:lockable nodes, locking events
can be detected. Locking a node will generate PROPERTY_ADDED
events reflecting the addition of the jcr:lockOwner and
jcr:lockIsDeep properties. Unlocking a node will generate
PROPERTY_REMOVED events reflecting the removal of these
properties.

8.3.8 Deserializing Content

Whether events are generated for each node and property addition
that occurs when content is deserialized into a workspace is left up
to the implementation.

8.3.9 External Mechanisms

Whether events are generated for changes made to a workspace
through mechanisms external to this specification is left up to the
implementation.

8.3.10 Location of Listeners

The classes implementing the listener interfaces will reside on the
same JVM as the repository itself. In implementations where both
the application using the API and the repository itself are operating
on the same JVM, this poses no particular problems.

In client-server implementations that use RMI to connect the
application to a remote repository, the application must ensure that
any listeners registered to the repository are serializable, thus
allowing them to be passed to the JVM running the repository
instance.

8.3.11 Persistence of Event Listeners

Though not explicitly defined in this specification, nothing prevents
a repository from registering “Persistent Event Listeners” through
its configuration.

 292

Since the “persistence” of an event listener is only limited through
the registering Session’s lifespan, the repository can use the same
mechanisms as for a non-durable registration but use a session that
has the lifespan of the repository instance (the “system” session,
for example).

Persistent event listeners may be used to provide more system
level functionality such as specialized access control and
syndication/replication mechanisms.

8.3.12 Vetoable Event Listeners

This specification defines only asynchronous event delivery. It is
possible for a repository to also implement synchronous events in
order to support the vetoing of changes before they happen.
However, this functionality is outside the scope of this specification.

8.3.13 Exceptions

The method EventListener.onEvent does not specify a throws
clause. This does not prevent a listener from throwing a
RuntimeException, although any listener that does should be
considered to be in error.

 293

8.4 Locking

In those repositories that support it, locking allows a user to
temporarily lock nodes in order to prevent other users from
changing them.

This function is typically used to serialize access to a node in order
to forestall the “lost update problem”. Though a compliant content
repository will already prevent this kind of inadvertent overwriting
of repository content through the InvalidItemStateException,
the use of locking can prevent the exception from occurring in the
first place.

8.4.1 Discovery of Lock Capabilities

Whether a particular implementation supports locking can be
determined by querying the repository descriptor table with
Repository.getDescriptor("OPTION_LOCKING_SUPPORTED") (a
return value of true indicates support for locking, see 6.1.1.1
Repository Descriptors).

8.4.2 Lockable

A lock is placed on a node by calling Node.lock. The node on which
a lock is placed is called the holding node of that lock. Only nodes
with mixin node type mix:lockable (inherited as part of their
primary node type or explicitly assigned) may hold locks. The
definition of mix:lockable is:

NodeTypeName
 mix:lockable
Supertypes
 []
IsMixin
 true
HasOrderableChildNodes
 false
PrimaryItemName
 null
PropertyDefinition
 Name jcr:lockOwner
 RequiredType STRING
 ValueConstraints []
 DefaultValues null
 AutoCreated false
 Mandatory false
 OnParentVersion IGNORE
 Protected true
 Multiple false
PropertyDefinition
 Name jcr:lockIsDeep
 RequiredType BOOLEAN
 ValueConstraints []
 DefaultValues null
 AutoCreated false
 Mandatory false
 OnParentVersion IGNORE

 294

 Protected true
 Multiple false

8.4.3 Shallow and Deep Locks

A lock can be specified as either shallow or deep. A shallow lock
applies only to its holding node. A deep lock applies to its holding
node and all its descendants.

Consequently, there is a distinction between a lock being held by a
node and a lock applying to a node. A lock always applies to its
holding node. However, if it is a deep lock, it also applies to all
nodes in the holding node's subtree. When a lock applies to a node,
that node is said to be locked.

Since a deep lock applies to all nodes in the lock-holding node's
subtree, this may include both mix:lockable nodes and non-
mix:lockable nodes. The deep lock applies to both categories of
node equally and it does not add any jcr:lockOwner or
jcr:isDeep properties to any of the deep-locked mix:lockable
nodes. However, if any such nodes exist and they already have
these properties, this means that they are already locked, and
hence the attempt to deep lock above them will fail.

Additionally, assuming a deep lock exists above a mix:lockable
node any attempt to lock this lower level mix:lockable node will
also fail, because it is already locked from above.

8.4.4 Lock Owner

The user who places a lock on a node is called the lock owner. The
lock owner is identified by the user ID bound to the Session
through which the node in question was accessed (that is, the
string returned by Session.getUserID). The user ID is recorded in
the property jcr:lockOwner of the lock holding node. The lock
owner's ID is provided for informational purposes only, it is not
used in testing whether a particular user has any permissions with
respect to the lock (this is governed purely by whether the Session
holds the applicable lock token, see below).

8.4.5 Placing and Removing a Lock

When Node.lock is performed on a mix:lockable node, the
properties defined in that node type are automatically created and
set as follows:

• jcr:lockOwner is set to the user ID of the user who set the
lock (this is the value returned by Session.getUserID).

• jcr:lockIsDeep is set to reflect whether the lock is deep or
not.

When Node.unlock is performed on a locked mix:lockable node,
by a user with the correct lock token (see below) these two

 295

properties are removed. The identity of the holder of the lock token
does not matter (it does not have to be the lock owner). Anyone
with the correct token can remove the lock.

Additionally, the content repository may give permission to some
users to unlock locks for which they do not have the lock token.
Typically such “lock-superuser” capability is intended to facilitate
administrational clean-up of orphaned open-scoped locks.

An attempt to call lock or unlock on a node that is not
mix:lockable will throw a
UnsupportedRepositoryOperationException.

An attempt to lock an already locked node or unlock an already
unlocked node will throw a LockException.

8.4.6 Lock Token

The method Node.lock returns a Lock object, which in turn
contains a lock token. A lock token is a string that uniquely
identifies a particular lock and acts as a “key” allowing a user to
alter a locked node.

In order to use the lock token as a key, it must be added to the
Session of the user, thus empowering that session to alter the
nodes to which the lock applies. When a lock token is attached to a
Session, the user of that session becomes a token holder of that
lock token.

The method Node.lock automatically adds the lock token for a
newly placed lock to the current Session. If a user requires more
control over which lock tokens are attached to the session, the
Session interface provides the methods addLockToken,
removeLockToken and getLockTokens.

Note that, as mentioned above, any user with the correct lock
token assumes the power to remove a lock and alter nodes under
that lock. It does not have to be the lock owner.

8.4.7 Session-scoped and Open-scoped Locks

When a lock is placed on a node, it can be specified to be either a
session-scoped lock or an open-scoped lock. A session-scoped lock
automatically expires when the session through which the lock
owner placed the lock expires. An open-scoped lock does not expire
until it is either explicitly unlocked or an implementation-specific
limitation intervenes (like a timeout, see below).

In both cases, the lock token must be attached to the current
session in order to alter any nodes locked by that token's lock. In
the case of session-scoped locks, however, the user need not
explicitly do anything since the token is automatically attached to
the session and expires with it in any case. Additionally, since a

 296

session-scoped lock is always tied to the session that created it, it
does not make sense to move the token of session-scoped lock
from its originating session to some other session. Consequently,
Session.removeLockToken(token) will always fail when token
specifies a session-scoped lock (see 8.4.13 Session Methods
Related to the Lock Token).

With open–scoped locks the token is also automatically attached to
the session. However, the user must additionally ensure that a
reference to the lock token is preserved separately so that it can
later be attached to another session. By assumption, an open-
scoped lock is being used to avoid co-expiration with the initial
session. Otherwise, there would be no point in using an open
scoped lock, since session scoping would suffice. It is for handling
these cases of attaching an existing lock token from a previous
session to a new session that the methods Session.addLockToken,
Session.removeLockToken and Session.getLockTokens are
provided. (see 8.4.13 Session Methods Related to the Lock Token).

To determine an existing lock’s scoping, the method
Lock.isSessionScoped() is provided.

8.4.8 Effect of a Lock

If a lock applies to particular node (i.e., the node either holds the
lock or is a descendant of a node holding a deep lock), that node
cannot be changed by anyone except the user who is the token
holder for that lock. The user need not be the lock owner.

Note that since at most one session per repository may hold the
same lock token, serial access to the locked item is ensured.

More precisely, a lock applying to a node prevents all non-token
holders from doing any of the following:

• Adding or removing its properties.

• Changing the values of its properties.

• Adding or removing its child nodes.

• Adding or removing its mixin node types.

Removing a node is considered an alteration of its parent. This
means that a locked node may be removed by any user with
sufficient access permissions as long as its parent node is not
locked.

Similarly, a locked node and its subtree may be moved, if both the
source parent and the destination parent-to-be are not locked.
Locked nodes can always be read and copied (that is, serve as the
source of a copy) by any user with sufficient access permissions.

 297

When an action is prevented due to a lock, a LockException is
thrown either immediately or on the subsequent save.
Implementations may differ on which of these behaviors is used to
enforce locking.

There is at most one lock on any node at one time.

8.4.9 Timing Out

An implementation may unlock any lock at any time due to
implementation-specific criteria, such as time limits on locks.

8.4.10 Locks and Transactions

Locking and unlocking are treated just like any other operation in
the context of a transaction. For example, consider the following
series of operations:

begin
 lock
 do A
 save
 do B
 save
 unlock
commit

In this example the lock and unlock have no effect. This series of
operations is equivalent to:

begin
 do A
 save
 do B
 save
commit

The reason for this is that changes to a workspace are only
published (that is, made visible to other Sessions) upon commit of
the transaction, and this includes changes in the locked status of a
node. As a result, if a lock is enabled and then disabled within the
same transaction, its effect never makes it to the persistent
workspace and therefore it does nothing.

In order to use locks properly (that is, to prevent the “lost update
problem”), locking and unlocking must be done in separate
transactions. For example:

begin
 lock
commit

 298

begin
 do A
 save
 do B
 save
 unlock
commit

This series of operations would ensure that the actions A and B are
protected by the lock.

8.4.11 Locking Methods

The methods for locking, unlocking and querying the locking status
of a node are found in the Node interface itself:

javax.jcr.
Node

Lock lock(boolean isDeep, boolean isSessionScoped)

Places a lock on this node. If successful, this node is said
to hold the lock.

If isDeep is true then the lock applies to this node and all
its descendant nodes; if false, the lock applies only to
this, the holding node.

If isSessionScoped is true then this lock will expire upon
the expiration of the current session (either through an
automatic or explicit Session.logout); if false, this lock
does not expire until explicitly unlocked or automatically
unlocked due to a implementation-specific limitation, such
as a timeout.

Returns a Lock object reflecting the state of the new lock
and including a lock token.

The lock token is also automatically added to the set of
lock tokens held by the current Session.

If successful, then the property jcr:lockOwner is created
and set to the value of Session.getUserID for the current
session and the property jcr:lockIsDeep is set to the
value passed in as isDeep. These changes are persisted
automatically; there is no need to call save.

Note that it is possible to lock a node even if it is checked-
in (the lock-related properties will be changed despite the
checked-in status). See 8.2 Versioning for an explanation
of “checked-in” status.

If this node is not of mixin node type mix:lockable then a

 299

LockException is thrown.

If this node is already locked (either because it holds a
lock or a lock above it applies to it), a LockException is
thrown.

If isDeep is true and a descendant node of this node
already holds a lock, then a LockException is thrown.

If this node does not have a persistent state (has never
been saved), a LockException is thrown.

If the current session does not have sufficient permissions
to place the lock, an AccessDeniedException is thrown.

An InvalidItemStateException is thrown if this node has
pending unsaved changes.

An UnsupportedRepositoryOperationException is
thrown if this implementation does not support locking.

A RepositoryException is thrown if another error occurs.

Lock getLock()

Returns the Lock object that applies to this node. This
may be either a lock on this node itself or a deep lock on a
node above this node.

If this Session (the one through which this Node was
acquired) holds the lock token for this lock, then the
returned Lock object contains that lock token (accessible
through Lock.getLockToken). If this Session does not
hold the applicable lock token, then the returned Lock
object will not contain the lock token (its
Lock.getLockToken method will return null). See Lock,
below.

If this node is not locked (no lock applies to this node)
then a LockException is thrown.

If the current session does not have sufficient permissions
to get the lock, an AccessDeniedException is thrown.

An UnsupportedRepositoryOperationException is
thrown if this implementation does not support locking.

A RepositoryException is thrown if another error occurs.

void unlock()

Removes the lock on this node. Also removes the
properties jcr:lockOwner and jcr:lockIsDeep from this
node. These changes are persisted automatically; there is

 300

no need to call save.

If this node does not currently hold a lock or holds a lock
for which this Session does not have the correct lock
token, then a LockException is thrown. Note however
that the system may give permission to some users to
unlock locks for which they do not have the lock token.
Typically such “lock-superuser” capability is intended to
facilitate administrational clean-up of orphaned open-
scoped locks.

Note also that it is possible to unlock a node even if it is
checked-in (the lock-related properties will be changed
despite the checked-in status). See 8.2 Versioning for an
explanation of “checked-in” status.

If the current session does not have sufficient permissions
to remove the lock, an AccessDeniedException is thrown.

An InvalidItemStateException is thrown if this node has
pending unsaved changes.

An UnsupportedRepositoryOperationException is
thrown if this implementation does not support locking.

A RepositoryException is thrown if another error occurs.

boolean holdsLock()

Returns true if this node holds a lock; otherwise returns
false. To hold a lock means that this node has actually
had a lock placed on it specifically, as opposed to just
having a lock apply to it due to a deep lock held by an
node above.

A RepositoryException is thrown if an error occurs.

boolean isLocked()

Returns true if this node is locked either as a result of a
lock held by this node or by a deep lock on a node above
this node; otherwise returns false.

A RepositoryException is thrown if an error occurs.

8.4.12 The Lock Object

The Lock object represents a lock on a particular node:

javax.jcr.lock.
Lock

 301

String getLockOwner()

Returns the user ID of the user who owns this lock. This is
the value of the jcr:lockOwner property of the lock-
holding node. It is also the value returned by
Session.getUserID at the time that the lock was placed.
The lock owner's identity is only provided for informational
purposes. It does not govern who can perform an unlock
or make changes to the locked nodes; that depends
entirely upon who the token holder is.

boolean isDeep()

Returns true if this is a deep lock; false otherwise.

Node getNode()

Returns the lock holding node. Note that
N.getLock().getNode() (where N is a locked node) will
only return N if N is the lock holder. If N is in the subtree of
the lock holder, H, then this call will return H.

String getLockToken()

May return the lock token for this lock. If this Session
holds the lock token for this lock, then this method will
return that lock token. If this Session does not hold the
applicable lock token then this method will return null.

boolean isLive()

Returns true if this Lock object represents a lock that is
currently in effect. If this lock has been unlocked either
explicitly or due to an implementation-specific limitation
(like a timeout) then it returns false. Note that this
method is intended for those cases where one is holding a
Lock Java object and wants to find out whether the lock
(the repository-level entity that is attached to the lockable
node) that this object originally represented still exists. For
example, a timeout or explicit unlock will remove a lock
from a node but the Lock Java object corresponding to
that lock may still exist, and in that case its isLive
method will return false.

A RepositoryException is thrown if an error occurs.

boolean isSessionScoped()

Returns true if this is a session-scoped lock. Returns
false if this is an open-scoped lock.

void refresh()

If this lock's time-to-live is governed by a timer, this

 302

method resets that timer so that the lock does not timeout
and expire. If this lock's time-to-live is not governed by a
timer, then this method has no effect.

A LockException is thrown if this Session does not hold
the correct lock token for this lock.

A RepositoryException is thrown if another error occurs.

8.4.13 Session Methods Related to the Lock Token

The Session object provides the following methods for managing
lock tokens:

javax.jcr.
Session

void addLockToken(String lt)

Adds the specified lock token to this Session. Holding a
lock token allows the Session object of the lock owner to
alter nodes that are locked by the lock specified by that
particular lock token.

A LockException is thrown if the specified lock token is
already held by another Session.

A RepositoryException is thrown if another error occurs.

String[] getLockTokens()

Returns an array containing all lock tokens currently held
by this session.

void removeLockToken(String lt)

Removes the specified lock token from this session.

A LockException is thrown if the lock associated with the
specified lock token is session-scoped.

A RepositoryException is thrown if another error occurs.

 303

8.5 Searching Repository Content with SQL

A repository (either level 1 or level 2) may support search using the
SQL query syntax.

Whether a particular implementation supports SQL can be
determined by querying the repository descriptor table with
Repository.getDescriptor("OPTION_QUERY_SQL_SUPPORTED") (a
return value of true indicates support for SQL, see 6.1.1.1
Repository Descriptors).

8.5.1 The SQL Language

If supported, the SQL language syntax is invoked by specifying the
constant Query.SQL in QueryManager.createQuery (see 6.6.8
Query API):

javax.jcr.query.
Query

String SQL

A string constant representing the SQL query
language applied to the database view of the
workspace.

8.5.2 Database View

SQL queries can be thought of as working against a database view
of the workspace being searched (similar in principle to the two
XML views described in 6.4 XML Mappings).

Note however, that it is entirely up to the implementation whether
this database view directly reflects the underlying storage
mechanisms of the repository (as it might in repositories that are
actually database-backed). All that is required is that if SQL queries
are supported, they behave as if they were running against the
database view described below.

8.5.2.1 Node Types as Tables

• Each node type (primary or mixin) corresponds to a table.

• Each column in the table corresponds to a property defined
in or inherited by that node type (including properties
inherited from either primary or mixin node types). Modeling
residual properties as columns is optional (see below).

• Each row corresponds to a node in the workspace.

• Note that because of the hierarchical structure of node type
definitions, nodes will appear in more than just one table.
For example, querying the nt:base table will show all nodes
in the workspace, but that table will be limited to the

 304

columns corresponding to the properties defined by
nt:base: jcr:primaryType and jcr:mixinTypes.

• Child node relationships are not recorded in the database
view.

8.5.2.2 Pseudo-property jcr:path

• A special column, jcr:path, that does not correspond to any
actual property is present in node type tables. The jcr:path
column holds the normalized absolute path for the node
represented by each row.

• The jcr:path column always appears in the result table

• Note that the actual value of a particular jcr:path column
within a particular Row of the result table can be calculated
by the implementation at the time that a request is made for
that value. For example, on the call
someRow.getValue("jcr:path") (where someRow is an
instance of Row). This type of “lazy loading” allows
implementations to avoid calculating paths for all nodes in
the return set at query time. Such an approach would be
advantageous for those implementations in which path
calculation is expensive.

• The jcr:path value returned in a result table will be in
compact form, where index notation is only used if
necessary, i.e., where lack of an index indicates an implicit
index of [1]. However, when a test is performed within a
WHERE clause against a jcr:path, the query mechanism will
intelligently match both compact and explicit forms of the
same path. For example, the following WHERE clauses define
the same constraint:

WHERE jcr:path='/foo/bar'

WHERE jcr:path='/foo[1]/bar[1]'

Consequently, to select all same name siblings one uses the
following syntax:

WHERE jcr:path LIKE '/foo/bar[%]'

• Predicates in the WHERE clause that test jcr:path are only
required to support the operators =, <> and LIKE. In the
case of LIKE predicates, support is only required for tests
using the % wildcard character as a match for a whole path
segment (the part between two / characters) or within index
brackets. This set of minimum requirements would, for
example, allow the following path queries:

 305

o Exact path:
jcr:path='/books/mybooks/EffectiveJava'

o Child:
jcr:path LIKE '/books/%' AND NOT jcr:path
LIKE '/books/%/%'

o Descendant:
jcr:path LIKE '/books/mybooks/%'

o Descendant or self:
jcr:path LIKE '/books/mybooks/%' OR
jcr:path='/books/mybooks'

o Index test:
jcr:path LIKE '/books[%]/mybooks[%]'

• See also 6.6.3.3 Property Constraint and 6.6.3.4 Path
Constraint.

8.5.2.3 Path Literals

• Any path literals mentioned within a WHERE clause must be
normalized (no “..” and “.” or trailing “/”).

8.5.2.4 Pseudo-property jcr:score

• Another special column, jcr:score, that does not
correspond to any actual property, must also be present in
the result table.

• The jcr:score can be used to return a relevance value for
each row. The calculation of this value is not defined. It is
not required to always be meaningful. If it is meaningful
then it may, for example, be associated with the result of a
CONTAINS() function (see 8.5.4.5 CONTAINS). Alternatively
it may not be connected to full text search at all, and may
reflect a relevance value derived according to some other
criteria.

• Support for comparing jcr:score in the WHERE clause is not
required.

• In some implementations the label for this column may not
be literally “jcr:score” but instead be the function name
“jcr:score(...)”.

• See also 6.6.3.3 Property Constraint and 6.6.5.2
jcr:contains Function.

8.5.2.5 Namespace delimiting colons

• Since table and column names are, respectively, node type
and property names, they will in many cases contain a

 306

namespace-delimiting colon character. In content repository
SQL the colon is therefore considered a valid character
within table and column names and does not indicate a
parameter, as it would in standard SQL.

8.5.2.6 Joins

• Support for joins is required only on the jcr:path column
and only for joining a primary node type table with a mixin
node type tables. For example:

SELECT nt:file.jcr:path, jcr:lockOwner
FROM nt:file, mix:lockable
WHERE jcr:lockOwner = 'John'
 AND mynt:file.jcr:path=mix:lockable.jcr:path

Additional join support, on other columns and with other
tables, is optional.

8.5.2.7 Multi-value Properties

• Multi-value properties cannot be specified in the SELECT
clause and are excluded when the SELECT clause specifies a
“*”.

• In the WHERE clause the comparison operators function the
same way they do in XPath when applied to multi-value
properties: if the predicate is true of at least one value of a
multi-value property then it is true for the property as a
whole (see 6.6.4.10 Searching Multi-value Properties).

8.5.2.8 Null Values

• In the WHERE clause the term property IS NULL is true if
property is missing from a particular node instance. This
covers the cases where:

o The property is declared explicitly in the node type
but happens not to be present on this particular
node.

o The node type has a residual property declaration
that would allow the specified property to be present
on the node, but it happens not to be present on this
particular node.

o The property is not declared at all (neither explicitly
nor implicitly) in the node type and hence is not
present on this particular node.

• Similarly, property IS NOT NULL tests for the existence of
the property in the node instance (and of course if does

 307

exist it will either be explicitly defined or present due to an
implicit declaration as a residual property).

8.5.2.9 Undefined Property Types

• When a node type T defines a property P with an UNDEFINED
property type this means that two node instances of type T
can each have a property called P but with differing property
types. In such cases the database view of T is a single
column of type VARCHAR (see below). In other words, the
different types are converted to strings.

8.5.2.10 Data Type Mapping

The following type mapping governs the usage of property variables
and literals within a content repository SQL statement.

Property type SQL type

STRING VARCHAR

BINARY BINARY

DOUBLE DOUBLE

LONG BIGINT

BOOLEAN BIT

DATE DATE

NAME VARCHAR (namespace aware)

PATH VARCHAR (namespace aware)

REFERENCE CHAR(36)

8.5.2.11 Optional Features

The following are some common optional features that some
implementations may choose to support (though this list should
not be taken to exclude additional extensions as well).

• It is optional to support the specifying of residual properties
(by name, not wildcard) in the SELECT, WHERE and ORDER BY
clauses.

• It is optional to support properties in the SELECT, WHERE and
ORDER BY clauses that are not explicitly defined in the node
types listed in the FROM clause but which are defined in
subtypes of those node types.

• It is optional to support the specifying of properties in the
SELECT, WHERE and ORDER BY clauses that are not explicitly

 308

defined in the node types listed in the FROM clause but which
are defined in mixin node types that may be assigned to
node instances of the types that are mentioned in the
SELECT clause.

8.5.3 SQL EBNF

Terminals are in bold or in single quotes.

query ::= select [from] [where] [orderby]

select ::= SELECT ('*' | proplist)

from ::= FROM ntlist

where ::= WHERE whereexp

orderby ::= ORDER BY propname [DESC|ASC]
 {',' propname [DESC|ASC]}

proplist ::= propname {',' propname}

ntlist ::= ntname {',' ntname}

whereexp ::= propname op value |
 propname IS NULL |
 propname IS NOT NULL |
 like |
 contains |
 whereexp AND whereexp |
 whereexp OR whereexp |
 NOT whereexp |
 '(' whereexp ')' |
 joinpropname '=' joinpropname

op ::= '='|'>'|'<'|'>='|'<='|'<>'

joinpropname ::= quotedjoinpropname |
 unquotedjoinpropname

quotedjoinpropname ::= ''' unquotedjoinpropname '''

unquotedjoinpropname ::= ntname '.jcr:path'

propname ::= quotedpropname | unquotedpropname

quotedpropname ::= ''' unquotedpropname '''

unquotedpropname ::= /* A property name, possible a
pseudo-property: jcr:score or jcr:path */

ntname ::= quotedntname | unquotedntname

quotedntname ::= ''' unquotedntname '''

unquotedntname ::= /* A node type name */

value ::= ''' literalvalue ''' | literalvalue

 309

literalvalue ::= /* A property value (in standard string
 form) */

like ::= propname LIKE likepattern [escape]

likepattern ::= ''' likechar { likepattern } '''

likechar ::= char | '%' | '_'

escape ::= ESCAPE ''' likechar '''

char ::= /* Any character valid within the
 string representation of a value
 except for the characters % and _
 themselves. These must be escaped */

contains ::= CONTAINS(scope ',' searchexp ')'

scope ::= unquotedpropname | '.'
searchexp ::= ''' exp '''

exp ::= [-]term {whitespace [OR] whitespace [-]term}

term ::= word | '"' word {whitespace word} '"'

word ::= /* A string containing no whitespace */

whitespace ::= /* A string of only whitespace*/

8.5.4 SQL Syntax in Detail

A SQL statement in a content repository query is composed of a
SELECT clause optionally followed by up to three more clauses: a
FROM clause, a WHERE clause and an ORDER BY clause.

8.5.4.1 SELECT

The SELECT clause specifies a list of properties (columns) by name,
or the wildcard character (“*”) to mean “all properties”. Notice the
special case of joinpropname, this provides for joins, but only on
the jcr:path column, as described in 8.5.2 Database View. See
also 6.6.3.1 Column Specifier.

8.5.4.2 FROM

The FROM clause narrows the search to include only the specified
tables (node types). For example, the query

SELECT myapp:productName FROM mynt:shippable

would return all properties in the workspace called myapp:product
that belong to nodes of node type mynt:shippable. Note that
when a node type is specified in FROM clause the table (in the
database view) searched will contain all nodes of the named type
plus all node of subtypes of the named type. However the columns
available in that table will reflect only those declared or inherited by
the named type. To search all node types (tables) one would

 310

specify FROM nt:base (though an implementation can always
prevent searches whose scope is unfeasibly large). See also 6.6.3.2
Type Constraint.

8.5.4.3 WHERE

The WHERE clause allows you to place constraints on the nodes
(rows) returned by specifying values or ranges of values for the
properties (columns) of those nodes (rows). For example, the
query,

SELECT myapp:image FROM mynt:document WHERE height < 100
AND keyword LIKE '%apple%'

would find all the properties called myapp:image of nodes of type
mynt:document (and subtypes) that also have:

• a property called height with value less than 100 and

• a property called keyword with substring “apple”.

The evaluation order within an expression is:

• (...) (Parentheses)

• <, >, =, <=, >=, <>, LIKE, IS NULL, IS NOT NULL (Operators)

• CONTAINS (Function)

• NOT (Logical negation)

• AND (Logical conjunction)

• OR (Logical disjunction)

Literal values of types NAME, PATH and STRING must be enclosed in
single quotes. Any literal single quote within the pattern must be
escaped as two consecutive single quotes.

The collation sequence used when comparing STRING values using
>, <, >= or <= is implementation-specific.

For types LONG and DOUBLE comparisons are done by numeric value,
not string representation.

In case of type mismatches in a comparison LONGs can be
converted to DOUBLEs; for any other type mismatch each operand is
converted to STRING (see 6.2.6 Property Type Conversion) and
compared using the established collation sequence.

See also 6.6.3.3 Property Constraint and 6.6.4.10 Searching
Multi-value Properties.

 311

8.5.4.4 LIKE

Within the WHERE clause, the LIKE operator is used to pattern
match the string form of a property's value. Its argument
(likepattern) may contain the percent (“%”) and underscore (“_”)
characters.

The likepattern must be enclosed in single quotes. Any literal
single quote within the pattern must be escaped as two consecutive
single quotes.

A likepattern with neither a percent (“%”) nor an underscore (“_”)
character makes the LIKE operator equivalent to an equals (“=”)
operator.

Within the likepattern, literal instances of percent (“%”) or
underscore (“_”) must be escaped using the SQL ESCAPE clause
which allows the definition of an arbitrary escape character within
the context of a single LIKE statement. For example

SELECT * FROM mytype WHERE a LIKE 'foo\%' ESCAPE '\'

the above statement will select nodes of type 'mytype' with
property 'a' that contain exactly the value 'foo%'

See also 8.5.2.2 Pseudo-property jcr:path, 6.6.3.3 Property
Constraint, 6.6.3.4 Path Constraint and 6.6.5.1 jcr:like
Function.

8.5.4.5 CONTAINS

Within the WHERE clause, the CONTAINS function is used to embed a
statement in a full-text search language. The function takes two
parameters: scope and searchexp (see EBNF above)

At minimum, all implementations must support the simple search-
engine syntax defined by searchexp in the EBNF above. This
syntax is based on the syntax of search engines like Google.

The semantics of the simple search expression are as follows:

• Terms separated by whitespace are implicitly ANDed
together.

• Terms may also be ORed with explicit use of the OR keyword.

• AND has higher precedence than OR.

• Terms may be excluded by prefixing with a – (minus sign)
character. This means that the result set must not contain
the excluded term.

• A term may be either a single word or a phrase delimited by
double quotes (“"”).

 312

• The entire text search expression (searchexp in the EBNF,
above) must be delimited by single quotes (“'”).

• Within the searchexp literal instances of single quote (“'”),
double quote (“"”) and hyphen (“-”) must be escaped with a
backslash (“\”). Backslash itself must therefore also be
escaped, ending up as double backslash (“\\”).

The scope specifies the particular property that the full-text search
is to be performed on. However, support for searching on particular
properties is not required. Specifying '.' indicates that the full-text
search is to be done on all indexed properties of the nodes specified
by the rest of the query. Only support for a scope of '.' is required.

The scope of the CONTAINS clause specifying '.' is the intersection of
two sets. These two sets are:

• The values of those properties that are the immediate
children of the nodes specified by the FROM clause and other
subclauses of WHERE.

• The contents of the full-text index of the repository. A
repository may, for example, index only the values of
STRING properties. Additionally, it may index some binary
properties according to some application-specific encoding.
The scope of full-text indexing is implementation specific.

For example, the query,

SELECT * FROM mynt:product WHERE
CONTAINS(., 'apples "good for you" –oranges')

would return a result containing all nodes of type mynt:product
that have am indexed property whose value contains the string
“apples”, the string “good for you” and does not contain the string
“oranges”.

The relevance score for each matching node may be returned as in
score column. The specification does not define the calculation of
the score value, it is implementation specific.

An implementation may additionally support other embedded full-
text search languages other than the simple search engine style
shown here.

See also 6.6.3.3 Property Constraint, 6.6.5.2 jcr:contains
Function and 8.5.2.4 Pseudo-property.

8.5.4.6 ORDER BY

The ORDER BY clause causes the returned QueryResult objects to
be sorted according to the value of a particular property.

 313

Implementations must support ordering on jcr:score (or
jcr:score(...) depending on the implementation). Support for
ordering on PATH and NAME properties is not required. If it is
supported then the collation sequence for these types is
implementation specific.

See also 8.5.2.4 Pseudo-property, 6.6.3.5 Ordering Specifier and
 6.6.5.5 order by Clause.

8.5.5 Query Results

Results are returned in the same structure as with XPath queries.
See 6.6.3 Structure of a Query and 6.6.12 Query Results.

 314

	1 Preface
	1.1 Documents Included

	2 Introduction
	2.1 Motivation
	2.2 Goals

	3 Use Cases
	3.1 Swappability
	3.2 Resource Crunch (Personalization)

	4 The Repository Model
	4.1 API Basics
	4.1.1 Traversal Access
	4.1.2 Direct Access
	4.1.3 Writing to the Repository
	4.1.3.1 Removing Items
	4.1.3.2 Transient Storage in the Session
	4.1.3.3 Transactions

	4.1.4 Nodes, Properties and Items

	4.2 Compliance Levels
	4.3 Same–Name Siblings
	4.3.1 Index Notation
	4.3.2 Support for Same Name Siblings is Optional
	4.3.3 Properties Cannot Have Same Name Siblings

	4.4 Orderable Child Nodes
	4.4.1 Orderable Same Name Siblings
	4.4.2 Non-orderable Child Nodes
	4.4.3 Orderable Child Node Support is Optional
	4.4.4 Properties are Never Orderable

	4.5 Namespaces
	4.6 Path Syntax
	4.6.1 Names vs. Paths
	4.6.2 Current Item and Parent Item

	4.7 Properties
	4.7.1 Multi-Value Properties
	4.7.2 Reference, Path and Name Property Types
	4.7.3 No Null Values

	4.8 Node Types
	4.9 Referenceable Nodes
	4.9.1.1 When UUIDs are Assigned
	4.9.1.2 Reference Properties

	4.10 Workspaces
	4.10.1 Single Workspace Repositories
	4.10.2 Multiple Workspaces and Corresponding Nodes
	4.10.2.1 Example

	4.11 Versioning
	4.11.1.1 Relation Between Nodes and Version Histories
	4.11.1.2 Example

	4.12 Metadata
	4.13 Hierarchical versus Direct Access

	5 Example Implementations
	5.1 A File System-backed Content Repository
	5.2 A WebDAV-backed Content Repository
	5.3 Database-backed Content Repository
	5.4 XML-backed Content Repository
	5.5 Namespace Prefixes in the Examples

	6 Level 1 Repository Features
	6.1 Accessing the Repository
	6.1.1 Repository
	6.1.1.1 Repository Descriptors
	6.1.1.2 Thread Safety of Repository Methods

	6.1.2 Credentials

	6.2 Reading Repository Content
	6.2.1 Session Read Methods
	6.2.2 Workspace Read Methods
	6.2.3 Node Read Methods
	6.2.4 Property Read Methods
	6.2.5 Property Types
	6.2.5.1 Date
	6.2.5.2 Name
	6.2.5.3 Path
	6.2.5.4 Reference

	6.2.6 Property Type Conversion
	6.2.7 Value
	6.2.7.1 Creating New Value Instances
	6.2.7.2 Equality Conditions
	6.2.7.3 Value Length

	6.2.8 Item Read Methods
	6.2.9 Effect of Access Denial on Read
	6.2.10 Example

	6.3 Namespaces
	6.3.1 Namespace Registry
	6.3.2 Prefix Syntax
	6.3.3 Session Namespace Remapping
	6.3.3.1 Using Session Namespace Remapping
	6.3.3.2 Scope of Session Namespace Remapping
	6.3.3.3 Conflict between Session Remapping and Namespace Registry

	6.3.4 Transactions and Namespaces

	6.4 XML Mappings
	6.4.1 System View XML Mapping
	6.4.1.1 Example

	6.4.2 Document View XML Mapping
	6.4.2.1 General Structure
	6.4.2.2 Workspace Root
	6.4.2.3 XML Text
	6.4.2.4 Invalid Item Names
	6.4.2.5 Multi-value Properties
	6.4.2.6 Invalid Characters in Values
	6.4.2.7 Example

	6.4.3 Escaping of Names
	6.4.4 Escaping of Values

	6.5 Exporting Repository Content
	6.5.1 Encoding

	6.6 Searching Repository Content
	6.6.1 XPath over Document View
	6.6.2 XPath and SQL
	6.6.3 Structure of a Query
	6.6.3.1 Column Specifier
	6.6.3.2 Type Constraint
	6.6.3.3 Property Constraint
	6.6.3.4 Path Constraint
	6.6.3.5 Ordering Specifier

	6.6.4 Adapting XPath to the Content Repository
	6.6.4.1 Same-Name Siblings
	6.6.4.2 Document Order
	6.6.4.3 Context Node
	6.6.4.4 Mapping Property Types to XML Types
	6.6.4.5 Abbreviated Syntax
	6.6.4.6 Axes
	6.6.4.7 Predicates
	6.6.4.8 Boolean Functions
	6.6.4.9 Escaping
	6.6.4.10 Searching Multi-value Properties
	6.6.4.11 Comparison Operators
	6.6.4.12 text() Node Test
	6.6.4.13 element() Node Test

	6.6.5 XPath Extensions
	6.6.5.1 jcr:like Function
	6.6.5.2 jcr:contains Function
	6.6.5.3 jcr:score function
	6.6.5.4 jcr:deref Function
	6.6.5.5 order by Clause

	6.6.6 XPath Grammar
	6.6.6.1 Named Terminals
	6.6.6.2 Non-Terminals
	6.6.6.3 Notes on the Grammar

	6.6.7 Search Scope
	6.6.8 Query API
	6.6.9 QueryManager
	6.6.10 The Query Object
	6.6.11 Persistent vs. Transient Queries
	6.6.12 Query Results
	6.6.13 Permissions

	6.7 Node Types
	6.7.1 Node Type Configuration
	6.7.2 What Constitutes a Node Type
	6.7.3 Node Type Discovery in Level 1
	6.7.4 Primary and Mixin Node Types
	6.7.5 Special Properties jcr:primaryType and jcr:mixinTypes
	6.7.6 Property Definitions
	6.7.7 Child Node Definitions
	6.7.8 Inheritance Among Node Types
	6.7.9 Discovering available Node Types
	6.7.10 Discovering the Node Types of a Node
	6.7.11 Discovering the Definition of a Node Type
	6.7.12 ItemDefinition
	6.7.13 PropertyDefinition
	6.7.14 NodeDefinition
	6.7.15 Residual Definitions
	6.7.16 Value Constraints
	6.7.16.1 Choice Lists

	6.7.17 Automatic Item Creation
	6.7.18 Discovery of Constraints on Existing Items
	6.7.19 Predefined Node Types
	6.7.19.1 Node Type Definition Notation

	6.7.20 Node Type Definitions in Content
	6.7.21 Predefined Mixin Node Types
	6.7.21.1 mix:lockable
	6.7.21.2 mix:referenceable
	6.7.21.3 mix:versionable

	6.7.22 Predefined Primary Node Types
	6.7.22.1 Node Type Inheritance Hierarchy
	6.7.22.2 Additions to the Hierarchy
	6.7.22.3 nt:base
	6.7.22.4 nt:unstructured
	6.7.22.5 nt:hierarchyNode
	6.7.22.6 nt:file
	6.7.22.7 nt:linkedFile
	6.7.22.8 nt:folder
	6.7.22.9 nt:resource
	6.7.22.10 nt:nodeType
	6.7.22.11 nt:propertyDefinition
	6.7.22.12 nt:childNodeDefinition
	6.7.22.13 nt:versionHistory
	6.7.22.14 nt:versionLabels
	6.7.22.15 nt:version
	6.7.22.16 nt:frozenNode
	6.7.22.17 nt:versionedChild
	6.7.22.18 nt:query

	6.8 System Node
	6.9 Access Control
	6.9.1 JAAS
	6.9.2 Checking Permissions

	7 Level 2 Repository Features
	7.1 Writing Repository Content
	7.1.1.1 Writing to Transient Storage
	7.1.1.2 Writing Directly to the Workspace
	7.1.1.3 Effect of Transactions
	7.1.1.4 Invalid States
	7.1.1.5 Timing of Validation
	7.1.1.6 Session
	7.1.1.7 Item

	7.1.2 Saving by UUID and Path
	7.1.3 Reflecting Item State
	7.1.3.1 Re-using Item Objects
	7.1.3.2 Effect of Save and Refresh
	7.1.3.3 Invalid Items
	7.1.3.4 Seeing Changes Made by Other Sessions
	7.1.3.5 Resolving Conflicts with Persistent State
	7.1.3.6 Item Status
	7.1.3.7 Save vs Direct

	7.1.4 Adding Nodes
	7.1.4.1 Example

	7.1.5 Adding and Writing Properties
	7.1.5.1 Example
	7.1.5.2 Setting Multi-value vs. Single-value Properties
	7.1.5.3 Creating Value Objects

	7.1.6 Removing Nodes and Properties
	7.1.7 Moving and Copying
	7.1.7.1 Example

	7.1.8 Updating and Cloning Nodes across Workspaces
	7.1.8.1 Creating a Corresponding Node
	7.1.8.2 Update
	7.1.8.3 getCorrespondingNodePath

	7.1.9 Referenceable Nodes
	7.1.10 Treatment of UUIDs
	7.1.11 Ordering Child Nodes

	7.2 Adding and Deleting Namespaces
	7.2.1 Visibility of Namespace Registry Changes

	7.3 Importing Repository Content
	7.3.1 Import from System View
	7.3.2 Import from Document View
	7.3.2.1 Roundtripping
	7.3.2.2 Example

	7.3.3 Respecting Property Semantics
	7.3.4 Determining Node Types
	7.3.5 Determining Property Types
	7.3.6 Workspace Import Methods
	7.3.7 Session Import Methods
	7.3.8 Importing jcr:root

	7.4 Assigning Node Types
	7.4.1 The Special Properties jcr:primaryType and jcr:mixinTypes
	7.4.2 Assigning a Primary Node Type
	7.4.3 Assigning Mixin Node Types
	7.4.4 Automatic Addition and Removal of Mixins
	7.4.5 Serialization and Node Types

	7.5 Thread-Safety Requirements

	8 Optional Repository Features
	8.1 Transactions
	8.1.1 Container Managed Transactions: Sample Request Flow
	8.1.2 User Managed Transactions: Sample Code
	8.1.3 Save vs. Commit
	8.1.4 Single Session Across Multiple Transactions
	8.1.5 Mention of Transactions within this Specification

	8.2 Versioning
	8.2.1 Versionable Nodes
	8.2.2 Version Storage
	8.2.2.1 jcr:versionStorage
	8.2.2.2 Searching and Traversing Version Storage
	8.2.2.3 nt:versionHistory
	8.2.2.4 nt:versionLabels
	8.2.2.5 nt:version
	8.2.2.6 nt:frozenNode
	8.2.2.7 nt:versionedChild
	8.2.2.8 Version Graph
	8.2.2.9 Reference Properties within a Version
	8.2.2.10 Removal of Versions

	8.2.3 The Base Version
	8.2.4 Initializing the Version History
	8.2.5 Check In
	8.2.6 Check Out
	8.2.7 Restoring a Version
	8.2.8 Restoring a Group of Versions
	8.2.9 Update
	8.2.10 Merge
	8.2.10.1 Merge Algorithm
	8.2.10.2 Merging Branches

	8.2.11 OnParentVersion Attribute
	8.2.11.1 COPY
	Child Node
	Property

	8.2.11.2 VERSION
	Child Node
	Property

	8.2.11.3 INITIALIZE
	Child Node
	Property

	8.2.11.4 COMPUTE
	Child Node
	Property

	8.2.11.5 IGNORE
	Child Node
	Property

	8.2.11.6 ABORT
	Child Node or Property

	8.2.12 The OnParentVersionAction Class
	8.2.13 Removal of Versions
	8.2.14 Versioning API
	8.2.14.1 Node Versioning Methods
	8.2.14.2 Workspace Versioning Methods
	8.2.14.3 VersionHistory Interface
	8.2.14.4 The Version Interface

	8.2.15 Serialization of Version Storage
	8.2.16 Versioning within a Transaction

	8.3 Observation
	8.3.1 Event Listeners
	8.3.2 Listener Registration
	8.3.3 Observation Manager
	8.3.4 Event Production
	8.3.5 Event Filtering
	8.3.6 Event Bundles
	8.3.7 Interpretation of Events
	8.3.7.1 Creating a new Node
	8.3.7.2 Creating a Property
	8.3.7.3 Changing a Property
	8.3.7.4 Removing a Child Node
	8.3.7.5 Removing a Property
	8.3.7.6 Copying a Subtree
	8.3.7.7 Moving a Subtree
	8.3.7.8 Re-ordering a set of Child Nodes
	8.3.7.9 Adding a Mixin
	8.3.7.10 Removing a Mixin
	8.3.7.11 Checking in a Node
	8.3.7.12 Restoring, Updating or Merging a Node
	8.3.7.13 Locking and Unlocking a Node

	8.3.8 Deserializing Content
	8.3.9 External Mechanisms
	8.3.10 Location of Listeners
	8.3.11 Persistence of Event Listeners
	8.3.12 Vetoable Event Listeners
	8.3.13 Exceptions

	8.4 Locking
	8.4.1 Discovery of Lock Capabilities
	8.4.2 Lockable
	8.4.3 Shallow and Deep Locks
	8.4.4 Lock Owner
	8.4.5 Placing and Removing a Lock
	8.4.6 Lock Token
	8.4.7 Session-scoped and Open-scoped Locks
	8.4.8 Effect of a Lock
	8.4.9 Timing Out
	8.4.10 Locks and Transactions
	8.4.11 Locking Methods
	8.4.12 The Lock Object
	8.4.13 Session Methods Related to the Lock Token

	8.5 Searching Repository Content with SQL
	8.5.1 The SQL Language
	8.5.2 Database View
	8.5.2.1 Node Types as Tables
	8.5.2.2 Pseudo-property jcr:path
	8.5.2.3 Path Literals
	8.5.2.4 Pseudo-property jcr:score
	8.5.2.5 Namespace delimiting colons
	8.5.2.6 Joins
	8.5.2.7 Multi-value Properties
	8.5.2.8 Null Values
	8.5.2.9 Undefined Property Types
	8.5.2.10 Data Type Mapping
	8.5.2.11 Optional Features

	8.5.3 SQL EBNF
	8.5.4 SQL Syntax in Detail
	8.5.4.1 SELECT
	8.5.4.2 FROM
	8.5.4.3 WHERE
	8.5.4.4 LIKE
	8.5.4.5 CONTAINS
	8.5.4.6 ORDER BY

	8.5.5 Query Results

