
Content Server
Version: 7.0

Developer’s Guide

Document Revision Date: Mar. 27, 2007

FATWIRE CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. In no event shall FatWire be liable for any
loss of profits, loss of business, loss of use of data, interruption of business, or for indirect, special, incidental, or
consequential damages of any kind, even if FatWire has been advised of the possibility of such damages arising
from this publication. FatWire may revise this publication from time to time without notice. Some states or
jurisdictions do not allow disclaimer of express or implied warranties in certain transactions; therefore, this
statement may not apply to you.

Copyright © 2007 FatWire Corporation. All rights reserved.

This product may be covered under one or more of the following U.S. patents: 4477698, 4540855, 4720853,
4742538, 4742539, 4782510, 4797911, 4894857, 5070525, RE36416, 5309505, 5511112, 5581602, 5594791,
5675637, 5708780, 5715314, 5724424, 5812776, 5828731, 5909492, 5924090, 5963635, 6012071, 6049785,
6055522, 6118763, 6195649, 6199051, 6205437, 6212634, 6279112 and 6314089. Additional patents pending.

FatWire, Content Server, Content Server Bridge Enterprise, Content Server Bridge XML, Content Server COM
Interfaces, Content Server Desktop, Content Server Direct, Content Server Direct Advantage, Content Server
DocLink, Content Server Engage, Content Server InSite Editor, Content Server Satellite, and Transact are
trademarks or registered trademarks of FatWire, Inc. in the United States and other countries.

iPlanet, Java, J2EE, Solaris, Sun, and other Sun products referenced herein are trademarks or registered
trademarks of Sun Microsystems, Inc. AIX, IBM, WebSphere, and other IBM products referenced herein are
trademarks or registered trademarks of IBM Corporation. WebLogic is a registered trademark of BEA Systems,
Inc. Microsoft, Windows and other Microsoft products referenced herein are trademarks or registered trademarks
of Microsoft Corporation. UNIX is a registered trademark of The Open Group. Any other trademarks and product
names used herein may be the trademarks of their respective owners.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/) and
software developed by Sun Microsystems, Inc. This product contains encryption technology from Phaos
Technology Corporation.

You may not download or otherwise export or reexport this Program, its Documentation, or any underlying
information or technology except in full compliance with all United States and other applicable laws and
regulations, including without limitations the United States Export Administration Act, the Trading with the Enemy
Act, the International Emergency Economic Powers Act and any regulations thereunder. Any transfer of technical
data outside the United States by any means, including the Internet, is an export control requirement under U.S.
law. In particular, but without limitation, none of the Program, its Documentation, or underlying information of
technology may be downloaded or otherwise exported or reexported (i) into (or to a national or resident,
wherever located, of) Cuba, Libya, North Korea, Iran, Iraq, Sudan, Syria, or any other country to which the U.S.
prohibits exports of goods or technical data; or (ii) to anyone on the U.S. Treasury Department’s Specially
Designated Nationals List or the Table of Denial Orders issued by the Department of Commerce. By downloading
or using the Program or its Documentation, you are agreeing to the foregoing and you are representing and
warranting that you are not located in, under the control of, or a national or resident of any such country or on any
such list or table. In addition, if the Program or Documentation is identified as Domestic Only or Not-for-Export
(for example, on the box, media, in the installation process, during the download process, or in the
Documentation), then except for export to Canada for use in Canada by Canadian citizens, the Program,
Documentation, and any underlying information or technology may not be exported outside the United States or
to any foreign entity or “foreign person” as defined by U.S. Government regulations, including without limitation,
anyone who is not a citizen, national, or lawful permanent resident of the United States. By using this Program
and Documentation, you are agreeing to the foregoing and you are representing and warranting that you are not
a “foreign person” or under the control of a “foreign person.”

Content Server Developer’s Guide
Document Revision Date: Mar. 27, 2007
Product Version: 7.0

FatWire Technical Support
www.fatwire.com/Support

FatWire Headquarters
FatWire Corporation
330 Old Country Road
Suite 207
Mineola, NY 11501
www.fatwire.com

http://www.fatwire.com/Support/index.html
www.fatwire.com

3

Table of

Contents
About This Guide .23
Who Should Use This Guide . 23
How This Guide Is Organized . 23
Related Publications . 24

Part 1. Overview

1 Overview of Content Server . 27
Content Server Product Family . 28

Product Summary . 28
Third-Party Components. 31
J2EE Compliance . 31
Content Server Systems . 31

The Content Server Core . 33
Servlets and Java APIs . 33
Page-Generation Components. 36
Database Management Functions . 38
Sessions and Cookies . 39
Event Management Features. 40

Satellite Server. 40
Handling the HTTP Requests . 40
Satellite Server Servlets and APIs . 40

CS-Direct . 42
Basic Asset Model . 42
Standard CS Interface . 45
Content Server Clients (Interface Options). 46
Sites and the Site Plan. 46
Sample Sites . 46
Content Server 7.0 Developer’s Guide

Table of Contents
4

Template, CSElement, and SiteEntry Assets . 47
Custom CS-Direct XML and JSP Tags. 47
Approval and Publishing. 47
Revision Tracking . 48
Workflow . 48
Searching and Search Engines . 49

CS-Direct Advantage. 49
Flex Asset Model . 49
Assetsets and Searchstates: Searching the Online Site . 52
Shopping Carts and Commerce Context . 52
GE Lighting Sample Site . 53
Custom CS-Direct Advantage XML and JSP tags . 53

Content Server Clients (Interface Options) . 54
Engage . 55

Visitor Data and Segments . 55
Recommendations. 55
Promotions . 56
Persistent, Linked Visitor Sessions. 56
Custom Engage XML and JSP tags . 56

 Content Server Portal Interface . 57

2 Overview of Sites . 59
Content Management Sites . 60
Online Sites . 61
Developers and the Content Management Site . 62
Sites and the Site Plan . 62
Sites and the Database . 64

3 Content Server Development Process. 65
Step 1: Set Up the Team . 66
Step 2: Create Functional and Design Specifications . 67

Functional Requirements . 67
Page Design. 67
Caching Strategy . 67
Security Strategy (Access Control). 67
Separate Format from Content (Elements from Assets) . 68
Data Design. 69

Step 3: Set Management System Requirements . 70
Step 4: Implement the Data Design . 71
Step 5: Build the Online Site . 71
Step 6: Set Up the Management System . 72

Import Content as Assets . 72
Import Catalog Data and Flex Asset Data . 72
Instruct the Editorial Team About Site Design. 72

Step 7: Set Up the Delivery System . 73
Content Server 7.0 Developer’s Guide

Table of Contents
5

Step 8: Publish to the Delivery System . 73

Part 2. Programming Basics

4 Programming with Content Server. 77
Choosing a Coding Language . 78
The Content Server Context . 78

The ICS Object . 78
The FTCS tag . 79

Content Server JSP . 79
Content Server Standard Beginning . 79
JSP Implicit Objects . 82
Syntax . 82
Actions . 82
Declarations . 83
Scriptlets and Expressions . 83
JSP Directives . 83
Content Server Tag Libraries . 84

Content Server XML . 86
Content Server Standard Beginning . 86
XML Entities and Reserved Characters . 87
XML Parsing Errors . 87

Content Server Tags . 88
Tags That Create the Content Server Context . 89
Tags That Handle Variables . 89
Tags That Call Pages and Elements . 90
Tags That Create URLs. 91
Tags That Control Caching . 92
Tags That Set Cookies . 92
Programming Construct Tags . 93
Tags That Manage Compositional and Approval Dependencies 93
Tags That Retrieve Information About Basic Assets . 94
Tags That Create Assetsets (Flex Assets) . 96
Tags That Create Searchstates (Flex Assets) . 98

Variables . 100
Reserved Variables . 100
Setting Regular Variables . 102
Setting Session Variables . 103
Working With Variables . 105
Variables and Precedence . 108
Best Practices with Variables . 108

Other Content Server Storage Constructs . 109
Built-ins. 109
Content Server 7.0 Developer’s Guide

Table of Contents
6

Lists . 109
Counters . 110

Values for Special Characters . 111

5 Page Design and Caching . 113
Modular Page Design . 114
Caching . 115

Content Server Caching . 115
BlobServer and Caching . 115
Satellite Server Caching . 116

Viewing the Contents of the Satellite Server Cache . 121
CacheManager . 122
The SiteCatalog Table. 122
The Cache Key . 122
Caching Properties . 123

Double-Buffered Caching . 124
Implementing Double-Buffered Caching . 127
Setting cscacheinfo . 129
Coding for Caching. 129
Caching and Security . 130

6 Intelligent Cache Management with Content Server 133
Content Server’s Rendering Engine Cache . 134
CacheManager . 134
Enabling CacheManager . 135

Tier 1 Cache Configuration Properties . 135
Tier 2 Cache Configuration Properties . 137

7 Advanced Page Caching Techniques . 139
Overview . 140
Configuring the Content Server Cache . 141
Configuring the Blob Server Cache. 143
Configuring the Satellite Server Cache . 144
CacheInfo String Syntax . 145

CacheInfo String: First Part . 145
CacheInfo String: Second Part . 145
Page Timeout . 146
Absolute Moment in Time . 146
TimePattern. 146
Wildcard . 146
Blank . 146

8 Content Server Tools and Utilities . 147
Content Server Explorer . 148

Connecting to a Content Server Database. 148
Content Server 7.0 Developer’s Guide

Table of Contents
7

CatalogMover . 149
Starting CatalogMover . 149
Connecting to Content Server . 150
CatalogMover Menu Commands . 151
Exporting Tables . 152
Importing Tables . 154
Command Line Interface . 156

Property Editor . 158
Starting the Property Editor . 158
Setting Properties . 158
Merging Property Files . 159

Page Debugger. 160
XMLPost . 160

9 Sessions and Cookies . 161
What Is a Session? . 162
Session Lifetime . 162

Session Variables Maintained by Content Server. 162
Logging In and Logging Out . 163

Sessions Example . 163
FeelingsForm Element . 163
SetFeeling Element . 164
Meat Element . 164

What Is a Cookie? . 165
CookieServer. 165
Cookie Tags . 165

Cookie Example . 166
Start.xml . 166
ColorForm. 167
CreateCookie. 167
DisplayWelcome. 167
Running the Cookie Example . 168

Tips and Tricks . 168
Satellite Server Session Tracking . 168

Flushing Session Information . 168

10 Error Logging and Debugging . 171
Overview . 172

Error Log File Contents . 173
Additional Error Message Locations . 176
XML Syntax and Runtime Error Checking . 177

Debugging Properties . 178
Using Error Codes with Tags . 179

Tag Examples Using Error Codes. 180
Error Number Rules . 181
Content Server 7.0 Developer’s Guide

Table of Contents
8

Using the Page Debugger . 181
Invoking the Page Debugger. 182
Page Debugger Commands. 184

Debugging Content Server Applications . 187
Debugging Engage . 187
Property Messages . 189

Part 3. Data Design

11 Data Design: The Asset Models . 193
Asset Types and Asset Models . 194

Two Data Models . 194
Default (Core) Asset Types. 194
Which Asset Model Should You Use to Represent Your Content? 197

The Basic Asset Model . 198
Basic Asset Types from the Burlington Financial Sample Site 198
Relationships Between Basic Assets. 199
Category, Source, and Subtype . 200
Basic Asset Types and the Database. 202

The Flex Asset Model . 207
The Flex Family . 207
Sample Site Flex Families. 208
Flex Attributes. 210
Flex Parents and Flex Parent Definitions . 211
Flex Assets and Flex Definition Assets . 213
Flex Filters . 214
Flex Families and the Database . 216

Assetsets and Searchstates. 219
Search Engines and the Two Asset Models. 220
Tags and the Two Asset Models . 221
Summary: Basic and Flex Asset Models . 222

Where the Asset Models Intersect . 222
Where the Asset Models Differ . 222

Summary: Asset Types . 223

12 The Content Server Database . 225
Types of Database Tables . 226

Object Tables . 226
Tree Tables . 227
Content Tables . 228
Foreign Tables. 228
System Tables . 229
Identifying a Table’s Type . 230
Content Server 7.0 Developer’s Guide

Table of Contents
9

Types of Columns (Fields) . 231
Generic Field Types . 231
Database-Specific Field Types . 232
Indirect Data Storage with the Content Server URL Field . 233

Creating Database Tables . 234
Creating Object Tables . 234
Creating Tree Tables. 236
Creating Content Tables . 237
Registering a Foreign Table . 239

How Information Is Added to the System Tables . 240
Property Files and Remote Databases . 241

Property Files for Remote Databases . 242
Accessing the Property File for a Remote Database. 242

13 Managing Data in Non-Asset Tables . 243
Methods and Tags . 244

Writing and Retrieving Data . 244
Querying for Data . 246
Lists and Listing Data . 246

Coding Data Entry Forms . 248
Adding a Row . 248
Deleting a Row . 251
Querying a Table. 254
Querying a Table with an Embedded SQL Statement . 262

Managing the Data Manually . 266
Deleting Non-Asset Tables . 267

14 Resultset Caching and Queries . 269
Overview . 270

Database Queries. 270
How Resultset Caching Works . 270
Reducing the Load on the Database . 271

How Content Server Identifies a Resultset . 271
Specifying the Table Name . 272

SELECTTO. 272
EXECSQL. 272
CALLSQL. 272
Search Forms in the Content Server Interface . 273
Query Asset. 273
SEARCHSTATE . 273

Flushing the Resultset Cache. 273
Enabling Resultset Caching. 274

Table-Specific Properties . 275
Planning Your Resultset Caching Strategy. 275

Summary . 275
Content Server 7.0 Developer’s Guide

Table of Contents
10
15 Designing Basic Asset Types . 277
The AssetMaker Utility . 278

How AssetMaker Works. 278
Asset Descriptor Files . 282
Columns in the Asset Type’s Database Table . 284
Elements and SQL Statements for the Asset Type . 288

Creating Basic Asset Types. 292
Overview. 292
Before You Begin . 293
Step 1: Code the Asset Descriptor File . 294
Step 3: Upload the Asset Descriptor File in to Content Server 302
Step 4: Create the Asset Table (continued from Step 3). 303
Step 5: Configure the Asset Type . 304
Step 6: Enable the Asset Type on Your Site. 305
Step 7: Fine-Tune the Asset Descriptor File. 306
Step 8: (Optional) Customize the Asset Type Elements. 306
Step 9: (Optional) Configure Subtypes. 308
Step 10: (Optional) Configure Association Fields . 309
Step 11: (Optional) Configure Categories . 311
Step 12: (Optional) Configure Sources. 312
Step 13: (Conditional) Add Mimetypes . 313
Step 14: (Optional) Edit Search Elements to Enable Indexed Search 314
Step 15: Code Templates for the Asset Type . 314
Step 16: Move the Asset Types to Other Systems . 314

Deleting Basic Asset Types. 315
Images and eWebEditPro . 315

16 Designing Flex Asset Types . 317
Design Tips for Flex Families . 318

Visitors on the Delivery System . 318
Users on the Management System . 318
How Many Attribute Types Should You Create?. 319
Designing Flex Attributes . 319
How Many Definition Types Should You Create?. 321
Designing Parent Definition and Flex Definition Assets . 321
Summary . 323

The Flex Family Maker Utility . 323
The Flex Asset Elements. 323

Creating a Flex Asset Family . 324
Overview. 324
Before You Begin . 325
Step 1: Create a Flex Family or a New Flex Family Member 325
Step 2: Enable the New Flex Asset Types . 327
Step 3: Create Flex Attributes. 329
Step 4: (Optional) Create Flex Filter Assets . 333
Content Server 7.0 Developer’s Guide

Table of Contents
11
Step 5: Create Parent Definition Assets . 335
Step 5: Create Flex Definition Assets . 337
Step 6: Create Flex Parent Assets . 339
Step 8: Code Templates for the Flex Assets . 341
Step 9: Test Your Design (Create Test Flex Assets) . 341
Step 10 (optional): Create Flex Asset Associations . 341
Step 11: Move the Asset Types to Other Systems . 342

Editing Flex Attributes, Parents, and Definitions . 342
Editing Attributes . 342
Editing Parent Definitions and Flex Definitions. 343
Editing Parents and Flex Assets . 343

Using Product Sets . 344
What Is a Product Set? . 344
Creating Product Sets . 344

Custom Filter Classes or Transformation Engines . 345
Registering a New Filter Class . 345
Registering a New Transformation Engine. 345

17 Designing Attribute Editors . 347
Overview . 348

The presentationobject.dtd File . 349
The Attribute Editor Asset . 351
The Attribute Editor Elements . 357

Creating Attribute Editors . 361
Customizing Attribute Editors . 363

Example: Customized Attribute Editor. 363
Editing Attribute Editors . 368

18 Importing Assets of Any Type . 369
The XMLPost Utility . 370

Overview. 370
XMLPost Configuration Files . 372

Configuration Properties for XMLPost. 372
Configuration Properties for the Posting Element . 375
Configuration Properties for the Source Files. 377
Sample XMLPost Configuration File . 381

XMLPost Source Files. 383
Sample XMLPost Source File. 383
XMLPost and File Encoding. 383

Using the XMLPost Utility . 384
Before You Begin . 384
Running XMLPost from the Command Line . 384
Running XMLPost as a Batch Process . 386
Running XMLPost Programmatically . 386

Customizing RemoteContentPost and PreUpdate . 387
Content Server 7.0 Developer’s Guide

Table of Contents
12
Setting a Field Value Programmatically . 387
Setting an Asset Association. 388

Troubleshooting XMLPost . 389
Debugging the Posting Element . 389

19 Importing Flex Assets . 391
Overview . 392

Importing the Data Structure Flex Asset Types . 392
Importing the Flex Assets . 392
Importing Flex Assets: The Process . 392

XMLPost and the Flex Asset Model . 394
Internal Names vs. External Names . 395

Importing the Structural Asset Types in the Flex Model . 395
Attribute Editors . 395
Flex Attributes. 397
Flex Definitions and Flex Parent Definitions . 401
Flex Parents. 405

Importing Flex Assets with XMLPost. 406
Configuration File Properties and Source File Tags for Flex Assets 407
Sample Flex Asset Configuration File for addData . 410
Sample Flex Asset Source File for addData . 412
Sample Flex Asset Configuration File for RemoteContentPost 415
Sample Flex Asset Source File for RemoteContentPost. 416

Editing Flex Assets with XMLPost . 418
Configuration Files for Editing Flex Assets . 418
Source Files for Editing Flex Assets. 418

Deleting Assets with XMLPost . 420
Configuration Files for Deleting Assets . 420
Source Files for Deleting Assets . 421

20 Importing Flex Assets with the BulkLoader Utility 423
Overview of BulkLoader . 424

BulkLoader Features . 424
How BulkLoader Works . 424
Using the BulkLoader Utility . 425

Importing Flex Assets from Flat Tables . 426
Step 1: Use XMLPost to Import Structural Assets . 427
Step 2: Create the Input Table (Data Source) . 427
Step 3: Create the Mapping Table. 429
Step 4: Create the BulkLoader Configuration File . 430
Step 5: Run the BulkLoader Utility . 437
Step 6: Review Feedback Information . 438
Step 7: Approve and Publish the Assets to the Delivery System 438

Importing Flex Assets Using a Custom Extraction Mechanism 438
IDataExtract Interface . 439
Content Server 7.0 Developer’s Guide

Table of Contents
13
IPopulateDataSlice . 443
IFeedback Interface. 447

Approving Flex Assets with the BulkApprover Utility . 448
Creating a Configuration File . 448
Using BulkApprover . 450

Part 4. Site Development

21 Creating Template, CSElement, and SiteEntry Assets. 455
What’s New in This Chapter . 456
Pages, Pagelets, and Elements . 457

Elements, Pagelets, and Caching . 457
Calling Pages and Elements . 457
Page vs. Pagelet. 459

CSElement, Template, and SiteEntry Assets. 459
Template Assets . 460
CSElement Assets . 461
SiteEntry Assets . 461
What About Non-Asset Elements? . 462

Creating Template Assets . 462
Pre-requisites. 463
Procedures for Creating Template Assets . 466

Creating CSElement Assets. 481
Pre-requisites. 481
Procedures for Creating CSElement Assets . 482

Creating SiteEntry Assets . 493
Pre-requisites. 493
Procedures for Creating SiteEntry Assets. 494

Managing Template, CSElement, and SiteEntry Assets . 499
Designating Default Approval Templates (Export to Disk Only) 499
Editing Template, CSElement, and SiteEntry Assets . 499
Sharing Template, CSElement, and SiteEntry Assets. 500
Deleting Template, CSElement, and SiteEntry Assets . 500
Previewing Template, CSElement, and SiteEntry Assets. 501

Using Content Server Explorer to Create and Edit Element Logic 502
Creating Templates and CSElements . 502
Editing Templates and CSElements . 503

22 Creating Templates to Support Graphical Page Design 505
Overview . 506
Implementation . 506
Template Context . 510
Guidelines for Creating Master Templates . 510
Content Server 7.0 Developer’s Guide

Table of Contents
14
Tracking Changes to Master Pages . 511

23 Creating Collection, Query, Stylesheet, and Page Assets 513
Previewing Assets . 514
Approving Assets . 514
Sharing Assets . 515
Deleting Assets . 515
Collection Assets . 516

Before You Begin . 516
Creating Collection Assets . 517
Sharing Collection Assets . 518

Query Assets . 518
Query Assets and Other Assets . 518
How the Query Is Stored. 519
Commonly Used Fields for Queries . 519
Before You Begin . 521
Creating Query Assets . 522
Sharing Query Assets . 523
Previewing and Approving Query Assets. 523

Stylesheet Assets . 523
Creating Stylesheet Assets . 524
Sharing Stylesheet Assets . 525

Page Assets . 525
Creating a Page Asset . 526
Placing Page Assets . 528
Moving Page Assets in the Site Tree . 529
Placing Page Assets and Workflow . 530
Editing Page Assets. 531
Deleting Page Assets. 531

24 Coding Elements for Templates and CSElements 533
About Dependencies . 534

The Publishing System and Approval Dependencies . 534
Page Generation and Compositional Dependencies . 538

About Coding to Log Dependencies . 539
ASSET.LOAD and asset:load. 539
The ASSETSET (assetset) Tag Family. 540
RENDER.GETPAGEURL and render:getpageurl . 541
RENDER.LOGDEP (render:logdep) . 541
RENDER.FILTER and render:filter . 542
RENDER.UNKNOWNDEPS and render:unknowndeps . 543

Calling CSElement and SiteEntry Assets . 543
Coding Elements to Display Basic Assets. 544

Assets That Represent Simple Content . 545
Associations . 546
Content Server 7.0 Developer’s Guide

Table of Contents
15
ImageFile Assets or Other Blob Assets . 547
Basic Assets That Can Have Embedded Links. 547
Collections . 548
Query Assets . 549
Page Assets . 551

About Coding Elements that Display Flex Assets. 553
Assetsets . 553
Searchstates. 554
Assetsets, Searchstates, and Flex Attribute Asset Types . 555
Scope. 555

Coding Templates That Display Flex Assets . 556
Example Data Set for the Examples in This Section . 556
Examples of Assetsets with One Product (Flex Asset). 557
Special Cases: Flex Attributes of Type Text, Blob, and URL 559
Examples of Assetsets with More Than One Product (Flex Asset) 562

Creating URLs for Hyperlinks . 567
RENDER.GETPAGEURL (render:getpageurl) . 567
RENDER.SATELLITEBLOB (render:satelliteblob) . 568
RENDER.GETBLOBURL (render:getbloburl) . 568
Using the referURL Variable . 569

Handling Error Conditions . 570
Using the Errno Variable . 570
Ensuring that Incorrect Pages Are Not Cached . 571

25 Template Element Examples for Basic Assets . 573
Example 1: Basic Modular Design . 574

First Element: Home . 575
Second Element: MainStoryList . 575
Third Element: LeadSummary . 577
Fourth Element: TeaserSummary . 577
Back to LeadSummary . 578
Back to MainStoryList . 578
Back to Home . 579

Example 2: Coding Links to the Article Assets in a Collection Asset 579
First element: SectionFront . 579
Second element: PlainList. 580

Example 3: Using the ct Variable . 581
First Element: SectionFront . 582
Second Element: TextOnlyLink . 583
ColumnistFront . 584

Example 4: Coding Templates for Query Assets . 585
First Element: Home . 585
Second Element: WireFeedBox . 586
Third Element: ExecuteQuery . 587
Back to WireFeedBox. 587
Content Server 7.0 Developer’s Guide

Table of Contents
16
Example 5: Displaying an Article Asset Without a Template. 588
First Element: Full . 588
Second Element: AltVersionBlock . 589
Third Element: EmailFront . 589

Example 6: Displaying Site Plan Information. 590
First Element: Home . 590
Second Element: SiteBanner. 590
Third Element: TopSiteBar. 591
Back to SiteBanner . 593

Example 7: Displaying Non-Asset Information . 593
First Element: Home . 593
Second Element: ShowMainDate . 593

26 Configuring Sites for Multilingual Support . 595
Overview . 596

Dimensions . 596
Dimension Sets . 596
Multilingual Support Across Sites . 597
Translations and Multilingual Sets . 597
Asset Relationships . 598
Approval Dependencies . 599

Working with Locale Filtering . 600
Handling Asset Relationships Through Locale Filtering . 600
Included Locale Filters . 601
Custom Locale Filters . 603
Compositional Dependencies . 603
Adding Filtering Support to Your Site . 604

Planning Multilingual Support for a Site. 606
Configuring Multilingual Support for a Site . 608

Configuration Quick Reference . 608
Enabling the “Dimension” and “DimensionSet” Asset Types 609
Enabling the “Locale” Subtype of the “Dimension” Asset Type 610
Creating a Locale . 610
Sharing a Locale to Another Site . 611
Creating and Configuring a Dimension Set . 612
Sharing a Dimension Set to Another Site . 612
Configuring a Locale Filter. 613
Configuring the Fallback Hierarchy of the Hierarchical Filter. 613
Bulk-Assigning a Default Locale to Assets in a Site . 615

27 User Management on the Delivery System . 619
The Directory Services API . 620

Entries . 620
Hierarchies . 620
Groups. 620
Content Server 7.0 Developer’s Guide

Table of Contents
17
Directory Services Tags . 621
Directory Operations. 621
Error Handling . 624
Troubleshooting Directory Services Applications . 625

Controlling Visitor Access to Your Online Sites . 626
ACL Tags . 626
User Tags . 627
Content Server and Encryption . 627

Creating Login Forms . 627
Prompt for Login (PromptForLogin.xml). 627
Root Element for the Login Page . 628

Creating User Account Creation Forms . 629
PromptForNewAccount . 629
Root Element for the CreateAccount Page . 630

Visitor Access in the Burlington Financial Sample Site . 633
Membership Table . 633
Users and Passwords. 633
Member Accounts . 633
Membership Processing Elements . 633

28 The HelloAssetWorld Sample Site . 635
Overview . 636

HelloAssetWorld Templates . 636
HelloAssetWorld Asset Types . 637

Modified Asset Types . 637
The HelloArticle Asset Type . 637
The HelloImage Asset Type . 638

HelloAssetWorld Templates . 640
The HelloArticle Template . 640
The HelloCollection Template . 643
The HelloPage Template. 646

The HelloQuery Asset . 648

29 The Burlington Financial Sample Site . 649
Overview . 650
Navigation Features. 651

Breadcrumbs . 652
Best Practices. 653

Searching. 653
Keywords . 653
Hot Topics. 653
Topic Directory . 654
Related Stories . 655
Text-Only Versions. 656
Plain Text Parallel Site . 656
Content Server 7.0 Developer’s Guide

Table of Contents
18
E-mail This Story . 657
AssetMaker Asset Types. 657
Mimetype . 657
Collections of Collections. 658
Membership . 658
Wire Feed . 659
Featured Funds . 659
Fund Finder . 659
Page Cache Parameters . 660

Part 5. Management System Features

30 Customizing the User Interface . 663
Overview of the Tree . 664

Loading the Tree Tabs . 664
Refreshing the Tree. 671

Trees and Security . 672
Tree Error Logging . 672

31 Coding for the InSite Editor . 673
Overview . 674
The INSITE.EDIT Tag . 676

Parameters. 676
Syntax . 677
Supported Data Types and Input Types . 678

Template Element Examples . 678
Example for Basic Asset . 679
Example for Flex Assets . 680
Example for an Attribute of Type Blob . 681

32 Customizing Workflow . 683
Workflow Step Conditions . 684
Workflow Actions . 685

Step Action Elements . 686
Timed Action Elements . 688
Deadlock Action Elements . 690
Group Deadlock Action Elements . 693
Delegation Action Elements . 695
Content Server 7.0 Developer’s Guide

Table of Contents
19
Part 6. Web Services

33 Overview of Web Services . 699
What Are Web Services? . 700
SOAP and Web Services . 700
Supported SOAP Version . 700
Supported WSDL Version. 700
Related Programming Technologies . 701

34 Creating and Consuming Web Services . 703
Using Predefined Web Services . 704

Accessible Information . 704
WSDL File Location. 704
Process Flow . 705
Consider Your Data . 705
Generating the Client Interface . 705
Writing Client Calls . 705

Creating Custom Web Services. 706
Process Flow . 706
Consider Your Data . 706
Creating a Content Server Page . 707
Writing a Content Server Element . 708
Creating a WSDL File. 709

Consuming Web Services . 711
Locating the Web Service . 711
Gathering Information from the Remote WSDL File. 711
Providing Information to Content Server . 711

Part 7. Engage

35 Creating Visitor Data Assets. 715
About Visitor Data Assets . 716

Visitor Attributes. 716
History Attributes and History Definitions. 716
Segments . 716
Categories . 717
Developing Visitor Data Assets: Process Overview. 717

Creating Visitor Data Assets . 718
Creating Visitor Attributes . 718
Creating History Attributes. 721
Creating History Definitions. 724

Verifying Your Visitor Data Assets . 725
Approving Visitor Data Assets . 726
Content Server 7.0 Developer’s Guide

Table of Contents
20
36 Recommendation Assets . 727
Overview . 728

Development Process . 728
Creating a Dynamic List Element . 729

37 Coding Engage Pages . 731
Commerce Context and Visitor Context . 732
Identifying Visitors and Linking Sessions. 732
Collecting Visitor Data . 733

Coding Site Pages That Collect Visitor Data . 734
Templates and Recommendations . 736

Creating Templates for Recommendations. 737
Shopping Carts and Engage. 738
Debugging Site Pages . 738

Session Links . 738
Visitor Data Collection . 739
Recommendations and Promotions. 739

Appendices

A. Creating a Hierarchical Flex Family .743
Overview . 744

Hierarchical Organization . 744
Flex Family Specifications . 745

Procedures . 746
Step 1: Create a Flex Family. 746
Step 2: Enable the New Flex Asset Types . 747
Step 3: Add a “Flex Family” Tab to Content Server’s Tree 748
Step 5: Create Parent Definition Assets . 749
Step 6: Create Flex Parent Assets . 751
Step 7: Create Flex Definition Assets . 754
Step 8: Create Flex Assets . 758
Step 9: Translate the Formulaic Data Model into a Real-World Data Model 761
Step 10: Develop Your Real-World Model . 763
Suggestions and Guidelines for Creating a Multi-Valued Model. 765

Next Steps . 766

B. Content Server URL Assemblers .767
Overview of Content Server URL Assemblers . 768

URL Assembly . 768
Assembler Discovery and Disassembly . 768

Assemblers Installed with Content Server . 769
Working with Assemblers . 769
Content Server 7.0 Developer’s Guide

Table of Contents
21
Creating Assemblers . 769
Registering and Ranking Assemblers . 770
Modifying Link Tags . 771

C. White Space and Compression .773
White Space and JSP . 774
White Space and XML . 774
Compression . 774
JSP Design. 775

Index .777
Content Server 7.0 Developer’s Guide

Table of Contents
22
Content Server 7.0 Developer’s Guide

23
About This Guide
This guide describes the Content Server developer’s environment. It begins with an
overview of Content Server, its add-on products, and the development process you will
follow to create your content management (CM) framework. The rest of the guide
explains your main tasks:

• Building the online site.
This requires designing and writing code to deliver content with the “look and feel”
that best represents your organization’s business. It also involves implementing page
caching, security, and session management techniques.

• Creating the back end of the online site.
This requires building content management (CM) sites, developing the data model to
be used by those sites, and enabling optional interfaces for the end users. When the
CM sites are ready for use, authorized content providers can work at those sites to
create and manage content for the online site, collaborate in workflows, and publish to
the online site.

• Implementing optional functionality; for example, web services and features that are
provided by add-on products such as Engage.

Who Should Use This Guide
This guide is written especially for developers. It is assumed that developers have a clear
knowledge of their company’s business needs, and a basic understanding of their roles in
the development of the online site and its back end. This guide is also useful to
administrators, who collaborate with developers by setting up content management sites,
site users, workflow processes, publishing methods, and Content Server client options.

Developers must know Java, JavaScript Pages (JSP), XML, and HTML. Administrators
are not required to have programming experience, although a technical background is
assumed.

How This Guide Is Organized
Information in this guide is organized by parts, where each part presents a set of chapters
that are related to a particular task or function.
Content Server 7.0 Developer’s Guide

About This Guide

Related Publications
24
Part 1, “Overview” presents an overview of Content Server, its add-on products, and
the development process you will follow to create your content management (CM)
framework.

Part 2, “Programming Basics” describes Content Server’s programming
environment—page caching techniques, tools and utilities for developing and
maintaining online sites, session management options, and error logging and
debugging techniques.

Part 3, “Data Design” presents information regarding data design, modeling, and
management using the basic and flex asset models.

Part 4, “Site Development” explains how to develop your online site to deliver
formatted content. It presents information about creating templates and other assets
that make content delivery possible.

Part 5, “Management System Features” describes how to customize the Content
Server interface and workflow processes.

Part 6, “Web Services” explains how to integrate Content Server with client
applications that have a SOAP interface.

Part 7, “Engage” explains how to use this marketing product to gather demographic
information and use that information for personalizing each visitor’s page.

The final part, “Appendices,” contains supplementary information. One appendix
contains a tutorial for creating a hierarchically organized flex family. Other
appendices explain how to work with URL assemblers and implement whitespace
compression techniques.

As you read this guide, keep a copy of the Content Server Property Files Reference handy,
as well as a copy of the Content Server Administrator’s Guide. The Property Files
Reference provides detailed descriptions of the properties that are mentioned in this guide.
The Content Server Administrator’s Guide covers functions related to the management of
CM sites, users, workflow processes, CS clients, and security.

Related Publications
The FatWire library includes publications written for Content Server users, administrators,
and developers. The publications are provided as product manuals with your Content
Server installation. They are also posted on the Web at the following url:

http://e-docs.fatwire.com/CS

Check the site regularly for updates.

Other publications, such as case studies and white papers, provide information about
Content Server’s feature set and its business applications. To obtain these publications,
contact sales@fatwire.com.
Content Server 7.0 Developer’s Guide

25
Par t 1

Overview
This part provides an overview of the Content Server products, and the development
process. It contains the following chapters:

• Chapter 1, “Overview of Content Server”

• Chapter 2, “Overview of Sites”

• Chapter 3, “Content Server Development Process”
Content Server 7.0 Developer’s Guide

26
Content Server 7.0 Developer’s Guide

27
Chapter 1

Overview of Content Server
The Content Server product family is a high-performance, large-scale content
management and delivery system. You and your development team use the Content Server
product family to create and manage large and complex web sites, portals, sites that run
businesses, and other sites such as WAP, all of which are generically referred to as “online
sites.”

The Content Server product family is described in the following sections:

• Content Server Product Family

• The Content Server Core

• Satellite Server

• CS-Direct

• CS-Direct Advantage

• Engage

• Content Server Portal Interface
Content Server 7.0 Developer’s Guide

Chapter 1. Overview of Content Server

Content Server Product Family
28
Content Server Product Family
The Content Server product family consists of the Content Server product and several add-
on offerings that support e-business constructs such as departmental sites, customer/
partner web sites, and commerce implementations. This release also introduces support for
the portal environment and offers a new add-on—the Content Server Portal Interface.

The login screen of your CS system lists which products are installed on the system.
Descriptions of the products are given in this section. Also included is a brief description
of the supporting third-party software and CS compliance with J2EE standards.

Product Summary
The Content Server product is the application on which the CS product family is built.
Content Server is composed of the Content Server core, a set of developer’s utilities,
Satellite Server co-resident, two modules, which prior to version 6.1 were offered as
products (the modules can be optionally installed), and several clients that provide
optional content management interfaces, mostly for business users.

• Content Server core is the operating system that all content applications are built
upon. The Content Server core consists of APIs whose functions are to power the
entire CS product family, communicate with the database that is chosen to store
content, write content to and read content from the database, publish that content from
system to system, and serve that content to site visitors. The Content Server core also
provides basic page caching and query results caching functionality for enhanced
system performance.

While there is no graphical user interface, the Content Server core does provide
Content Server utilities, which are the developer’s tools for managing the Content
Server database and various code. The utilities are GUI-based and must be manually
installed (unless otherwise noted). They are:

- CS-Explorer, for viewing and editing tables in the Content Server database.
(This utility is automatically installed with the Content Server core.)

- CatalogMover, for exporting and importing database tables.

- XMLPost, for incrementally importing data into the Content Server database.

- BulkLoader, for quickly importing large amounts of data into the Content Server
database.

- Property Editor, for viewing and organizing property files (system configuration
files).

- Page Debugger, for stepping through the execution of XML and JSP code.

Typically, e-businesses develop their content management systems not on the CS core,
but on the CS module or product that content providers will use to produce and
manage content for the online site. However, you always have the option to use the
Content Server core alone to develop your own applications, if your
e-business has special needs that the Content Server product line does not meet.

• Satellite Server (co-resident) is a caching application. It supplements Content
Server’s caching functionality by providing additional page caches. The tandem use of
the CS and Satellite Server caches results in automatic double-buffered caching,
ensuring that outdated content is never displayed on your live web site.
Content Server 7.0 Developer’s Guide

Chapter 1. Overview of Content Server

Content Server Product Family
29
Satellite Server is installed by default with Content Server. The same Satellite Server
application is available as a separate product for installation on remote Content Server
systems.

• Content Server Direct (CS-Direct) is the base module, built on the Content Server
core.

CS-Direct introduces the basic asset model, in which content entered by CS users is
stored as objects called assets in the Content Server database. Each type of asset is
contained in one primary storage table in the database, such that basic assets of one
type can be associated with basic assets of another type. However, the assets cannot
inherit each other’s properties (called “attributes” in this guide). The basic asset model
thus supports only flat data structures.

Using Java APIs in the Content Server core, CS-Direct renders the standard Content
Server interface, allowing easy access to functions in the Content Server core and
providing functions to support the basic asset model.

CS-Direct also supports several clients that deliver alternative interfaces. The clients
are described in the bulleted item “Content Server clients,” on this page.

• Content Server Direct Advantage (CS-Direct Advantage) is the advanced data
module. It is built on top of the Content Server core and on top of CS-Direct in order
to make use of their functionality as well as the interface.

Independently, CS-Direct Advantage introduces a comprehensive data model, called
the flex asset model, in which each asset type uses several storage tables such that
hierarchical data structures can be created, and child assets inherit attribute values
from their parent assets. The flex asset model also supports flat data structures, within
its own framework. (Note that the flex asset model functions independently of the
basic asset model; tables created within the two models do not intersect.)

Whether you choose the flex asset model or the basic asset model depends on the
complexity of the data you plan to serve to your visitors. The flex asset model has
historically been used for creating large online catalogs of products. However, it can
be used in less complex situations, and is especially desirable when the intent is to
eventually convert flat data structures to hierarchical structures. The conversion
process does not require you to re-create the data.

CS-Direct Advantage also supports e-commerce applications by introducing
commerce-related features such as the shopping cart construct.

• Content Server clients are optional interfaces, mostly for the content providers.
Content Server clients require CS-Direct in order to function. Unless otherwise noted,
Content Server clients derive their support from CS-Direct, function with both
CS-Direct and CS-Direct Advantage, and must be manually installed. The clients are
as follows:

- Content Server Desktop (CS-Desktop) offers content authors the familiar
Microsoft Word interface as an alternative to the standard CS interface (which is
rendered by CS-Direct). Authors create their content directly in Word documents.
However, note that CS-Desktop requires the content in Word documents to be
structured, because the content will be parsed to database tables.

For example, when using CS-Desktop to author content, the user opens a Word
document, enters content, and structures the content by tagging it with the same
field names as defined in the equivalent content-entry form that Content Server
provides. The tagging utility is embedded in the Word interface, and the selection
of fields is determined by the CS administrator. When the Word document is
Content Server 7.0 Developer’s Guide

Chapter 1. Overview of Content Server

Content Server Product Family
30
saved, the content in its fields is parsed to fields in the appropriate database
table(s). The Word document remains available for editing.

- Content Server DocLink (CS-DocLink) supports unstructured content in the
flex asset family.

CS-DocLink provides a drag-and-drop interface for uploading and downloading
unstructured types of content—documents, graphics, and other single binary
files—that are managed as flex assets. CS-DocLink also presents the hierarchical
structure of any flex asset family in the Content Server database as folders and
files in the Windows Explorer application.

- InSite Editor supports the editing of content directly on the rendered page.
Regular Content Server users can make quick edits in context, while infrequent
users can accomplish their work without having to learn the Content Server
interface.

- eWebEditPro is a third-party HTML editor from Ektron, Inc. Once configured,
eWebEditPro can be used by content providers from within InSite Editor.

Developers can use eWebEditoPro to create basic assets whose text-entry fields
use eWebEditPro as the input mechanism for the field. Developers can also create
attribute editors for flex attributes that use eWebEditPro as the input medium.

Three versions of eWebEditPro are supported: v 3.0.0.7, v 4.0.0.14 (both are used
strictly as HTML editors), and eWebEditPro+XML. Only one version of
eWebEditPro can be used by each Content Management installation. To obtain
eWebEditPro or eWebEditPro+XML, contact your FatWire sales representative.

Note

CS-DocLink derives its support from CS-Direct, but functions only with
CS-Direct Advantage.

Note

Unlike other clients, InSite Editor is automatically installed by
CS-Direct.

Note

Information in this guide is based on the assumption that your Content Server
systems are running the CS-Direct and CS-Direct Advantage modules.

In this guide, the term “Content Server” means the Content Server core. The term
“Content Server product” means the Content Server core, Satellite Server co-
resident, the modules CS-Direct and CS-Direct Advantage, and the Content Server
clients.
Content Server 7.0 Developer’s Guide

Chapter 1. Overview of Content Server

Content Server Product Family
31
To enhance Content Server’s main capabilities, several content-driven products are
available:

• Satellite Server (remote), a caching application that speeds the performance of your
delivery system by serving cached images and Content Server pages from remote
servers. You use Satellite Server to reduce the load on the Content Server delivery
system and to deliver pages more quickly.

Note that Satellite Server (remote) is the same application as the co-resident Satellite
Server, mentioned earlier in this section. It is offered as a stand-alone product to help
you optimize system performance according to the load on the system.

• Engage, an application that enables your marketing team to divide your site visitors
into segments and then target those segments with personalized messages, or
promotional, marketing, and informational messages.

• Content Server Portal Interface, a product that re-interprets the Content Server
standard interface as a set of portlets in the content provider’s workspace. One set of
portlets is provided for the management of structured content, another set for the
management of documents (file-based content).

Each component is summarized below. Readers who are interested in knowing more about
the components of the CS product family can find detailed information and references to
information in the rest of this chapter, starting on page 33.

Third-Party Components
The products in the Content Server product family are themselves layered on top of a
database management system (DBMS), a web server, and an application server:

• The DBMS stores information about your web site’s content.

• Web servers respond to requests for static content by serving HTML pages.

• Application servers are the interface between a DBMS and a web server. Application
servers provide fault-tolerance, clustering, and a failover mechanism. The Content
Server product makes extensive use of the underlying application server.

The code that you write for your online sites is independent of the DBMS, web servers,
and application servers on your content management systems. With only a few exceptions,
the code that you write for one configuration will continue to work when moved to a new
configuration.

J2EE Compliance
Java 2 Platform, Enterprise Edition (J2EE) is an industry standard for developing multi-
tier enterprise applications. J2EE is a framework for simplifying enterprise applications by
basing them on standardized, modular components; by providing a complete set of
services to those components; and by handling many details of application behavior
automatically, without complex programming.

All of the applications in the Content Server product family conform 100% to the J2EE
standard.

Content Server Systems
When you are using Content Server for your content management needs, you and the
others on your team work with up to four different systems:
Content Server 7.0 Developer’s Guide

Chapter 1. Overview of Content Server

Content Server Product Family
32
• Development system, where developers and designers plan and create the online site.

All of the CS products that you have purchased are installed on this system (including
Engage, if you are using Engage).

• Management system, where content providers such as writers, editors, reviewers,
graphic artists, product managers, and marketers develop the content that is delivered
to visitors of the online site. Revision tracking and workflow features track changes to
assets (content), monitoring them until they are approved to be published to the
delivery system.

Only Content Server and Engage (if it is being used) are installed on this system.

• Delivery system, where the content you are making available or the products that you
are selling are served to your visitors or customers.

If you are delivering your content dynamically, all of the Content Server products that
you purchased are installed on this system. If you are delivering your content
statically—that is, if you are serving static HTML pages—your delivery system is a
web server only, and you do not need to install any of the Content Server products on
that system.

• Testing system, where you or your QA engineers test the performance of both the
management system and the delivery system. If a dedicated testing system is not
available, testing can be done on the development system.

As a developer, you spend the majority of your time working on the development system.
When the asset types that you develop and the site that you have designed are ready, you
migrate your work from the development system to the management system. As assets are
created, modified, and approved by the content providers on the management system, they
are published from the management system to the delivery system.
Content Server 7.0 Developer’s Guide

Chapter 1. Overview of Content Server

The Content Server Core
33
The Content Server Core
The Content Server core is the operating system that powers the entire Content Server
product family. Although the CS modules make it easier for you to design the data
structure of the data that you want to serve from your online site, and to design and
assemble the online site, it is the Content Server core that actually serves that data.

In addition to being an operating system that runs the product family and serves your
content, the Content Server core is a toolset. It provides Java methods and utilities that you
can use for designing your online site, for developing your own content management
applications, and for customizing the Content Server modules/products.

Servlets and Java APIs
The Content Server operating system consists of several servlets that run on top of an
application server. Each servlet is invoked when necessary to perform a discrete set of
tasks. Each servlet has a corresponding Java API with Java methods and custom XML and
JSP tags that you use to invoke the functions that you need to use. Servlets are shown in
the following figure:

The Content Server servlets are as follows:

• ContentServer – Generates and serves pages dynamically. This servlet provides disk
caching, session management, event management, searching, and personalization
services.

• CatalogManager – Provides most of the database management for the Content
Server database, including revision tracking, security, resultset caching, and
publishing services.

• TreeManager – Manages the tree tables, which store hierarchical information about
other tables in the Content Server database.

• BlobServer – Locates and serves binary large objects (blobs). Blobs are not processed
in any way—they are served as is, as they are stored.

• DebugServer – Provides tools that help you debug your XML code.

• CookieServer – Serves cookies for Content Server pages, whether those pages are
delivered by the ContentServer servlet or by the Satellite Server application.

Note

The ContentServer servlet (one word) is distinct from Content Server (two
words), which refers to the application.

Web Server

Application Server

Content
Server

Catalog
Manager

Tree
Manager

Blob
Server

Debug
Server

Cookie

Server

Hello

CS
Content Server 7.0 Developer’s Guide

Chapter 1. Overview of Content Server

The Content Server Core
34
• HelloCS – Displays version information about the Content Server software installed
on your system.

In general, you do not need to know which servlet performs which service or task. You
simply invoke the appropriate Java method or XML or JSP tag and let the Content Server
core application determine which servlet to call. The exception to this rule is when you
write code that references a servlet URL; that is, when you include a link to a blob or to
another page on a Content Server page. Because the ContentServer servlet and the
BlobServer servlet reside at different URLs, you must include the URL of the appropriate
servlet in your <A HREF> tags.

For information about the coding links to blobs and pages, see Chapter 4, “Programming
with Content Server” and Chapter 24, “Coding Elements for Templates and CSElements.”

Publishing APIs
You make content available to the visitors of your online site by moving it from your
management system to your delivery system. This process is called publishing.

The Content Server core application provides two publishing APIs: Export and Mirror.
The Export API supports static pages by rendering your Content Server pages into static
HTML files. The Mirror API supports dynamic pages by copying publishable data from
tables in the Content Server database on your management system to the corresponding
tables in the Content Server database on your delivery system.

Content Server’s publishing APIs are the foundation of the publishing functionality that
CS-Direct delivers, in particular the two publishing options called “Export to Disk” and
“Mirror to Server.”

• For information about the publishing APIs, see the Content Server Javadoc, Content
Server Administrator’s Guide, and the Content Server Tag Reference.

• For information about the publishing features delivered with the Content Server
products, see the publishing chapter in the Content Server Administrator’s Guide.

Content Server Utilities
As previously mentioned, Content Server provides GUI-based developers’ utilities for
managing the Content Server database in a way that facilitates the development and
maintenance of web sites. The utilities are CS-Explorer, CatalogMover, XMLPost,
BulkLoader, Property Editor, and Page Debugger.

The utilities are used together with the Content Server browser-based interface. Chapter 8,
“Content Server Tools and Utilities” provides brief descriptions of the utilities, and tells
you how to start them.

Other chapters provide in-depth information regarding the usage of the utilities in the
context of basic assets, flex assets, non-asset tables, elements, and pages:

• For additional information about CS-Explorer usage, see:

- Chapter 16, “Designing Flex Asset Types,” in the section “Custom Filter Classes
or Transformation Engines” on page 345

- Chapter 21, “Creating Template, CSElement, and SiteEntry Assets”

- Chapter 24, “Coding Elements for Templates and CSElements”
Content Server 7.0 Developer’s Guide

Chapter 1. Overview of Content Server

The Content Server Core
35
• For additional information about CatalogMover usage, see Chapter 21, “Creating
Template, CSElement, and SiteEntry Assets” (pages 459 and 462).

• For additional information about XMLPost usage, see:

- Chapter 11, “Data Design: The Asset Models”

- Chapter 15, “Designing Basic Asset Types”

- Chapter 16, “Designing Flex Asset Types”

- Chapter 18, “Importing Assets of Any Type”

- Chapter 19, “Importing Flex Assets” (entire chapter)

- Chapter 20, “Importing Flex Assets with the BulkLoader Utility”

- Chapter 23, “Creating Collection, Query, Stylesheet, and Page Assets”

• For additional information about BulkLoader usage, see:

- Various sections of Chapter 19, “Importing Flex Assets”

- Chapter 20, “Importing Flex Assets with the BulkLoader Utility”

• For additional information about Page Debugger usage, see Chapter 10, “Error
Logging and Debugging.”

• Information about various properties in the Property Editor is presented throughout
this guide as necessary. All properties are described in detail in the Content Server
Property Files Reference.

Search Engine Interfaces
The Content Server core does not provide a search engine but it does provide an interface
to Verity, a third-party search engine. For information about using the search engine on
either your management system or your delivery system, see the Content Server
Administrator’s Guide.
Content Server 7.0 Developer’s Guide

Chapter 1. Overview of Content Server

The Content Server Core
36
Page-Generation Components
While the Content Server core supports both static and dynamic pages, dynamic page
generation is its main function, and is the subject of this section.

A dynamic CS page differs from a typical HTML page, as shown in the following table:

Page Formatting Code: Element Files
In very simplistic terms, Content Server’s main function is to separate format from
content. By separating the two, Content Server enables you to reuse the same bits of
formatting code for many pieces of content. For example, if you want to change the format
of article assets, you rewrite the code in one place, rather than having to rewrite code for
every article in your system.

Your formatting code (Java, XML, JSP, HTML, JavaScript, and so on) is stored in files
called elements. The code extracts the content from the database and formats the content.
Because content is formatted only when a page is requested, you have the opportunity to
design pages that will be constructed on-the-fly, according to the identity of the visitor
requesting them.

Pagelets
A page in the Content Server environment is the result of an HTTP request displayed in a
browser. Content Server creates a page by compiling pagelets (page components, such as

Note

In this guide, “static pages” are also called “HTML pages.” “Dynamic
pages” are called “Content Server pages” to make it clear that they are
dynamic pages generated by the Content Server core application.

Static Page
(HTML Page)

Dynamic Page
(Content Server Page)

Single disk file, served via a web server.

Because an HTML page is not dynamic,
each request can display only one and
the same page.

Generated upon request.

Content Server makes dynamic content
decisions based on the request. Different
requests for the same page typically result in
the generation of different pages.

One-to-one association between the
HTML page and the page the visitor sees
in the web browser.

The web page that the visitor sees can be
composed of multiple components called
“pagelets,” created from within Content
Server.

No separation of format and content.

As a result, it is difficult to modify
format and content independently of
each other.

Separation of format and content.

As a result, format and content can be
modified and maintained independently of
the other.
Content Server 7.0 Developer’s Guide

Chapter 1. Overview of Content Server

The Content Server Core
37
headers and footers), into the final rendered page. The page is the output (HTML, XML,
WAP, and so on) that Content Server generates when it parses your JSP or XML elements
and blobs.

Page Rendering: The ElementCatalog and SiteCatalog
Tables
Element files are stored in the ElementCatalog table in the Content Server database.
The names of your pages and pagelets (parts of the pages) are stored in the SiteCatalog
table. That is, the SiteCatalog table stores the entries for all the legal page names for
your online site.

Each row in the SiteCatalog table is a page entry. Each page entry points to an element
in the ElementCatalog table. The element being pointed to by a page entry is called the
root element of the page entry.

Content Server renders your content into an online page by executing SiteCatalog page
entries. Here’s how it works:

1. A visitor enters a URL to your online site in a browser.

2. The web server that processes the HTTP request maps that URL to a Content Server
URL. For example, this is a Content Server URL:

http://www.BurlingtonFinancial.com/servlet/
ContentServer?pagename=BurlingtonFinancial/Home

The text at the end of a Content Server URL is called the pagename. In this example,
the pagename is BurlingtonFinancial/Home.

3. Content Server looks up the page name in the SiteCatalog table, determines its root
element, locates that element in the ElementCatalog table, and then invokes that
element.

4. The element is executed. If there are calls to other elements from within the root
element, those elements are executed in turn.

5. The results—images, articles, and so on, including any HTML tags—are rendered into
HTML code and returned to the visitor’s browser.

The result is a page that is dynamically rendered on demand.

Page Design Considerations
Because Content Server separates format from content, it encourages you to design pages
in a modular fashion—by assembling the pages from pagelets (as mentioned above,
pagelets can be headers and footers. They can also be bylines, sidebars, and so on).
A modular page design provides the advantage of reusability—one set of pagelets can be
reused to construct multiple pages, but can be maintained in one place.

When designing pages, consider also system performance. For best performance, take into
account your page caching strategy. For information about page caching, see “Database
Management Functions” on page 38, and Chapter 5, “Page Design and Caching.” See also
“Satellite Server” on page 40.
Content Server 7.0 Developer’s Guide

Chapter 1. Overview of Content Server

The Content Server Core
38
Database Management Functions
The Content Server product is database-driven; most information in Content Server and its
product family is represented as a row in a database table. For example: pagenames are
stored as rows in the SiteCatalog table and elements are stored as rows in the
ElementCatalog table. Therefore, managing assets—content, pagelets, pages, and
elements—involves managing the database tables where they are stored.

The Content Server core, which makes extensive use of the underlying database
management system, supports five types of database tables: object, content, tree, foreign,
and system tables (all described in Chapter 12, “The Content Server Database”). The
Content Server core also keeps track of all the tables on a given system by keeping a
record of them in the SystemInfo table, which is a table of tables.

Additionally, the Content Server core provides developers with several database
management functions and tools:

• Configurable page caching (for example, you can set page expiry time)

• Configurable resultset caching

• Revision tracking that can be enabled or disabled

• System security tools, such as Access Control Lists (ACLs), to manage users’ access
to CS systems and control visitors’ access to information on the online site

Page Caching
Page caching plays a significant role in system performance. If an element is not changed
and it will generate the same page each time it is invoked, why make Content Server
process the element each time it is called? If the generated page is cached, it can be served
much faster than it can if it must first be generated.

The Content Server core alone (independently of Satellite Server) can separately cache
each page or pagelet that is identified by a page entry in the SiteCatalog table. You can
mark the expiration date of any pagelet in the cache by specifying a value for that page
entry in that table.

Page caching is made especially effective by the addition of Satellite Server. Installing a
Satellite Server application amounts to installing page caches on the servers that host
Satellite Server, thereby extending the Content Server page cache.

• For information about page caching, see Chapter 5, “Page Design and Caching.”

• For information about Satellite Server, see “Satellite Server” on page 40.

Note

In older versions of Content Server, database tables were called catalogs. As a
result, some tables still have the word “catalog” as part of their names.

A complete listing of supported DBMS systems is available in the Supported
Platform List, which you can access by going to the URL e-
docs.fatwire.com/CS and selecting your version of Content Server.
Content Server 7.0 Developer’s Guide

Chapter 1. Overview of Content Server

The Content Server Core
39
Resultset Caching
Resultset caching is another feature that can greatly enhance system performance. When
the Content Server database is queried by any mechanism, the Content Server application
can cache the resultset that it returns. The Content Server application keeps track of every
table in the database; whenever a table is modified, it flushes all the resultsets that were
cached for that table.

You configure resultset caching through properties in the futuretense.ini file.

For more information about resultset caching, see Chapter 14, “Resultset Caching and
Queries.”

Revision Tracking
Content Server core provides revision tracking functionality that prevents a row in a table
from being edited by more than one user at a time. When you enable revision tracking for
a table, Content Server maintains multiple versions of each row in a table.

Security and User Management
Security features, such as Access Control Lists (ACLs), in the Content Server core allow
you to limit access to:

• Individual database tables

• Individual Content Server pages

In other words, not only can you control which users of your content management system
can add or change data in the Content Server database, you can control which visitors are
allowed to see which pages in your online site.

• For information about user management on the management system, see the Content
Server Administrator’s Guide.

• For information about user management on the delivery system, see Chapter 27, “User
Management on the Delivery System.”

Sessions and Cookies
Content Server automatically creates a session for a visitor when he or she visits your
online site for the first time. You can store information about that visitor in session
variables by using the tags and methods in the Content Server core. Subsequent elements
can then access those variables and respond conditionally to them.

Session variables, however, are volatile. They last only as long as the session lasts, that is,
until one of the following events occurs:

• The visitor closes his or her browser.

• The session times out after a period of inactivity. You control session timeouts through
a property in the futuretense.ini file.

• The application server is restarted (except in a cluster).

• The session is disabled in some other way.

To store information on a more permanent basis, you would use cookies. You can code
your elements to write cookies that store information about your visitors to their browsers.
Then, you can use the stored information to customize pages and display the appropriate
version of a page to the appropriate visitor when he or she returns to your online site.

For more information about sessions and cookies, see Chapter 9, “Sessions and Cookies.”
Content Server 7.0 Developer’s Guide

Chapter 1. Overview of Content Server

Satellite Server
40
Event Management Features
Many users are familiar with cron, a daemon that runs certain programs at a specified
time and place. Content Server provides a similar feature called “event management.”
This feature enables you to identify elements that should be run at a certain date and time.
For example, you might schedule a Content Server event to occur on a nightly basis to
delete voided assets from the Content Server database.

Satellite Server
Your installation of Content Server includes Satellite Server, a program that caches the
pages and pagelets that you create. By default, Satellite Server is installed on the same
machine where Content Server is installed. This co-resident Satellite Server works in
combination with Content Server to provide double-buffered page caching.

You can further improve your system’s performance by installing Satellite Server remotely
so it can cache pages and pagelets closer to their intended audience. Remote Satellite
Server hosts are fast, inexpensive caches of Content Server pages. They reduce the load on
the Content Server host, dramatically increase the speed of page delivery to your site
visitors, and provide a simple and inexpensive way to scale your Content Server system.

In order to use Satellite Server to cache your pages and pagelets, you include Satellite
Server XML or JSP tags in your page elements. These tags tell Satellite Server which parts
of which pages should be held in its cache. After you have coded your web site with
Satellite tags, you then call your pages with Satellite URLs.

Handling the HTTP Requests
When the load balancer routes an HTTP request for a page to Satellite Server, the
following chain of events occurs:

1. Satellite Server checks its cache.

2. If the page is in the cache, Satellite Server serves it to the visitor’s browser.

3. If the page is not in the Satellite Server cache, it routes the request to Content Server.

4. If Content Server has the page in its cache, it returns the cached page to Satellite
Server. If the page is not in the Content Server cache, Content Server renders the page,
caches a copy, and sends the page to Satellite Server.

5. Satellite Server caches the page and serves it to the visitor’s browser.

Each Satellite Server application is independent of every other Satellite Server
application. An individual Satellite Server application has the following characteristics:

• It maintains its own cache.

• It cannot mirror its cache to a cache on another server maintained by Satellite Server.

• It cannot request pages or pagelets from another Satellite Server application. It can
request pages or pagelets from only the Content Server core.

Satellite Server Servlets and APIs
Satellite Server is made up of several servlets: one that caches and serves pages, and two
that manage the cache:
Content Server 7.0 Developer’s Guide

Chapter 1. Overview of Content Server

Satellite Server
41
• Satellite – Caches pages at the pagelet level. The Satellite XML or JSP tags in your
elements indicate which pagelets should be cached, and they control various Satellite
Server settings.

• Inventory – Enables you to examine the Satellite Server cache so you can obtain the
information you need to manually flush individual pages or pagelets from the cache
when necessary.

• FlushServer – Handles all types of cache-flushing. FlushServer can either flush the
entire cache, or can flush individual items from the cache.

For information about coding pages with the Satellite Server tags and page caching in
general, see Chapter 5, “Page Design and Caching.”
Content Server 7.0 Developer’s Guide

Chapter 1. Overview of Content Server

CS-Direct
42
CS-Direct
CS-Direct is the base module, built with the Content Server Java APIs. CS-Direct provides
the standard interface to the Content Server database, enabling you to easily organize,
categorize, manipulate, and maintain your content objects. These content objects are
called assets.

The CS-Direct application also provides direct access to all of Content Server’s core
features, thereby adding another layer to the content management framework. CS-Direct
introduces the following concepts and features to the Content Server product family:

• The basic asset model to support flat data structures

• Standard interfaces for developers (and administrators), as well as content providers

• Client interface options: CS-Desktop, the InSite Editor, and CS-DocLink

• The content management site and the site plan

• The sample sites Burlington Financial and Hello Asset World

• Extension of the Content Server rendering model through Template, CSElement, and
SiteEntry assets

• Custom XML and JSP tags

• Enhanced publishing functionality: publishing methods and the approval subsystem

• Enhanced revision tracking functionality

• Workflow

• Additional search engine features

You use CS-Direct to design the data that you want to store in the Content Server database,
to create and manage the content in the system, and to design the online site that you
present on your delivery system.

Because nearly everything in Content Server and the Content Server product family is
represented as a row in a database table, all of the CS-Direct features and functions are
accounted for in the Content Server database.

Basic Asset Model
CS-Direct provides a framework for your content, in which that content is stored as
objects called assets in the Content Server database. The framework is called the basic
asset model, which allows one primary storage table in the database for each type of asset.
When assets are created from an asset type, they can be associated with other assets, but
they cannot inherit each other’s properties. Thus, only flat data structures are possible with
the basic asset model.

CS-Direct also provides an interface to the database tables where the assets are stored. The
interface consists of forms for creating and managing assets, as well as forms for creating
and managing asset types. The relationship of the database tables to the content
management forms is shown in Figure 1, “Asset Types: Content-Entry Forms and
Database Tables” on page 43.

Note that while the actual process of creating assets and asset types depends on the module
or add-on that is being used, the concept of assets and asset types is not specific to CS-
Direct. Rather, it is introduced by CS-Direct, but used throughout the Content Server
product family.
Content Server 7.0 Developer’s Guide

Chapter 1. Overview of Content Server

CS-Direct
43
Figure 1: Asset Types: Content-Entry Forms and Database Tables

Name Phone Email Ratings

John Doe 516-555-
5555

johndoe
@retail.com

Field names define the asset type

Database Table for Asset Type “Contact”

CS-Direct Content-Entry Form

Field values
define the asset

When rendering the content-entry form below, CS-Direct displays the names of
columns in the database table as field names in the form. Field names (specified
by developers) define the asset type; field values (entered by content providers)
define the asset.

johndoe@retail.com
Content Server 7.0 Developer’s Guide

Chapter 1. Overview of Content Server

CS-Direct
44
Regardless of the module or add-on, assets are created from asset types, which are of two
varieties:

• Asset types can be content types. For example, developers might create asset types
such as articles and images; from these asset types content providers would create
assets (instances of the asset types) such as a news article, a financial article, or a
sports image.

Assets, in general, are objects that can be created, edited, inspected, deleted,
duplicated, placed into workflow, tracked through revision tracking, searched for,
previewed, and published, all of which are functions in the CS-Direct application.

During the process of designing your online site, you and the others on your team
examine your design and determine which parts should be assets. Data that should be
treated as an asset must not be embedded into code.

• Asset types can be types of logic. For example, the following core asset types are used
as site design features in CS-Direct and are therefore classified as logic asset types:
page asset, collection, query asset, Template asset, CSElement, and SiteEntry. Another
example of a logic asset type is “stylesheet,” delivered with the Burlington Financial
sample site.

Like content assets, logic assets use the asset data model, so that you can use
CS-Direct content management features (workflow, revision tracking, access control,
and so on) to maintain them.

For more information about basic assets and asset types, see:

• Chapter 11, “Data Design: The Asset Models”

• Chapter 15, “Designing Basic Asset Types”
Content Server 7.0 Developer’s Guide

Chapter 1. Overview of Content Server

CS-Direct
45
Standard CS Interface
CS-Direct renders the standard tree-and-workspace interface shown below to support the
web-based environment.

The tree panel on the left contains all the content management elements that developers,
administrators, and content providers need to work with. The workspace area on the right
is where all the tasks and operations are performed.

The interface supports code-based operations, and enables you to graphically complete the
creation of basic asset types. For example, to create a basic asset type, you would:

1. Write an XML file (called “asset descriptor” files) to define the basic asset type.

2. Upload the file to CS-Direct.

3. Use the CS-Direct interface to invoke the AssetMaker utility. One of the functions of
the interface (AssetMaker) is to read the asset descriptor file and, from it, create a
storage table for the asset type. Other functions in the interface allow you to configure
the asset type (for example, name its authorized users).

The same interface is used by administrators to create content management sites, manage
system users, control their permissions to content, establish workflow processes, and
configure Content Server features (such as CS-Desktop).

In the same interface are content management functions, used mostly by the content
providers. There are also forms for entering, editing, inspecting, and otherwise managing
basic assets in the database. An example of such a form and its relationship to the database
is shown in Figure 1, “Asset Types: Content-Entry Forms and Database Tables” on
Content Server 7.0 Developer’s Guide

Chapter 1. Overview of Content Server

CS-Direct
46
page 43. (Note that the relationship in Figure 1 does not strictly apply to the flex asset
model, because the flex asset model creates multiple database tables per asset type.)

Content Server Clients (Interface Options)
CS-Direct also supports clients (optional interfaces) such as MS Word and applications
that offer functionality similar to Windows Explorer and Windows Desktop. For more
information, see “Content Server Clients (Interface Options)” on page 54.

Sites and the Site Plan
CS-Direct introduces the concept of a “content management site” to the Content Server
product family. A content management site is an object that you use as an organizational
construct for an actual online site and as an access control tool. You use sites to control
access to assets and to facilitate the designing of your online site.

When you log in to Content Server or its products, you are logging in to a content
management site. If you have access to more than one site, the first decision that you make
after logging in is which site to work on.

A content management site represents a real, online site. However, it can represent that
online site in any number of ways, depending on what makes sense for your situation. For
example, you could create separate content management sites for separate sections of your
online site because the teams who provide content for each section work completely
separately from each other and only members of that team should have access to that
section (content management site). Or, you could create a content management site that
represents an entire online site, as does the Burlington Financial sample site.

When you install CS-Direct, the Site Plan tab and the rest of the tree appear in the Content
Server interface. The Site Plan tab displays a representation of the site design for the
content management site that you are currently logged in to.

For information about content management sites and the Site Plan tab, see Chapter 2,
“Overview of Sites.” See also the introductory chapter in the Content Server
Administrator’s Guide.

Sample Sites
CS-Direct provides the sites described in this section.

The Burlington Financial Sample Site
CS-Direct provides a fully functional sample site named Burlington Financial. The site is
used in this guide as the source of examples that illustrate the basic asset model, CS-Direct
functionality, and coding practices. You can examine the examples both in this book and
online in the context of the actual site.

Note

For simplicity, this guide often refers to “content management site” as “site.”
Content Server 7.0 Developer’s Guide

Chapter 1. Overview of Content Server

CS-Direct
47
The Burlington Financial site contains sample asset types, elements, SiteCatalog
entries, a workflow process, and so on. For information about the Burlington Financial
sample site, see Chapter 29, “The Burlington Financial Sample Site.”

The HelloAssetWorld Sample Site
In addition to the Burlington Financial sample site, CS-Direct delivers a sample site called
“HelloAssetWorld.” The site provides a simple introduction to creating a Content Server
web site.

The templates that compose HelloAssetWorld are described in Chapter 28, “The
HelloAssetWorld Sample Site.” Further information about the site’s configuration and
users is available in the Content Server Administrator’s Guide and the Content Server
User’s Guide.

Template, CSElement, and SiteEntry Assets
CS-Direct provides an additional layer in the Content Server page rendering process: the
Template, CSElement, and SiteEntry asset types.

Template, CSElement, and SiteEntry asset types provide the elements and pagelets that
build your online sites. They are asset representations of elements and page names, the
components that Content Server uses to generate pages. Because they are assets, elements
and page names can be managed with workflow and revision tracking.

For information about template, CSElement, and SiteEntry assets, see Chapter 21,
“Creating Template, CSElement, and SiteEntry Assets.”

Custom CS-Direct XML and JSP Tags
CS-Direct delivers several new tag families (both XML and JSP versions) that you use to
code your elements. The tag families enable you to identify, extract, and then display
assets on your online site.

• For information about coding pages that display assets that use the basic data model,
see Chapter 24, “Coding Elements for Templates and CSElements.”

• For information about all of the CS-Direct custom tags, see the Content Server Tag
Reference.

Approval and Publishing
As mentioned previously, a Content Server page is a set components that have been
assembled into a viewable, final output. Creating that output is called rendering. Making
either that output or the content that is to be rendered available to the visitors of your
online site is called publishing

You publish by moving your content from your management system to the delivery
system. CS-Direct delivers two publishing methods that are built from the Content Server
publishing APIs. These publishing methods interact with the CS-Direct approval system,
an underlying system that determines which assets have been approved.

When assets are ready to be published, someone marks them as approved. Then, when the
publish process is ready to start, it invokes the approval system which compiles a list of all
the approved assets and examines all the dependencies for those assets. If an asset is
approved but an asset that it is linked to is not approved, the approved asset is not
published until the linked asset is also approved.
Content Server 7.0 Developer’s Guide

Chapter 1. Overview of Content Server

CS-Direct
48
The CS-Direct publishing and approval systems track and verify all the asset dependencies
in order to maintain the integrity of the content on your delivery system. The publishing
and approval systems ensure that the assets which you have determined to be ready for
publishing are the only assets that get published.

The CS-Direct publishing methods are as follows:

• Mirror to Server is the dynamic publishing method. It is built with the Content
Server Mirror API to copy approved assets from the Content Server database on one
system to the Content Server database on another system.

• Export to Disk is the static publishing method. It renders your approved assets into
static HTML files, using the template elements assigned to them to format them. An
administrator or automated process then copies those files to your delivery system
using FTP or another file transfer method.

For information about configuring publishing, see the Content Server Administrator’s
Guide.

For information about coding elements so that they log dependencies appropriately and
how CS-Direct calculates approval dependencies, see Chapter 24, “Coding Elements for
Templates and CSElements.”

For information about how you approve assets, see the Content Server User’s Guide.

Revision Tracking
When you are using CS-Direct, the Content Server revision tracking feature is extended
and implemented for asset types in the Content Server interface. There are additional
administrative forms and the asset forms are modified to include revision tracking
functionality when it is enabled for that asset type. You specify which asset types must
have their assets tracked. CS-Direct enables the revision tracking feature for the
appropriate tables without your having to do so directly through the Content Server core.
Content providers can then check out assets from the database and check them back in as
they work.

For information about revision tracking, see the Content Server Administrator’s Guide.

Workflow
CS-Direct introduces the workflow feature to the Content Server product family.
Workflow is the movement of content from one person to another in a predictable,
systematic way.

For example, perhaps all articles must be reviewed by both an editor and by someone from
your legal department before they can be approved (and then published). You can use the
workflow feature to ensure that an article is assigned to the appropriate person at each
stage of its life cycle, and to restrict unauthorized users from accessing the article at each
stage of the workflow.

• For information about creating workflow processes, see the Content Server
Administrator’s Guide.

• For information about using the workflow feature to obtain and finish work
assignments, see the Content Server User’s Guide.
Content Server 7.0 Developer’s Guide

Chapter 1. Overview of Content Server

CS-Direct Advantage
49
Searching and Search Engines
CS-Direct comes with a search function that helps users find the assets they want to work
with. The default search mechanism is a SQL-based database search. You can replace the
default search method with a Verity search engine.

To do so, you install the search engine (typically, as part of the Content Server installation
process). When the search engine is present, CS-Direct presents a form on the “Admin”
tab that you use to determine which asset types should use the search engine’s index-based
search, and which (if any) asset types should use the default database search.

To enable searches for assets that you want to display in your online site on your delivery
system, you use a combination of SQL queries, query assets, and collection assets. In
certain cases, you might also want to use a search engine on your delivery system so that
you can implement an index-based search feature for online site.

For information about search engines, see the Content Server Administrator’s Guide.

CS-Direct Advantage
The CS-Direct Advantage module is built on top of CS-Direct. Independently of the basic
asset model, it offers a more advanced asset model, and facilitates the development of
online businesses by providing support for e-commerce applications. CS-Direct
Advantage introduces the following concepts and features:

• Flex Asset Model

• GE Lighting Sample Site

• Assetsets and Searchstates: Searching the Online Site

• Shopping Carts and Commerce Context

• Custom CS-Direct Advantage XML and JSP tags

Flex Asset Model
Whereas the basic asset model is used for creating flat data structures with small amounts
of data, the flex asset model is used for creating hierarchical data structures and structures
with large amounts of data (historically it has been used for creating large, online catalogs
of products). Even if you are designing a flat data structure, you might want to consider
basing it upon the flex asset model for the following reason: The flex asset model fully
supports changes to database schema, making flat data structures easily convertible to
hierarchical structures.

Note that the flex and basic asset models are not interchangeable. So, if you elect to create
a flat data structure using the basic asset model and then decide to convert the data to a
hierarchical structure, be prepared to re-create the data in the context of the flex asset
model.

The flex asset data model differs from the basic model in other ways. Basic assets and all
of their attribute values are stored in one, primary storage table such that basic assets of
the same type have the exact same attributes (properties). Flex assets, on the other hand,
have several storage tables. In addition, attributes are stored in a way that supports
inheritance; that is, attribute values are passed on from parent assets to their child assets. If
different parents are chosen for assets of a given type, those assets will vary widely. Thus,
the flex data model supports variable content and lends variability when it is required.
Content Server 7.0 Developer’s Guide

Chapter 1. Overview of Content Server

CS-Direct Advantage
50
Furthermore, you do not create individual flex asset types as you do basic asset types;
instead, you create a flex family of asset types. There are five required members in a flex
family. You must create all of them. You can then use the members selectively to create
either flat or hierarchical data structures, as shown in Table 1, “Flex Family Members.”

Notice that hierarchical organization is made possible by the inclusion of the flex parent
definition asset type and the flex parent asset type. The sixth member of a flex family, the
flex filter type, is optional and can be used in both flat and hierarchical structures.

Each asset type is expressed as a data-entry form that developers use to create instances of
that type. The flex attributes asset type is used to create flex attributes, the flex parent
definition type is used to create flex parent definitions, and so on.

The key member of a family is the flex asset type, from which content contributors create
flex assets, units of content that are meant to be extracted from the database and displayed
to visitors of the online site (delivery system). In a hierarchical structure, all the other
members in a flex family contribute to the flex asset as explained in this guide. For readers
who prefer to learn by example, this guide provides a tutorial on flex assets, explaining the
function and effects of each asset type as it is being created.

General Information About Flex Families
The basic relationship among flex assets is illustrated in Figure 2, “Attribute Inheritance
Tree.” Arrows show how attributes are passed down to assets: The attributes are first used
to create the flex parent definition(s). The flex parent definitions are used to establish the
levels of a flex family’s hierarchy and to place parent assets in hierarchical order. Flex
definitions are used to place flex assets under the appropriate flex parents, allowing the
child assets to inherit the attributes that were given to their parents by the flex parent
definitions.

Table 1: Flex Family Members

Flex Family Member
Flat Data
Structure

Hierarchical Data
Structure

flex attribute asset type � �

flex parent definition asset type �

flex parent asset type �

flex definition asset type � �

flex asset type � �

flex filter asset type (optional) � �

Note

If you plan to use the flex asset model to create a flat data structure, you can omit
creating flex parent definitions and flex parents. However, you must create one or
more flex attributes and one or more flex definitions. This allows you to assign the
flex attributes directly to the flex definition assets, and therefore, to assets in the
family.
Content Server 7.0 Developer’s Guide

Chapter 1. Overview of Content Server

CS-Direct Advantage
51
Figure 2: Attribute Inheritance Tree

Used to:
- Select flex attributes
- Define the number of

levels in a hierarchy
- Place flex parents

(categories of content)
in hierarchical order

- Pass flex attributes on
to child assets

Used to:
Place flex assets under
the appropriate parents

Content for the online site.

Used to:
Describe the flex family

Used to:
Name the levels of the
hierarchy.
Flex parents are
therefore categories
of content, sub-
categories, and so on.

(Note that multiple flex
parents can occupy a
given level.)

Flex attributes

Flex parent
definitions

Flex parents
Flex asset
definitions

Flex assets

chosen by user to
define

pass attributes to
Content Server 7.0 Developer’s Guide

Chapter 1. Overview of Content Server

CS-Direct Advantage
52
Following are some general characteristics of the flex asset model:

• Flex parents and flex assets are described by the flex attributes that you select for
them.

• The attributes that characterize flex parents and flex assets are themselves assets. This
means that attributes can be passed through workflow, edited, monitored by revision
tracking, and subjected to all other content management operations.

• In hierarchical data structures, flex assets inherit attribute values from their parents.
The flex definition asset types combined with the inheritance of attributes enables you
to set up group hierarchies and implement some sort of taxonomy with your data.

• If you ever need to add attributes to your asset types in the future (a common
occurrence with products), you just create the new attribute and assign it to the
appropriate definitions. In contrast, with the basic asset model, you cannot add more
attributes after you have created the asset type.

• By using the flex definition asset type, you can set up multiple “templates” for the
same flex asset type.

This asset model supports assets that have many, many attributes, which means that you
can support large sets of data.

For more information about the flex asset model, see:

• Chapter 11, “Data Design: The Asset Models”

• Chapter 16, “Designing Flex Asset Types”

Assetsets and Searchstates: Searching the Online Site
The flex asset data model delivers a mechanism, called the “searchstate,” to use on the
pages that extract and display flex assets.

A searchstate is a set of search constraints that are applied to a list or set of flex assets,
which is an assetset. A constraint can be a filter (restriction) that is based on either the
value of an attribute or on another searchstate (called a nested searchstate).

A searchstate can search either the attribute tables in the database or the attribute indexes
created by a search engine.

If you are using the flex asset data model, searchstates provide two advantages:

• You can mix database (parametric) and rich-text (full-text through an index) searches
to compile a single assetset.

• There is no need to write SQL queries. If a new version of the CS-Direct Advantage
application introduces a schema change, your searchstate code does not need to
change.

For more information about assetsets and searchstates, see Chapter 24, “Coding Elements
for Templates and CSElements.”

Shopping Carts and Commerce Context
CS-Direct Advantage delivers a toolset of XML and JSP tags that you can use to create a
shopping cart for an online business. When a visitor starts a session on your online site,
CS-Direct Advantage creates a commerce context for that session.
Content Server 7.0 Developer’s Guide

Chapter 1. Overview of Content Server

CS-Direct Advantage
53
The CS-Direct Advantage shopping cart functions within that commerce context. You use
this tag toolset to identify the contents in a cart, to calculate the price of the items in a cart,
to track buyer parameters, and so on.

GE Lighting Sample Site
CS-Direct Advantage provides a fully functional sample site named GE Lighting. The site
is used in this guide as the source of examples that illustrate the flex asset model,
CS-Direct Advantage functionality, and coding practices. You can examine the examples
both in this book and online in the context of the actual site.

The GE Lighting sample site is an online catalog that sells lighting products. It provides
two sample flex families (the product family and the content family), elements,
SiteCatalog entries, a workflow process, and so on. For information about the GE
Lighting sample site, see the following chapters:

• Chapter 11, “Data Design: The Asset Models”

• Chapter 16, “Designing Flex Asset Types”

Custom CS-Direct Advantage XML and JSP tags
CS-Direct Advantage provides several new tag families (with both XML and JSP
versions) you can use to identify, extract, and display flex assets as well as to implement
an online business.

• For information about coding pages that display flex assets, see Chapter 24, “Coding
Elements for Templates and CSElements.”

• For information about all the custom CS-Direct Advantage tags, see the Content
Server Tag Reference.
Content Server 7.0 Developer’s Guide

Chapter 1. Overview of Content Server

Content Server Clients (Interface Options)
54
Content Server Clients (Interface Options)
It also supports clients (optional interfaces) such as MS Word and other applications that
offer functionality similar to Windows Explorer and Windows Desktop.

• The InSite Editor is for content providers who need to make edits to (and perhaps
approve) assets in the context of how they actually look when they are rendered in a
browser. The InSite Editor allows content providers to work in a continuous preview
mode.

InSite Editor is automatically installed with CS-Direct. Is is also used by CS-Direct
Advantage. To enable InSite Editor, you must code your rendering templates to
activate InSite Editor for the appropriate asset types.

• Content Server Desktop (CS-Desktop) enables content providers to use Microsoft
Word, instead of the Content Server interface, to create and edit their assets. Content
providers can install CS-Desktop on their personal computers. CS-Desktop then
installs a Content Server toolbar into the Word client, thus providing CS-Direct
functionality in the Word client.

CS-Desktop is supported by CS-Direct. It is used by CS-Direct and CS-Direct
Advantage, and must be manually installed.

• Content Server DocLink (CS-DocLink) provides a drag-and-drop interface for
uploading and downloading documents, graphics, or other files that are managed as
flex assets by Content Server. CS-DocLink presents the hierarchical data structure of
the flex parents and flex assets in the Content Server database as folders and files in
the Windows Explorer application.

CS-DocLink is supported by CS-Direct, but used only by CS-Direct Advantage. It
must be manually installed.

• eWebEditPro, a third-party HTML editor. Three versions of eWebEditPro are
supported: v 3.0.0.7, v 4.0.0.14 (both are used strictly as HTML editors), and
eWebEditPro+XML. Only one version of eWebEditPro can be used by each Content
Management installation. To obtain eWebEditPro or eWebEditPro+XML, contact
your FatWire sales representative.

For more information about configuring CS-Desktop, InSite Editor, and CS-Doclink for
specific users, see the Content Server Administrator’s Guide.

For information about coding templates that invoke the InSite Editor, see Chapter 31,
“Coding for the InSite Editor.”
Content Server 7.0 Developer’s Guide

Chapter 1. Overview of Content Server

Engage
55
Engage
Engage is built on top of CS-Direct Advantage and works only within the flex asset data
model. This Content Server product enables your marketing team to divide your visitors
into segments and then target those segments with personalized promotional, marketing,
or informational messages.

Engage adds personalization and merchandising features to the Content Server product
family and extends the XML and JSP tags available for programming your online site. It
enables you to design online sites that gather information about your site visitors and
customers, evaluate that information, and then use that information to personalize the
product placements and promotional offerings that are displayed for each visitor.

Engage introduces the following concepts and features:

• Visitor data and segments

• Recommendations

• Promotions

• Persistent, linked visitor sessions

• Custom Engage XML and JSP tags

Visitor Data and Segments
Visitor data defines the kinds of information that you want to gather about your visitors.
There are three kinds of visitor data assets:

• Visitor attributes hold types of information that specify one characteristic only. For
example, there might be attributes named “years of experience,” “job description,” or
“number of children.”

• History attributes and history types. These assets create a group of related
information types that you can treat as a single item. For example, an item called
“purchases” could be made up of the attributes “SKU,” “itemname,” “quantity,” and
“price.” The item named “purchases” is called a history type and the individual
attributes that comprise it (price, quantity, etc.) are called history attributes in
Engage.

Segments are assets that categorize groups of visitors based on the visitor data that you are
gathering about them. Marketers use the visitor data assets to create segments that define
groups of visitors with one or more characteristic in common: geographic location, gender,
job description, item purchased, are examples.

You can define segments that are extremely broad (all first-time visitors, for example) or
very focused (all first-time visitors who own RVs and live in Alaska).

• For information about creating visitor data assets, Chapter 35, “Creating Visitor Data
Assets.”

• For information about creating segment assets, see the Content Server User’s Guide.

Recommendations
Recommendations are assets that determine which flex assets (products, for example)
should be featured or “recommended” on a site page. Recommendation assets are rules
Content Server 7.0 Developer’s Guide

Chapter 1. Overview of Content Server

Engage
56
that are based on the segments the visitors qualify for, and, in some cases, relationships
among the flex assets.

One type of recommendation, the “Dynamic List Recommendation,” requires you to code
a CSElement asset which returns the content that you wish to display.

Recommendations have templates. A recommendation returns a list of flex assets to its
template when the template is rendered on a site page.

The items in a list of recommended flex assets are rated according to their importance to
the current visitor based on the segments that the visitor belongs to.

For information about creating recommendations and coding Dynamic List elements, see
Chapter 36, “Recommendation Assets.”

Promotions
Promotions are assets that define an offer of value (a discount) based on the flex assets
that the visitor is buying and the segments that the visitor qualifies for. This value can be
offered in several ways:

• A discount off the purchase price of the promoted flex assets

• A discount off the entire value of the shopping cart

• A discount off shipping charges

• A combination discount: a shipping discount with a price or cart discount

All promotions can have a duration (the time period during which they are in effect).

For information about creating promotions, see the Content Server User’s Guide.

Persistent, Linked Visitor Sessions
A Content Server session ends when the visitor closes his or her browser. How, then, do
you link the data that you gathered about a visitor to that same visitor when he or she
returns to your online site? With a toolset of XML and JSP tags that Engage provides,
called the “visitor data manager.”

The visitor data manager object methods create a visitor context that enables you to link
visitor sessions. You do this with persistent cookies and aliases implemented in a specific
way.

For information about linking visitor sessions, Chapter 37, “Coding Engage Pages.”

Custom Engage XML and JSP tags
In addition to the tag family that implements the linking of visitor sessions, Engage
implements several more custom tag families (both XML and JSP versions.) You use these
tags to code pages that collect visitor data and to code the templates for your
recommendations.

• For information about coding pages that collect and use visitor data and coding
templates for recommendations, see Chapter 37, “Coding Engage Pages.”

• For information about all of the Engage custom XML and JSP tags, see the Content
Server Tag Reference.
Content Server 7.0 Developer’s Guide

Chapter 1. Overview of Content Server

Content Server Portal Interface
57
 Content Server Portal Interface
The Content Server Portal Interface is a new product, added in the CS 6.1 release, that
supports content management operations in a portal environment.

During the installation of the Content Server product, installation engineers have the
option to install the Portal Interface, which displays the content providers’ most common
tasks and objects within portlets in a workspace area, as shown below:

The portlets, just like windows, can be minimized, maximized, and moved. Such
arrangement provides for a more user-friendly experience and makes the Portal Interface
suitable for the less-experienced content providers.

Note that if the Portal Interface is to be used, it must be installed at the same time that the
Content Server product is installed.
Content Server 7.0 Developer’s Guide

Chapter 1. Overview of Content Server

Content Server Portal Interface
58
Content Server 7.0 Developer’s Guide

59
Chapter 2

Overview of Sites
In the Content Server environment, a “content management site” is an object that you use
as an aid in the Content Server interface for designing the online site and for managing
access to assets. The Burlington Financial sample site is a content management site. So is
the GE Lighting sample site.

You first create content management sites on the development system. When the sites are
tested and approved for use, you must then duplicate the sites (with exactly the same
names) on the management and delivery systems.

This chapter contains the following sections:

• Content Management Sites

• Online Sites

• Developers and the Content Management Site

• Sites and the Site Plan

• Sites and the Database
Content Server 7.0 Developer’s Guide

Chapter 2. Overview of Sites

Content Management Sites
60
Content Management Sites
A content management (CM) site is an object that you use as a design aid or
organizational construct for the online site that you are delivering from your Content
Server delivery system. A content management site represents your online site.

When you log in to Content Server running any of the Content Server modules and
products, you are logging in to a content management site. If you have access to more than
one site, the first decision that you make after logging in is which site to work on. From
that point on, all of the tasks that you complete are completed in the context of that site
(until you switch sites).

Content management sites are used by three types of users in different ways:

• Developers use content management sites to design the online site:

- Create the data model (the source of content-entry and editorial forms that
business users will use in order to provide content for the online site)

- Enable the data model for selected content management sites
- Code templates that extract content from the database, format the content, and

deliver the content to the online site. You use the Site Plan tab to create a design
framework for the online site. Each content management site has a separate site
plan, which is stored in the SitePlanTree table.

- Enable the templates for the content management sites
- Implement page caching
- Make use of session data
- Write code that gathers information about site visitors
- Establish security

• CS administrators use content management sites to control users’ access to content:

- CS administrators can restrict users from accessing certain assets and asset types
on the Content Server system.
Asset types must be enabled for a content management site. Therefore, if an
administrator decides not to enable an asset type for a content management site,
then users who log in to that content management site do not have access to assets

Note

In this guide, content management site is also called “CM site,” or simply
“site.”

Note

When you create data (for example, asset types and templates), the data is entered
into a system-wide pool, regardless of the content management site that you have
chosen to log in to.

Enabling the data for the site that you are logged in to (and for any other site) links
the data to that site and makes it accessible to users of that site.
Content Server 7.0 Developer’s Guide

Chapter 2. Overview of Sites

Online Sites
61
of that type. CS administrators can also restrict users from accessing a content
management site.

- CS administrators can share individual assets among content management sites
(as long as the sharing sites have the asset type enabled and have the same users in
common).
CS administrators can also restrict access to specific assets by not sharing them.
Even if the asset type is enabled across sites, an asset created in one site is not
available in another unless it has been shared to the other site.

• Once content management sites are developed, authorized content providers use the
sites to create electronic assets, manage the assets, and deploy the assets to their
audiences. The content providers are linked to content-entry forms as well as other
authoring tools; they are also given certain editorial permissions; and they are given
access to publishing and delivery systems for serving their content as part of the
online site to browsers.

Content management sites represent real, online sites. However, they can represent those
online sites in any number of ways, depending on what makes sense for your situation. For
example:

• One content management site can represent one complete online (public) site.

• Several content management sites can represent separate sections of one large online
site. For example, with a catalog, perhaps people who do the data entry for household
goods never do data entry for yard goods so there are separate sites that represent
those areas. And, in a publication example, perhaps sports writers have a separate site
that represents the sports news section and the financial writers have a separate site
that represents the financial news section.

• Several content management sites can represent the same online site but exist to
restrict users’ access to asset types, by role. For example, “site one” has the article and
image asset types enabled and only content providers have access to this site; “site
two” has all asset types including templates enabled and only a small group of
developers have access to the site.

Online Sites
An online site is the set of pages that an organization displays to its target audience of
customers, clients, and casual visitors. The online site can be an website or a portal. It can
be accessible to the general public or it can be a password-protected site. It can also be a
completely exclusive site, such as a corporate intranet or departmental network, operating
strictly within the private domain.

Regardless of its nature, an online site originates from either a single CM site, or many
CM sites, depending on which model you choose. Throughout our product guides, we use
the term “online site” generically to refer to websites and portals, both of which are
supported in this release.

Note

In this guide, online site is always called “online site.”
Content Server 7.0 Developer’s Guide

Chapter 2. Overview of Sites

Developers and the Content Management Site
62
Developers and the Content Management Site
Because you must log in to a content management site when you use your Content Server
modules and products, all asset development is done in the context of a content
management site. As you develop asset types, design your online site pages, and code
Template assets, consider the following:

• When you create a Template asset, CS-Direct creates entries for it in both the
SiteCatalog table and the ElementCatalog table. The name that it assigns to the
page entry in the SiteCatalog table includes the name of the site that you were
logged in to when you created the Template asset.

• If you share a Template asset with more than one content management site, CS-Direct
creates a page entry in the SiteCatalog for each site that it is shared with. The
names of the additional page entries for a shared template include the name of the site
that the template was shared with.

Therefore, you must use the same content management site names on your development
system that you will use on the management and delivery systems in order for your online
site to function properly.

Because content management sites cover both design issues and access issues, you must
work with your system administrators when determining how to use content management
sites and how many sites you need for your system.

After you determine how many content management sites you need for both design and
access control reasons on your management system, you or your system administrators
can create the appropriate content management sites and enable the appropriate asset types
for those sites on all of your systems. Then, on your development and management
systems, you or your system administrators configure which content providers and other
users (such as you) have access to which sites.

To configure content management sites, you use the Site option on the Admin tab.

Sites and the Site Plan
Page assets are site design assets that store references to other assets, organizing your
assets according to the design that you and other developers are implementing. During the
design phase of your online site, you create page assets, associate other assets with them,
and then position the page assets in the tree on the Site Plan tab, located in the tree on the
left side of the CS-Direct window.

When page assets are positioned in the tree on the Site Plan tab, information about each
page asset’s position in that tree is written to the SitePlanTree table. If the page assets
that are positioned on this tab represent the same hierarchy that your templates and
elements are coded to create on your published pages, you can use the CS-Direct
SITEPLAN tag family to build navigational features. (See “Example 6: Displaying Site
Plan Information” on page 590 for more information.)

The Site Plan tab displays a graphical representation of the layout of your online site, the
content management site that you are currently logged in to, as a tree. It starts by querying
the SitePlanTree table to determine which page assets have been placed. It then
displays the page assets at the appropriate level on the tree, with the assets that have been
associated with those page assets at subsequent hierarchical levels.
Content Server 7.0 Developer’s Guide

Chapter 2. Overview of Sites

Sites and the Site Plan
63
Example: the Burlington Financial Sample Site
The tree on the Site Plan tab shows assets, not rendered site pages. In other words, it does
not represent all the possible online pages that could be delivered by the actual online site.
For example, this is the section of the Site Plan tree that shows the Home page asset of the
Burlington Financial sample site:

To better understand the connection between your online site and the Site Plan tab,
display the rendered Burlington Financial News page asset in your browser:

1. Log in to the Burlington Financial sample site.

2. Select the Site Plan tab.

3. Select the News page asset from the tree, click the right mouse button, and select
Preview.

Compare the News web page that is rendered in your browser to this section of the Site
Plan tab and note the following:

• The News page asset represents an actual page that would be rendered if a visitor
selected the News link from the online Burlington Financial home page. This is
because the template assigned to the News page is coded to display the page asset as a
web page.

• The collection assets displayed in the tree under the News page asset do not represent
actual rendered pages. The template for the News page is coded to display the
headlines of the articles contained in the collections that are associated with the News
page as links in the online News page.

• The article assets contained in the NewsTop collection represent actual online pages.
This is because the template that displays the article when you click the link to them is
coded to display the article in a separate web page.

Because it is the code in the template that determines how an asset is displayed in your
online site, there can be many online pages that are not represented as page assets in the
Site Plan tree.

In order to select the correct assets for your page assets, you must know what the template
elements for your assets are coded to do. This is why creating and placing page assets is
your responsibility and it is a task that you complete as you code your template elements.

Page assets serve as “gateway” or “index” pages that offer access to other assets that
represent content in addition to representing actual online pages.
Content Server 7.0 Developer’s Guide

Chapter 2. Overview of Sites

Sites and the Database
64
Sites and the Database
When you create a site, CS-Direct writes information about it to the following database
tables:

• The Publication table, which holds the names, descriptions, and pubids (IDs) of all
the sites (publications) created for your system.

• The PublicationTree table, which stores information about which asset types have
been enabled for which sites.

• The SitePlanTree table, which stores information about the hierarchical structure
of a site and its page assets. There is a top-level node for each site created for your
system. This table lists sites and page assets.

As a developer, you can code your elements to extract and display information from
the SitePlanTree table (for example, to create links to the major sections of your
online site).

Note

Early versions of CS-Direct used the term “publication” rather than the term “site”
and several of the database tables in the Content Server database still refer to sites
as publications.
Content Server 7.0 Developer’s Guide

65
Chapter 3

Content Server Development Process
When you are developing an online site that is to be delivered from a Content Server
content management system, you are actually designing two sites:

• The online site that is delivered from your delivery system to visitors’ browsers

• The content management site(s) that your content providers will use to input the data
that they will publish to the delivery system.

In other words, you are responsible for the user experience of two sets of end users:

• The site visitors who use your delivery system

• The content providers who use the management system

When creating these two closely connected yet separate sites, the development team
performs a series of planning, development, and testing steps. This chapter describes the
development process in one possible sequence of events and in very general terms. Your
own work flow will vary based on your work environment and business needs.

This chapter contains the following sections:

• Step 1: Set Up the Team

• Step 2: Create Functional and Design Specifications

• Step 3: Set Management System Requirements

• Step 4: Implement the Data Design

• Step 5: Build the Online Site

• Step 6: Set Up the Management System

• Step 7: Set Up the Delivery System

• Step 8: Publish to the Delivery System
Content Server 7.0 Developer’s Guide

Chapter 3. Content Server Development Process

Step 1: Set Up the Team
66
Step 1: Set Up the Team
The first step is to assemble the development team, which include the following kinds of
people:

• Site designers

• XML and JSP developers

• Java application developers

• Database administrators

• System network administrators

• Marketers and advertising staff

• Product managers (if you are developing a commerce site)

• Content providers

You need people such as DBAs, system administrators, and content providers on your
development team in addition to the people (like you) who do the actual coding for several
reasons:

• Using a Content Server system requires you to design a data model in addition to
creating a page design, which means that you need early input from the DBAs who
will be supporting the databases on each system.

• Using a Content Server system means moving code and data around on multiple
separate systems, several of which are probably clustered, which means you need
early input from system and network administrators.

• Implementing a Content Server system will not be optimum unless the work habits of
your content providers are accurately reflected in the design of the management
system, which means you need early input from those who will use the management
system.
Content Server 7.0 Developer’s Guide

Chapter 3. Content Server Development Process

Step 2: Create Functional and Design Specifications
67
Step 2: Create Functional and Design
Specifications

An online site delivered from a Content Server content management system is a holistic
construct in which everything interacts, intersects, and works with everything else.
Therefore, the second step is to create a functional specification and a design specification
— to design your online site on paper.

You should complete some version of this step before you begin coding anything
(although you might do some proof-of-concept coding while working on the design
specification).

Functional Requirements
Before you can begin a design specification, product management and marketing must
provide the functional requirements for the online site.

Page Design
After you obtain the functional requirements from your marketing folks, a good place to
start is to map out all the types of pages that you want to present on the online site. For
example: home page, section page, columnist page, search page, article page, and so on. If
you are designing a commerce site, you need other kinds of pages: registration page,
product category pages, product description page, article page, FAQ page, invoice page,
and so on.

Determine the graphical, navigational, and functional features for each page and the site
overall: navigation bars, buy buttons and shopping carts, “tell me more” buttons, search
functions, logo placement, animated graphics, and so on.

If you are using Engage, decide where the merchandising messages (recommendations)
are to be placed on the pages and on which pages they’ll be placed. For example, perhaps
each product category page has a “New Products” section in the upper-right corner of the
page.

Map out the entire structure of the site and create mock-ups of it.

Caching Strategy
One of the major elements in your design is caching: page caching and resultset caching.
No online site can reach performance goals without your planning, testing, and
implementing a caching strategy.

While designing the pages that you want to present on your online site, you must consider
how and when page caching can and should be implemented for each piece on each page.

While designing your queries, you must map out all the tables in the database and
determine how the resultset caching settings should be set for each table.

Security Strategy (Access Control)
Will you require your visitors to identify themselves before they are allowed to access any
part of your online site? You must determine what kinds of access control you want to
enforce early in the design process so that you design your pages correctly.
Content Server 7.0 Developer’s Guide

Chapter 3. Content Server Development Process

Step 2: Create Functional and Design Specifications
68
For example, if you plan to check your visitors’ identities before allowing them access to a
page, this affects how you would cache the components of that page. For example, you
could design a container page, which is never cached, that verifies the identity of the
visitor and then assembles the page from cached pagelets only if the verification is
successful.

Separate Format from Content (Elements from Assets)
Following the basic proposition of separating content from format, take a look at each
piece of each proposed page in your site and determine whether that piece should be
represented as data or as logic.

A good design is one in which data is designed to be represented as an asset and is not
embedded into element code. Examine every component of design or content, and then
determine what your assets are. You make that determination by deciding which category
a component belongs to: data or logic/code.

Simply speaking, do not code something into an element (embed it in logic) if it is really
data. If it is data, is should be in a separate asset.

Here’s another way to look at it:

• Assets that represent content are the responsibility of content providers.

• Logic—anything coded into any element—is the responsibility of the developers.

Determine the Asset Types (Content)
Documents, articles, products, and images are easily identified as assets. However, design
components such as headers and footers could also be assets:

• When the content in a header or footer is embedded in the code of an element, you or
another developer has to change the text in it when anything in it changes (a phone
number, a logo, and so on).

• When the content in a header or footer is in an asset, the code in your elements must
be able to obtain the identity of the asset; its content becomes the responsibility of a
content provider.

Other page components that can be assets include the following kinds of things:

• Online polls

• Animation and other media

• Quote of the day

• Company or stock profiles

• Knowledgebase questions and answers

From your point of view, if the content for a component is represented in an asset,
someone else is responsible for that content. You are only responsible for when and where
it appears on your online sites and what it looks like when it appears there.

Decide How to Handle Images and Other Blobs
You have two general options when deciding how to manage the images and other blobs
that you want to use in your online site:

• Treat them as assets—store them in the Content Server database and have the
BlobServer servlet serve them.
Content Server 7.0 Developer’s Guide

Chapter 3. Content Server Development Process

Step 2: Create Functional and Design Specifications
69
• Treat them as static files—put them in a file structure on your web server and let the
web server serve them.

Either method is a valid option. If you keep your image files on the web server, you can
create links to them with the Content Server tags, and there may be performance benefits
when you allow your web server to deliver your images. However, if you keep your
images and blobs separate from the Content Server database:

• You must implement a separate file management process. The publishing methods that
move image assets from your management system to your delivery system cannot
move content that is not in the Content Server database. You must manage this process
on your own.

• None of the native Content Server security mechanisms will apply. That is, you cannot
use ACLs to limit access to blobs that are not managed by Content Server.

Map Out the Functional Design and Format (Elements)
You also need to analyze all of the functionality that you plan to incorporate into your
online site. If you are designing a commerce site, parts of it will no doubt behave more like
an application.

Outline what code or logic is required for your visitor registration pages, visitor data
collection pages, shopping carts, personalization, and so on.

Remember that your Content Server system provides you with coding options: Java,
XML, and JSP. As you look at each of the functions you want to provide, determine which
is the best coding solution for that function.

Data Design
Once you know which pieces of your site should be represented as assets, you can map out
what your asset types should be. Each new asset type will use one or more database tables
(depending on whether it is a basic or flex asset type).

Asset Types
No matter which asset model you are using, basic or flex, consider the following when you
design your asset types:

• Asset type design affects both of the user groups that you are designing for (visitors to
the online site and the content providers who must enter the data).

• Which types of assets need to be linked or related to other assets of other types in
order to successfully implement your page design? Be sure to implement these
relationships in the asset type.

• Content providers appreciate efficiency. Be sure that your asset types store only the
data that you really plan to use so that content providers do not waste time maintaining
data that no one uses.

Auxiliary Tables That Support Your Asset Types
The data design that you want to implement for your system extends beyond the database
tables that hold your assets. Depending on the kinds of information that you want to
provide, you might need to create auxiliary tables that support your asset types.

For example, the Burlington Financial sample site has asset types with a Mimetype field.
The Mimetype field is a drop-down field and a user must select a value from the drop-
Content Server 7.0 Developer’s Guide

Chapter 3. Content Server Development Process

Step 3: Set Management System Requirements
70
down list. These values are pulled from a lookup table named MimeType. Depending on
your needs, you might need to create similar tables for your system.

Your DBAs should be involved in your discussions about the asset types and auxiliary
tables that you plan to create so they can understand from the start the kind of database
tuning issues that might arise on the management and delivery systems.

Visitor Data
If you are using Engage, you also need to determine what kinds of visitor data you plan to
gather. These data types are represented by the Engage visitor data assets that you use to
create segments for personalizing your site based on the identify of the visitor. (For
example, demographics, purchase history, or clickstream information.)

After your Content Server system goes live and you start collecting visitor data, the tables
that store that data grow very quickly. This is another area that you need to consult your
DBAs about.

Step 3: Set Management System Requirements
Before you can begin coding, you must know how the management system will be
organized. These decisions affect your design because your design depends on the content
management site.

A content management site is an object that you use as an organizational construct for an
actual online site and as an access control tool. When you create Template assets,
CS-Direct creates an entry in the SiteCatalog table for it. The naming convention that
CS-Direct uses for the page entries for templates includes the name of the content
management site that you are creating the template for. This means that you must be
consistent with site names throughout your entire content management system
(development system, management system, and delivery system) and you must know the
names of the sites that you are using before you begin coding.

Although your primary concern is the name of each site, the system administrators and
business managers must also determine the following:

• How many users and ACLs (access control lists) do you need? (Remember that you
may need to create ACLs to assign to the visitors of the online site, as well.)

• How many site roles you do you need?

• Which asset types need a workflow process?

• Which asset types should use revision tracking?

• Who should have access to which asset types on which sites?

Use both this book and the Content Server Administrator’s Guide to help you make these
decisions.
Content Server 7.0 Developer’s Guide

Chapter 3. Content Server Development Process

Step 4: Implement the Data Design
71
Step 4: Implement the Data Design
After you have created your design specification and you understand the organization of
the management system, you can implement the data design.

On the development system, you complete the following kinds of tasks:

• Create content management sites with the same names as those that will be used on
the management system.

• Design and create your asset types.

• Add any lookup tables or other auxiliary tables for the asset types.

• Create sample assets of each type.

This step (step 4) and the next step (Build the Online Site) are iterative and will most
likely overlap a great deal. While you need to create asset types so that you can create
assets before you create templates for them, it is likely that you will uncover areas that
need refinement in your data design only after you have coded a template and tested the
code.

Refer to Section 3, “Data Design,” when you implement the data design of your online
site.

Step 5: Build the Online Site
After you have sample assets of even one type created on the development system, you
can begin coding templates and building the online site. (Actually, you can begin coding
elements that do not display assets any time after you have created your design
specification.)

In this step, you complete the following kinds of tasks:

• Create the page, query, and collection assets that implement the functionality of your
online site.

• If you are using Engage, create the visitor data assets, sample segments,
recommendations, and sample promotions.

• Create Template assets (and code template elements) for all of your asset types.

• If you are using the InSite Editor feature, add code to the templates that invokes it.

• Code the CSElements that implement underlying functionality (that do not display
assets).

• If you are developing a commerce site, code pages that implement the CS-Direct
Advantage shopping cart.

• If you are using Engage, code pages that collect visitor data.

• Test everything—most likely you will perform both usability and market testing for
your online site.

Refer to Section 4, “Site Development,” and Chapter 4, “Programming with Content
Server” as you build your online site.
Content Server 7.0 Developer’s Guide

Chapter 3. Content Server Development Process

Step 6: Set Up the Management System
72
Step 6: Set Up the Management System
After you have the online site working on your development system, you move it to the
management system.

The developers complete the following kinds of tasks:

• Create the sites.

• Re-create the asset types.

• Mirror the asset type tables and auxiliary table from the development system to the
management system.

• Mirror publish the site design assets and the data structure assets created on the
development system to the management system.

The system administrators then complete the following kinds of tasks:

• Create users, ACLs, and roles. Assign users their roles for each content management
site.

• Configure CS-Desktop users, if you are using that feature.

• Create workflow processes.

• Create StartMenu shortcuts.

• Enable revision tracking.

Refer to the Content Server Administrator’s Guide for information about setting up the
management system.

Import Content as Assets
It is likely that you already have content in some non-asset format that you want to use. To
import this content into the Content Server database as assets, use the XMLPost utility.

Import Catalog Data and Flex Asset Data
If you are using the flex asset model and you have a large amount of pre-existing data that
you want to use, you can import it with the BulkLoader utility. For systematic updates,
however, you use the XMLPost utility.

Instruct the Editorial Team About Site Design
Before the editorial team can successfully maintain the online site, they need to
understand your design. For example: how frequently are collections supposed to be
rebuilt?

If you are using the basic asset model, content providers need to know the following:

• Which categories and sources they should assign to their assets in order for their assets
to be located by the appropriate queries and collections.

• Which templates they should assign to which assets.

• Which association fields must be filled out in order for the links on the site pages to
function correctly.

It is a good idea to program as much of this information as possible into the Start Menu
shortcuts that you and the system administrators create for each asset type.
Content Server 7.0 Developer’s Guide

Chapter 3. Content Server Development Process

Step 7: Set Up the Delivery System
73
If you are using the flex asset model, content providers need to know the following:

• The general hierarchy or taxonomy in place for the flex assets.

• Some information about what information a flex asset inherits.

• Which templates they should assign to which assets.

Step 7: Set Up the Delivery System
When you set up the delivery system, you complete several of the same steps that you
complete for the management system. For example:

• Re-create the sites.

• Re-create the asset types (but without their Start Menu shortcuts).

• Mirror the asset type tables and auxiliary table from the development system to the
management system.

And then you publish all of the assets on the management system to the delivery system.

Also, because this system is not a management system, you complete the following steps
as well:

• Implement your security strategy.

• On the web server, map the URL of your site (www.yourcompany.com) to the
Content Server URL of your home page.

For information about setting up the delivery system, see the section on publishing in the
Content Server Administrator’s Guide.

Step 8: Publish to the Delivery System
When the content on the management system is ready, you publish it to the delivery
system. After intensive testing—both performance and load—you open your site to the
public.
Content Server 7.0 Developer’s Guide

Chapter 3. Content Server Development Process

Step 8: Publish to the Delivery System
74
Content Server 7.0 Developer’s Guide

75
Par t 2

Programming Basics
This part provides basic programming information for coding online sites using the
toolsets delivered with the Content Server products.

It contains the following chapters:

• Chapter 4, “Programming with Content Server”

• Chapter 5, “Page Design and Caching”

• Chapter 7, “Advanced Page Caching Techniques”

• Chapter 8, “Content Server Tools and Utilities”

• Chapter 9, “Sessions and Cookies”

• Chapter 10, “Error Logging and Debugging”
Content Server 7.0 Developer’s Guide

76
Content Server 7.0 Developer’s Guide

77
Chapter 4

Programming with Content Server
In addition to managing your content, Content Server handles many useful tasks for you,
including storing web pages and pieces of web pages—called pagelets— in Content
Server caches, and maintaining those caches so that visitors to your website never see an
outdated page. In order for Content Server to do this, you must code with Content Server
tags and Java methods.

A Content Server page is composed of various element assets—blocks of code that can
retrieve the content of your pages from the Content Server database, or that perform other
tasks, such as deleting outdated items from the database—and Template assets, which are
generally used to format the content of your web pages. Elements and templates can be
written in a number of scripting and markup languages, including HTML, XML, JSP,
CSS, and JavaScript. Note, however, that Content Server only evaluates XML and JSP.

This chapter gives you a brief overview of programming with Content Server. It contains
the following sections:

• Choosing a Coding Language

• The Content Server Context

• Content Server JSP

• Content Server XML

• Content Server Tags

• Variables

• Other Content Server Storage Constructs

• Values for Special Characters
Content Server 7.0 Developer’s Guide

Chapter 4. Programming with Content Server

Choosing a Coding Language
78
Choosing a Coding Language
Choose your coding or markup language based on what the element or template that you
are creating does. For example, you typically use HTML and XML for page layout and
JSP and Java for logic. Elements that display content that may change, such as a
newspaper article, should usually be written in XML or JSP. This is because such elements
use logic to retrieve their content from the Content Server database, and thus are managed
using Content Server XML or JSP tags.

Content Server also has a Java API, which you will use in conjunction with Content
Server JSP tags if you choose JSP as your coding language.

The following table lists the situations to which each language is best suited:

Note that elements written in XML or JSP can call any type of element, but you cannot
mix XML and JSP in the same element. For example, an element written in either XML or
JSP can call another element written in HTML, XML, or JSP. However, an element
written in HTML cannot call an element written in XML or JSP.

The Content Server Context
When you code for a Content Server project, you code within the Content Server context.
The Content Server context provides access to the Java servlets that compose Content
Server, and to the Content Server Java objects whose methods and tags allow you access
to Content Server functionality.

You code in the Content Server context no matter what language you code your project in;
Content Server XML and JSP tags provide an easy-to use interface to Content Server’s
Java objects, so that even web designers with little or no Java experience can create
Content Server web pages.

The ICS Object
When you are coding for Content Server, you often access the methods and tags of the
Interface to Content Server (ICS) object. The ICS object encapsulates some of Content
Server’s core functionality, allowing you to access servlets that control the Content Server
tree (the TreeManager servlet) and the input of data into the database (the CatalogManager
servlet).

You also use ICS methods and tags to perform tasks such as creating and displaying
variables and using if/then statements to perform tasks based on specified conditions. For
a complete list of the ICS object’s methods and tags, see the Content Server Tag
Reference.

Code When to Use

XML • The element contains mostly text, with few loops and conditionals.

JSP • The element requires conditional operators, or relational operators other
than = or !=.

• The element uses many loops. Loops perform better in JSP than in XML.
• The element contains calls to Java code.
Content Server 7.0 Developer’s Guide

Chapter 4. Programming with Content Server

Content Server JSP
79
The FTCS tag
Each Content Server element or template begins and ends with the ftcs tag. This tag
creates the Content Server context, alerting Content Server that code contained within the
opening and closing ftcs tags will contain Content Server tags and access ICS methods.

If you use the Content Server user interface or the Content Server Explorer tool to create
elements and templates, the opening and closing ftcs tags are automatically added after
the standard directives. You must code within the opening and closing ftcs tags; Content
Server is unaware of any code which falls outside of these tags.

 If you create element and template code using some other method, you must add the
opening ftcs tag after your directives, and use the closing ftcs tag as the last line of
your code.

Content Server JSP
JSP programmers have a set of standard tools at their disposal, including directives,
actions, and JSP objects. If you are programming in JSP within Content Server, you have
access to many of these features. Sometimes, however, you must substitute a Content
Server tag for a JSP directive or action, or access a Content Server object rather than one
of JSP’s implicit objects.

The following sections detail the differences between standard JSP and Content Server
JSP, and how standard JSP functionality maps to Content Server tags and methods:

• Content Server Standard Beginning

• JSP Implicit Objects

• Syntax

• Actions

• Declarations

• Scriptlets and Expressions

• JSP Directives

• Content Server Tag Libraries

Content Server Standard Beginning
If you use either the Content Server user interface or Content Server Explorer to create
your Template assets, CSElement assets, and non-asset elements, Content Server
automatically seeds the element or template with a standard beginning.

The standard beginning for a JSP element in Content Server Explorer follows:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld" %>
<%@ taglib prefix="ics" uri="futuretense_cs/ics.tld" %>
<%@ taglib prefix="satellite" uri="futuretense_cs/satellite.tld"
%>
<%//
// elementName
//
// INPUT
//
Content Server 7.0 Developer’s Guide

Chapter 4. Programming with Content Server

Content Server JSP
80
// OUTPUT
//%>
<%@ page import="COM.FutureTense.Interfaces.FTValList" %>
<%@ page import="COM.FutureTense.Interfaces.ICS" %>
<%@ page import="COM.FutureTense.Interfaces.IList" %>
<%@ page import="COM.FutureTense.Interfaces.Utilities" %>
<%@ page import="COM.FutureTense.Util.ftErrors" %>
<%@ page import="COM.FutureTense.Util.ftMessage"%>
<cs:ftcs>

<!-- user code here -->

</cs:ftcs>

If you use the Content Server user interface to create Template and CSElement assets, you
will also see a standard beginning similar to the preceding code sample. The standard
beginning for these assets imports additional tag libraries for use with basic assets and
includes tags that log dependencies between the Template and CSElement assets and the
content that they render.

If you use a tool other than Content Server Explorer or the Content Server user interface to
create your elements and templates, you must copy the standard beginning into your code
verbatim.

The following sections explain the standard beginning for Content Server Explorer.

Taglib Directives
The following taglib directives import the base tag libraries that you will use with Content
Server. If you use the Content Server user interface to create template and CSElement
assets, you will see additional taglib directives in your seed code.

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld" %>
<%@ taglib prefix="ics" uri="futuretense_cs/ics.tld" %>
<%@ taglib prefix="satellite" uri="futuretense_cs/satellite.tld"
%>

The first directive imports the ftcs1_0 tags, which create the FTCS context. These tags
are used in each template or element that you create, and indicate that the code enclosed
by them will be controlled by Content Server.

The second directive imports the ics tags, which provide access to Content Server’s core
functionality.

The third directive imports the satellite tags, which are for use with Satellite Server.

For more information about these tag libraries, see “Content Server Tag Libraries” on
page 84.

For information about commonly used tags that are found in these tag libraries, see
“Content Server Tags” on page 88.

To add taglib directives to these defaults, modify and save the OpenMarket/
Xcelerate/AssetType/Template/ModelJsp.xml file.
Content Server 7.0 Developer’s Guide

Chapter 4. Programming with Content Server

Content Server JSP
81
Page Directives
The following page directives import the base Java interfaces that you will use with
Content Server:

<%@ page import="COM.FutureTense.Interfaces.FTValList" %>
<%@ page import="COM.FutureTense.Interfaces.ICS" %>
<%@ page import="COM.FutureTense.Interfaces.IList" %>
<%@ page import="COM.FutureTense.Interfaces.Utilities" %>
<%@ page import="COM.FutureTense.Util.ftErrors" %>
<%@ page import="COM.FutureTense.Util.ftMessage"%>

The first page directive imports the FTValList interface, which creates a list of
name/value pairs that you use to pass arguments to Content Server subsystems like the
CatalogManager and TreeManager.

The second page directive imports the ICS interface, which provides access to the core
Content Server functionality.

The third page directive imports the IList interface, which contains the methods to access
the rows in a Content Server query or list object. It also contains the methods that a third
party must implement when attempting to construct and register a list object for use within
an Content Server XML page.

The fourth page directive imports the Utilities interface, which provides a simple
interface for some common tasks such as formatting dates, reading and writing files, and
sending e-mail.

The fifth page directive imports the ftErrors class, which contains error codes.

The sixth page directive imports the ftMessage class, which contains error messages
used by Content Server.

 To add page directives to the standard directives for JSP elements, modify and save the
OpenMarket/Xcelerate/AssetType/Template/ModelJsp.xml file.

The cs:ftcs Tag
Each Content Server JSP template or element must have the cs:ftcs tag as its first and
last tags. This tag creates the Content Server context, alerting Content Server that code
contained within the opening and closing cs:ftcs tags will contain Content Server tags.

You must code within the opening and closing cs:ftcs tags; Content Server is unaware
of any code which falls outside of these tags.
Content Server 7.0 Developer’s Guide

Chapter 4. Programming with Content Server

Content Server JSP
82
JSP Implicit Objects
JSP provides several implicit objects that are available for developers to use. In the
Content Server context, however, you are often dealing with Content Server’s objects, and
should use Content Server JSP tags and Java methods to access these objects, instead of
using JSP’s implicit objects.

The following table maps JSP’s implicit objects and some of their commonly used
methods to the Content Server tag or method that you should use to replace them.

Syntax
Content Server uses standard JSP syntax. When you are nesting tags, however—for
example, using a JSP expression as the value of a JSP tag’s parameter—remember to use
single quotes to contain the expression, as in the following example:

name=’<%=ics.GetVar("myVariable")%>’

Actions
Standard JSP allows developers to use several different actions. The following table
describes what actions should be replaced with Content Server tags and which can be used
as usual:

Object Method Content Server Tag or Method

request getParameter ics:getvar tag

getParameterNames ICS.GetVars() method

getCookie ics:getCookie tag

response addCookie satellite:cookie tag

session getAttribute ics:getssvar tag

setAttribute ics:setssvar tag

out println ics:getvar tag or
render:stream tag

Action Content Server

<jsp:forward> Use the render:satellitepage or
render:callelement tags instead.

<jsp:getproperty> Use this for custom Java Beans. If you want to find the value
of one of the Content Server properties, use the
<ics:getproperty> tag.

<jsp:include> Use the render:satellitepage or
render:callelement tags instead.

<jsp:setProperty> Use this to set properties in custom Java Beans. Use the
Content Server Property Editor to set Content Server
properties.

<jsp:useBean> Use this for custom Java Beans.
Content Server 7.0 Developer’s Guide

Chapter 4. Programming with Content Server

Content Server JSP
83
Declarations
In standard JSP, you usually declare variables within a JSP declaration. In Content Server,
you use the ics:setvar tag to declare variables that are available in the Content Server
context.

 For more information about Content Server variables, see “Variables” on page 100.

Scriptlets and Expressions
You can use scriptlets and expressions without any variation from normal JSP usage.

When you use an expression as the value of the parameter for a Content Server JSP tag,
however, be sure that you nest quotation marks correctly, as described in “Syntax” on
page 82.

JSP Directives
When you are coding JSP in a Content Server context, there are some caveats for using
directives, which are outlined in the following table:

Directive Content Server

IncludeDirective Use the render:satellitepage or render:callelement
tags to include other files in your JSP pages.

Page Directive If you use the Content Server user interface or the Content
Server Explorer tool to create elements or templates, your
element or template is automatically seeded with standard page
directives.

In addition to the standard directives, you must add two page
directives to set the contentType and session for each
Content Server element or template that you create.

• Set your page’s content type to text/html and the character set
to
UTF-8 by providing the following page directive as the first
line of every Content Server JSP file:

<%@ page contentType="text/html; charset=UTF-8"
%>

• Content Server handles sessions for your JSP pages, so you
should also disable HTTP sessions for your page. To disable
HTTP sessions for the current page, provide the following
page directive:

<%@ page session="false" %>

Taglib Directive Content Server automatically seeds your templates and
elements with commonly used taglib directives.

You can add additional Content Server taglib directives to an
element or Template asset as needed; a list of the Content
Server tag libraries follows this table.
Content Server 7.0 Developer’s Guide

Chapter 4. Programming with Content Server

Content Server JSP
84
Content Server Tag Libraries
Content Server has a series of JSP tag libraries that correspond to functions in Content
Server’s APIs.

The following table lists the Content Server tag libraries and describes their functions. Use
this table as a reference when deciding which tag libraries to import into your JSPs.

Tag Libraries for Both Basic and Flex Assets

Tag Library Description

acl.tld Tags for creating and manipulating Access Control Lists.

date.tld Tags that convert dates with year, month, day, and optional
hour, minute, and am/pm fields into epoch format long
integers representing milliseconds since Jan 1, 1970, 0:00
GMT. Date tags also convert long integers into dates.

dir.tld Directory Services tags.

ftcs1_0.tld Tags that create the FTCS context. These tags are used in
each template or element that you create, and indicate that
the code enclosed by them will be controlled by Content
Server.

ics.tld Tags which provide access to core Content Server
functionality, including access to the CatalogManager and
TreeManager commands, and basic coding constructs like
if/then statements.

insite.tld Tags for InSite Editor.

localestring.tld Tags for localizing text strings.

name.tld Tags that access the name of the user who is currently
logged in to Content Server and manipulate usernames in
directory services.

object.tld Tags for manipulating Content Server objects.

property.tld Tags for retrieving values from Content Server property
files.

render.tld Tags that render basic assets.

tags for working with
satellite server

Many of these tags have RENDER equivalents (as defined
in render.tld) that are preferred for building sites with
CS-Direct.

soap.tld Content Server SOAP tags.

time.tld Tags that get and set the timing for determining the
performance of elements.

user.tld Tags to log users in and out of Content Server.

webservices.tld Web services tags that allow you to consume certain types
of public web sites as part of a Content Server page.
Content Server 7.0 Developer’s Guide

Chapter 4. Programming with Content Server

Content Server JSP
85
Tag Libraries for Basic Assets

Tag Libraries for Flex Assets

Tag Library Description

asset.tld Tags that retrieve and manipulate basic assets.

siteplan.tld Tags that allow access to the site plan tree. You use these
tags to create navigation for a site that uses basic assets.

Tag Library Description

assetset.tld Tags for creating assetsets with flex assets.

blobservice.tld Tags for retrieving and manipulating blobs that are
attributes of flex assets.

calculator.tld Tags that provide basic calculator and boolean functions.

cart.tld Tags that allow you to add, delete, and otherwise
manipulate items in a shopping cart object.

cartset.tld Tags that allow you store, retrieve, delete, and list shopping
cart objects for a registered buyer.

commercecontext.tld Tags that access the objects in the CS-Direct Advantage
visitor context.

currency.tld Tags that convert floating point values and currency
strings, and perform formatting and rounding operations on
currency strings.

decimal.tld Tags that format floating point values as decimal objects in
different locales.

hash.tld Tags that allow you to cast an IList as a hash table and
search it by key.

listobject.tld Tags that construct Content Server resultset lists, which are
used throughout your elements as arguments for other CS-
Direct Advantage tags.

locale1.tld Tags that generate a locale object, which is used to describe
the desired locale for various other tags in the system.

misc.tld Miscellaneous tags, including a tag that returns the names
of all the columns in an input list

searchstate.tld Tags for creating searchstates to constrain groups of flex
assets (assetsets).

session.tld A tag that flushes all stored objects for a given session.

string.tld Tags that perform string manipulations.

textformat.tld Tags that format text.
Content Server 7.0 Developer’s Guide

Chapter 4. Programming with Content Server

Content Server XML
86
For complete descriptions of the CS-Direct tags used for template development, see the
Content Server Tag Reference.

Content Server XML
This section explains the basics of Content Server XML. Content Server XML uses
standard XML syntax and is defined by the futuretense_cs.dtd. As with Content
Server JSP tags, Content Server XML tags provide access to Content Server servlets and
objects.

The following sections describe things to be aware of when coding with Content Server
XML.

Content Server Standard Beginning
If you use the Content Server user interface or the Content Server Explorer tool to create
your templates and elements, Content Server automatically seeds the element with the
following standard beginning:

<?xml version="1.0" ?>
<!DOCTYPE ftcs SYSTEM "futuretense_cs.dtd">
<ftcs version="1.2">
</ftcs>

If you use some other tool to create your elements and templates, you must copy this code
into them verbatim.

The following sections explain this standard beginning.

XML Version and Encoding
The first line in any Content Server XML template or element must set the XML version,
as follows:

<?xml version="1.0"?>

Note that in order for your element to run, <?xml version="1.0"?> must be the first
line in the element, with no spaces before the text. The line must also have a hard return at
the end, placing it on its own line.

If you need to set the encoding for this template or element, you can do this as follows:

<?xml version="1.0" encoding="utf-8"?>

The .dtd File
Content Server XML is defined by the futuretense_cs.dtd file. You must import this
file into each Content Server element or template that you code by entering the following
line immediately after the XML version statement:

<!DOCTYPE ftcs SYSTEM "futuretense_cs.dtd">

vdm.tld Visitor Data Management tags, which enable you to record
and retrieve information about website visitors from
Content Server, or from other databases.
Content Server 7.0 Developer’s Guide

Chapter 4. Programming with Content Server

Content Server XML
87
The FTCS Tag
Each Content Server XML template or element must have the ftcs tag as its first and last
tags. This tag creates the Content Server context, alerting Content Server that code
contained within the opening and closing FTCS tags will contain Content Server tags.

You must code within the opening and closing ftcs tags; Content Server is unaware of
any code which falls outside of these tags.

XML Entities and Reserved Characters
Because symbols such as < and > are reserved characters in XML, you must not place
them in your content. For example, the following code confuses the XML parser because
the less-than sign (<)appears inside some text:

<P>4 < 7</P>

You must use character entities in place of reserved characters. Character entities begin
with &# and end with a semicolon. Between the &# and the semicolon, you specify the
decimal Latin-1 (a superset of ASCII) value of the character. For example, the decimal
Latin-1 value of the < character is 60, so the correct way to code the preceding line in
XML is:

<P>4 < 7</P>

See the “Values for Special Characters” section of this chapter for a list of these character
entities.

XML Parsing Errors
The XML parser that processes Content Server tags ensures that the tags are syntactically
correct. This simplifies tracking down hard-to-find problems related to tagging syntax
errors. A misspelled tag name is not reported as an error. This is because the XML parser
doesn’t require all tag names to exist in the DTD.

When a page request is made to a Content Server system and an XML syntax error is
detected, the results streamed back will contain useful information to help you locate the
problem. The results include a general error description, followed by the line/column
location of the error. For example, the following error reports a bad parameter name:

Illegal attribute name NAM Illegal attribute name NAM
Location: null(6,11)
Context:

And the next error reports an incorrect tag nesting:

Close tag IF does not match start tag THEN Close tag IF does
not match start tag THEN
Location: null(13,3)
Context:

The XML parser also detects run-time errors. These are errors where the XML tags are
syntactically correct, however, some error in the structure is detected during processing.
For example, the following error reports an invalid use of ARGUMENT:

Failed to run template:c:\FutureTense\elements\dan.xml Runtime
error Argument invalid [Argument 5]
Containing tag: FTCS
Content Server 7.0 Developer’s Guide

Chapter 4. Programming with Content Server

Content Server Tags
88
Content Server Tags
Content Server has an extensive set of tags in both JSP and XML that allow you to access
the various functions of Content Server and its product family. You use these tags in
conjunction with HTML, Java, JavaScript, and custom tags that you create, to code your
web site.

This section provides and overview of the tags that you are most likely to use in your
Template assets and elements. For complete information on all of the Content Server tags,
see the Content Server Tag Reference.

The tags discussed here are arranged by usage, as follows:

• Tags That Create the Content Server Context

• Tags That Handle Variables

• Tags That Call Pages and Elements

• Tags That Create URLs

• Tags That Control Caching

• Tags That Set Cookies

• Programming Construct Tags

• Tags That Manage Compositional and Approval Dependencies

• Tags That Retrieve Information About Basic Assets

• Tags That Create Assetsets (Flex Assets)

• Tags That Create Searchstates (Flex Assets)
Content Server 7.0 Developer’s Guide

Chapter 4. Programming with Content Server

Content Server Tags
89
Tags That Create the Content Server Context
The following section describes tags that create the Content Server context in which you
code. You use these tags in every template or element that you write.

The FTCS tag creates the Content Server context. The opening FTCS tag should be the
first tag in your code, and the closing FTCS tag should be the last tag in your code.

Content Server is unaware of anything that falls outside of the opening and closing FTCS
tags. Consequently, content outside the tags will not be cached, and the tags will not
operate correctly.

Tags That Handle Variables
The following tags handle variables in Content Server.

CSVAR displays the value of a variable, session variable, built-in, or counter.

SETVAR sets the value of a regular, Content Server variable.The value of the variable
exists for the duration of the page evaluation unless it is explicitly deleted using
REMOVEVAR.

SETSSVAR sets a session variable.

FTCS (XML) ftcs1_0:ftcs (JSP)

<FTCS>
</FTCS>

<ftcs1_0:ftcs>

</ftcs1_0:ftcs>

CSVAR (XML) ics:getvar (JSP)

<CSVAR
 NAME="variableName"/>

<ics:getvar

 name="variableName"/>

SETVAR (XML) ics:setvar (JSP)

<SETVAR
 NAME="variableName"

 VALUE="variableValue"/>

<ics:setvar

 name="variableName"
 value="variableValue"/>

SETSSVAR (XML) ics:setvar (JSP)

<SETSSVAR
 NAME="variableName"

 VALUE="variableValue"/>

<ics:setssvar

 name="variableName"
 value="variableValue"/>
Content Server 7.0 Developer’s Guide

Chapter 4. Programming with Content Server

Content Server Tags
90
REPLACEALL and ics:resolvevariables resolve multiple Content Server variables.
In other words, when you want to use Content Server variables in HTML tags, you use
these tags to resolve the variables.

For more information about variables in Content Server, see “Variables” on page 100.

Tags That Call Pages and Elements
Use the following tags to call elements or templates.

RENDER.SATELLITEPAGE requests a Content Server pagelet and caches that pagelet in
both Content Server and Satellite Server, if the pagelet is not already in cache. If you wish
to call a page or pagelet without caching it individually, use the RENDER.CALLELEMENT
tag.

RENDER.SATELLITEPAGE has a stacked scope, so the only variables available to the page
are ones that you explicitly pass in.

RENDER.CALLELEMENT is similar to the RENDER.SATELLITEPAGE tag in that both tags
call other Content Server code, either in an element or in a page. However, code called by

REPLACEALL (XML) ics:resolvevariables (JSP)

<REPLACEALL
 NAME="variableName"

 VALUE="variableValue"/>

<ics:resolvevariables

 name="variableName"
 [output="variable name"]
 [delimited="true|false"]/>

Note

CACHECONTROL, used below, has been deprecated.

RENDER.SATELLITEPAGE (XML) render:satellitepage (JSP)

<RENDER.SATELLITEPAGE

PAGENAME=“nameOfPageEntry”

[CACHECONTROL=“expiration_dat
e_and_time”]

[ARGS_var1=“value1”]/>

<render:satellitepage

pagename=“nameOfPageEntry”

[cachecontrol=“expiration_date_and
_time”]>

<[render:argument name=“variable1”
value=“value1”]/>

</render:satellitepage>

RENDER.CALLELEMENT (XML) render:callelement (JSP)

<RENDER.CALLELEMENT
 ELEMENTNAME="nameOfElement"
 [ARGS_var1="value"]/>

<ics:callelement
element="element name">
 <ics:argument name="argument
name" value="arg value"/>
</ics:callelement>
Content Server 7.0 Developer’s Guide

Chapter 4. Programming with Content Server

Content Server Tags
91

]

e”]>
RENDER.CALLELEMENT does not get cached as an individual page or pagelet on
Satellite Server.

Use RENDER.CALLELEMENT to process the content of an element that you wrote for the
CS Content Applications and you want the scope of that element to be stacked. The
element must exist in the ElementCatalog.

Tags That Create URLs

This tag creates a URL for an asset, processing the arguments passed to it into a URL-
encoded string and returning it as the variable specified by the OUTSTR parameter. If
rendermode is set to export, the tag creates a file name for a static HTML file (unless
you specify that you want a dynamic URL). If rendermode is set to live, the tag creates
a dynamic URL.

RENDER.GETPAGEURL (XML) render:getpageurl (JSP)

<RENDER.GETPAGEURL

OUTSTR="myURL"

PAGENAME="SiteCatalogPageEntry"

cid="IDofAsset"

[p="IDofParentPage"]

[c="AssetType"]

[ADDSESSION=“true”]

[DYNAMIC=“true”]

[PACKEDARGS=“stringFromPACKARGS
tag”]

[ARGS_xxx=“y”]/>

<render:getpageurl

outstr=“myURL”

pagename="SiteCatalogPageEntry"

cid="IDofAsset"

[p="IDofParentPage"]

[c="AssetType"]

[addsession=“true”]

[dynamic=“true”]

[packedargs=“stringFromPACKARGStag”

 <[render:argument name=“xxx”
value=“yyy”]/>

</render:getpageurl>

RENDER.SATELLITEBLOB (XML) render:satelliteblob (JSP)

<RENDER.SATELLITEBLOB

SERVICE=“HTMLtagName”

BLOBTABLE=“blobTable”

BLOBKEY=“primaryKeyName”

BLOBWHERE=“primaryKeyValue”

BLOBCOL=“columnName”

BLOBHEADERNAMEN=“headername”

BLOBHEADERVALUEN="mimetype"

[ARGS_format1=“5”]

[CACHECONTROL=“expirationDateA
ndTime”]/>

<render:satelliteblob

service=“HTMLtagName”

blobtable=“blobTable”

blobkey=“primaryKeyName”

blobwhere=“primaryKeyValue”

blobcol=“columnName”

blobheadernameN=“headername”

 blobheadervalueN="mimetype"

[cachecontrol=“expirationDateAndTim

<[render:argument name=“format1”
value=“5”]/>

</render:satelliteblob>
Content Server 7.0 Developer’s Guide

Chapter 4. Programming with Content Server

Content Server Tags
92
This tag creates an HTML tag with a BlobServer URL for assets that are blobs. For
example, imagefile assets from the Burlington Financial sample site are blobs stored in the
Content Sever database which means they must be served by the BlobServer servlet. This
tag creates an HTML tag that instructs a browser how to find and format the specified
blob.

Tags That Control Caching
The following tag allows you to control whether or not the output of the current template
or element gets cached.

Use ics.disable cache in conjunction with if/then statements that check for error
conditions; if an error is present, the resulting rendered page will not be cached.

For complete information and code samples for the ics.disablecache tag, see
“Ensuring that Incorrect Pages Are Not Cached” on page 571.

Tags That Set Cookies
The following tag sets cookies in Content Server.

satellite.cookie sets a cookie on the user’s browser. This tag is the only way to set
cookies in either XML or JSP.

ics.disablecache (XML) ics:disablecache (JSP)

<ics.disablecache/> <ics:disablecache/>

satellite.cookie (XML) satellite:cookie (JSP)

<satellite.cookie
 name="cookie_name"
 value="cookie_value"
 timeout="timeout"
 secure="true|false"
 url="URL"
 [domain="domain"]/>

<satellite:cookie>
<satellite:parameter name=’name’
value=’cookie_name’/>
 <satellite:parameter name=’value’
value=’cookie_value’/>
<satellite:parameter name=’timeout’
value=’cookie_timeout’/>
<satellite:parameter name=’secure’
value=’true|false’/>
<satellite:parameter name=’url’
value=’url’>
</satellite:cookie>
Content Server 7.0 Developer’s Guide

Chapter 4. Programming with Content Server

Content Server Tags
93
Programming Construct Tags
The following tags allow you to use basic programming constructs.

IF, THEN, ELSE determine conditions. You typically use these tags to determine the value
of a variable.

LOOP and ics:listloop iterate through items in a list. Remember that excess code
within these tags affects the performance of the template. Whenever possible, keep
statements that do not need to be repeated outside the LOOP tags.

Tags That Manage Compositional and Approval Dependencies
For complete information about compositional and approval dependencies, see “About
Dependencies” on page 534.

Use the RENDER.LOGDEP tag if your template uses tags that obtain an asset’s data without
loading the asset, such as ASSET.CHILDREN.

IF/THEN/ELSE (XML) ics:if/ics:then/ics:else (JSP)

<IF
COND="LOGICAL_EXPRESSION">
 <THEN>
 tags and/or text
 </THEN>
 <ELSE>
 tags and/or text
 </ELSE>
</IF>

<ics:if condition="logical
expression">
 <ics:then>
 tags and/or text
 </ics:then>
 <ics:else>
 tags and/or text
 </ics:else>
</ics:if>

LOOP (XML) ics:listloop (JSP)

<LOOP [FROM="START"]
 [COUNT="LOOP_TIMES"]
 [LIST="LIST_NAME"]
 [UNTIL="END"]>
 ...
</LOOP>

<ics:listloop
 listname="some list"
 [maxrows="number of loops"]
 [startrow="start row"]
 [endrow="end row"]/>

RENDER.LOGDEP (XML) render:logdep (JSP)

<RENDER.LOGDEP ASSET="asset
name"

CID="asset id"

C="asset type"/>

<render:logdep asset="asset name"

cid="asset id"

c="asset type"/>
Content Server 7.0 Developer’s Guide

Chapter 4. Programming with Content Server

Content Server Tags
94
Use the RENDER.UNKNOWNDEPS tag if a page has a query or some other indeterminate
connection to its dependent assets. This tag causes the page or pagelet to be regenerated at
every publish because the dependencies cannot be determined. This means that you should
use this tag sparingly.

Use the RENDER.FILTER tag to check for unapproved assets and prevent them from being
included in the exported page. This tag filters either a single asset or list of assets by
comparing each asset ID against the assetid column in the ApprovedAssets database
table.

During export rendering, it filters what can be published based on approval status. During
live rendering, RENDER.FILTER does nothing. Use this tag whenever you have a database
query for a list of assets in your template.

Tags That Retrieve Information About Basic Assets

This tag queries the database for a specific asset and then loads the asset’s data into
memory as an object. The object is then available to your elements until either the session
is flushed or the name that is assigned to the object is overwritten.

The scope of the object names that you assign to loaded assets is global. Be sure to use
unique object names so that your elements do not overwrite objects by mistake. A
convenient naming convention is to include the element name in the asset name. For an

RENDER.UNKNOWNDEPS (XML) render.unknowndeps (JSP)

<RENDER.UNKNOWNDEPS/> <render:unknowndeps/>

RENDER.FILTER (XML) render:filter (JSP)

<RENDER.FILTER LIST="list name"

LISTVARNAME="output list name"

LISTDICOL="assetID column"

[LISTTYPECOL="assettype column"]

[TYPE="asset type"]

[ID="asset id"]

[VARNAME="output variable"/>

<render:filter list="list name"

listvarname="output list name"

listidcol="assetID column"

[listtypecol="assettype
column"]

[type="asset type"]

[id="asset id"]

[varname="output variable"/>

ASSET.LOAD (XML) asset:load (JSP)

<ASSET.LOAD
 NAME="assetName"
 TYPE="assetType"
 OBJECTID="object.id"
 [FIELD=“fieldName”]
 [VALUE=“fieldValue”]
 [DEPTYPE=”EXACT, EXISTS,
 or GREATER"]/>

<asset:load

 name="assetName"
 type="assetType"
 objectid="object.id"
 [field=“fieldName”]
 [value=“fieldValue”

 [deptype="exact,exists,or
greater"]/>
Content Server 7.0 Developer’s Guide

Chapter 4. Programming with Content Server

Content Server Tags
95
example of creating unique asset object names by using this convention, see “Example 1:
Basic Modular Design” on page 574.

ASSET.LOAD automatically logs a dependency between the template or element that uses
the tag and the asset data that the tag retrieves.

This tag retrieves values from all of the fields of an asset object that has already been
retrieved (loaded) with the ASSET.LOAD tag and turns those values into Content Server
variables. For example, if you want to display the headline, byline, description, and so on
of an article online, you can use this tag to retrieve all of those values with one call.

This tag retrieves the value from one specified field of an asset object that has already
been retrieved (loaded) with the ASSET.LOAD tag and turns that value into a Content
Server variable. For example, if you need only the headline of an article to use in a link to
that article, you can use this tag to retrieve that one value.

This tag queries the AssetRelationTree table and then builds a list of assets that are
children of the asset that you specified. You use this tag to retrieve assets in a collection, to
retrieve the image assets associated with article assets, and so on.

Use the RENDER.LOGDEP tag in conjunction with ASSET.CHILDREN to log a dependency
between the element or template in which it appears and the content that
ASSET.CHILDREN retrieves.

ASSET.SCATTER (XML) asset:scatter (JSP)

<ASSET.SCATTER

NAME="assetName"

PREFIX=“variablePrefix”/>

<asset:scatter

name="assetName"

prefix="variablePrefix"/>

ASSET.GET (XML) asset:get (JSP)

<ASSET.GET

NAME="assetName"

FIELD="fieldName"

[OUTPUT="outputVariable"]/>

<asset:get

name="assetName"

field="fieldName"

[output="outputVariable"]/>

ASSET.CHILDREN (XML) asset:children (JSP)

<ASSET.CHILDREN

NAME=“assetName”

LIST= “listName”

[CODE= “NameOfAssociation”]

[OBJECTTYPE= “typeOfObject”]

[OBJECTID=“objectID”]

[ORDER=“nrank”]/>

<asset:children

name=“assetName”

list=“listName”

[code=“NameOfAssociation”]

[objectype=“typeOfObject”]

[objectid=“objectID”]

[order=“nrank”]/>
Content Server 7.0 Developer’s Guide

Chapter 4. Programming with Content Server

Content Server Tags
96
Performance Notes About the Asset Tags
• ASSET.LOAD and ASSET.CHILDREN are database queries, so you should use them

only when necessary, because queries to the database take time. For example, you
might want to include error checking code after an ASSET.LOAD tag and before its
subsequent ASSET.CHILDREN tag that determines whether an asset was returned by
the ASSET.LOAD. If there is no asset, there is no reason to invoke the
ASSET.CHILDREN tag.

• An ASSET.SCATTER call takes much longer than a single ASSET.GET call.

Tags That Create Assetsets (Flex Assets)
Assetset tags specify a set of one or more flex assets that you want to retrieve from the
database.

You can retrieve the following information from an assetset:

• The values for one attribute for each of the flex assets in the assetset

• The values for multiple attributes for each of the flex assets in the assetset

• A list of the flex assets in the assetset

• A count of the flex assets in the assetset

• A list of unique attribute values for an attribute for all flex assets in the assetset

• A count of unique attribute values for an attribute for all flex assets in the assetset

The following tables describe the assetset tags that you will use most frequently.

ASSETSET.SETASSET builds an asset set from a single asset that you specify and defines
a compositional dependency between the template or element that it appears in and the
content that it retrieves.

ASSETSET.SETASSET (XML) assetset:setasset (JSP)

<ASSETSET.SETASSET
 NAME="assetsetname"
 TYPE="assettype"
 ID="assetid"
 [LOCALE="localeobject"]

[DEPTYPE="exact|exists|none"]
/>

<assetset:setasset
name="assetsetname"
type="assettype" id="assetid"
[locale="localeobject"]
[deptype="exact|exists|none"]/>

ASSETSET.SETSEARCHEDASSETS
(XML) assetset:setsearchedassets (JSP)

<ASSETSET.SETSEARCHEDASSETS
 NAME="assetsetname"
[ASSETTYPES="assettype"]
[CONSTRAINT="searchstateobject"]
[LOCALE="localeobject"]
[SITE="siteidentifier"]
[DEPTYPE="exact|exists|none"]/>

<assetset:setsearchedassets
name="assetsetname"
[assettypes="assettype"]
[constraint="searchstateobject"]
locale="localeobject"]
[site="siteidentifier"]
[deptype="exact|exists|none"]/>
Content Server 7.0 Developer’s Guide

Chapter 4. Programming with Content Server

Content Server Tags
97

]/>
ASSETSET.SETSEARCHEDASSETS creates an assetset object which represents all assets
of specific types narrowed by specified search criteria (represented by the seachstate
object that you name in the constraint parameter).

This tag also defines a compositional dependency between the template or element in
which it appears and the each asset in the set.

ASSETSET.GETMULTIPLEVALUES scatters attribute values from several attributes (and
potentially more than one asset) into several specified lists.

FatWire recommends using ASSETSET.GETMULTIPLEVALUES when the goal is to
display a fixed-format table of assets, or to obtain many attributes of a single asset (such as
for a product detail page).

ASSETSET.GETMULTIPLEVALUES has the following limitations:

• Only non-foreign attributes can be scattered.

• Text-type attributes cannot be scattered.

ASSETSET.GETATTRIBUTEVALUES gets the list of values for a specified attribute of the
assets represented by an assetset.

ASSETSET.GETMULTIPLEVALUES
(XML) assetset:getmultiplevalues (JSP)

<ASSETSET.GETMULTIPLEVALUES
 NAME="assetsetname"
 LIST="listname"
 [BYASSET="true|false"]
 PREFIX="prefix"/>

<assetset:getmultiplevalues
 name="assetsetname"
 list="listname"
 [byasset="true|false"]
 prefix="prefix"/>

ASSETSET.GETATTRIBUTEVALUES
(XML) assetset:getattributevalues (JSP)

<ASSETSET.GETATTRIBUTEVALUES
 NAME="assetsetname"
 ATTRIBUTE="attribname"
 [TYPENAME="assettypename"]
 LISTVARNAME="varname"

[ORDERING="ascending|descending"]
/>

<assetset:getattributevalues
 name="assetsetname"
 attribute="attribname"
 [typename="assettypename"]
 listvarname="varname"

[ordering="ascending|descending"
Content Server 7.0 Developer’s Guide

Chapter 4. Programming with Content Server

Content Server Tags
98

traint

nstr

"]

se"]

ASSETSET.GETASSETLIST retrieves an ordered list of assets, given optional sort
criteria. The resulting list has two columns, assetid and assettype, that are sorted by the
criteria that you specify.

Tags That Create Searchstates (Flex Assets)
Searchstate tags assemble criteria that filter the assets that you retrieve using the
assetset tags.

You build a searchstate by adding or removing constraints to narrow or broaden the list of
flex assets that are described by the searchstate.

The following tables describe the searchstate tags that you will use most frequently.

SEARCHSTATE.CREATE builds an empty searchstate object. You must begin constructing
a searchstate with this tag.

SEARCHSTATE.ADDSTANDARDCONSTRAINT adds an attribute name/value constraint into
a new or existing searchstate object.

You can constrain the attribute by a list of values that you specify in the list parameter.

ASSETSET.GETASSETLIST (XML) assetset:getassetlist (JSP)

<ASSETSET.GETASSETLIST
 NAME="assetsetname"
 [LIST="attriblist"]
 [MAXCOUNT="rowcount"]
 [METHOD="random|highest"]
 LISTVARNAME="varname/>

<assetset:getassetlist
 name="assetsetname"
 [list="attriblist"]
 [maxcount="rowcount"]
 [method="random|highest"]
 listvarname="varname"/>

SEARCHSTATE.CREATE (XML) searchstate:create (JSP)

<SEARCHSTATE.CREATE
 NAME="ssname"
 [OP="and|or"]/>

<searchstate:create
 name="ssname"
 [op="and|or"]/>

SEARCHSTATE.ADDSTANDARDCONSTRAINT
(XML)

searchstate:addstandardcons
(JSP)

<SEARCHSTATE.ADDSTANDARDCONSTRAINT
 NAME="ssname"
 [BUCKET="bucketname"]
 [TYPENAME="assettype"]
 ATTRIBUTE="attribname"
 [LIST="listname"]
 [IMMEDIATEONLY="true|false"]
 [CASEINSENSITIVE="true|false"]/>

<searchstate:addstandardco
aint
 name="ssname"
 [bucket="bucketname"]
 [typename="assettype"]
 attribute="attribname"
 [list="listname"]

[immediateonly="true|false

[caseinsensitive="true|fal
/>
Content Server 7.0 Developer’s Guide

Chapter 4. Programming with Content Server

Content Server Tags
99

dcon

dard

]
"]
e"

"]/>

aint

raint

]
"]
e"

se"]

traint

raint

]
"]
e"

se"]
SEARCHSTATE.ADDSIMPLESTANDARDCONSTRAINT adds an attribute name/
single value constraint to an existing searchstate.

This tag is the simple version of SEARCHSTATE.ADDSTANDARDCONSTRAINT. The
object referred to by NAME is updated to reflect the new constraint. If the attribute name
is already in the searchstate, then the new constraint replaces the old constraint.

SEARCHSTATE.ADDRANGECONSTRAINT adds a range constraint for a specific attribute
name.

SEARCHSTATE.ADDRICHTEXTCONSTRAINT adds an attribute name and rich-text
expression to the list of rich-text constraints in the searchstate.

SEARCHSTATE.ADDSIMPLESTANDARDCON
STRAINT (XML)

searchstate:addsimplestandar
straint (JSP)

<SEARCHSTATE.ADDSIMPLESTANDARDCONSTRAINT
 NAME="ssname"
 [BUCKET="bucketname"]
 [TYPENAME="assettype"]
 ATTRIBUTE="attribname"
 VALUE="value"
 [IMMEDIATEONLY="true|false"]/>

<searchstate:addsimplestan
constraint
 name="ssname"
 [bucket="bucketname"
 [typename="assettype
 attribute="attribnam
 value="value"
 [immediateonly="value

SEARCHSTATE.ADDRANGECONSTRAINT
(XML)

searchstate:addrangeconstr
(JSP)

<SEARCHSTATE.ADDRANGECONSTRAINT
 NAME="ssname"
 [BUCKET="bucketname"]
 [TYPENAME="assettype"]
 ATTRIBUTE="attribname"
 LOWER="lowrange"
 UPPER="uprange"
 [CASEINSENSITIVE="true|false"]/>

<searchstate:addrangeconst
 name="ssname"
 [bucket="bucketname"
 [typename="assettype
 attribute="attribnam
 lower="lowrange"
 upper="uprange"

[caseinsensitive="true|fal
/>

SEARCHSTATE.ADDRICHTEXTCONSTRAINT
(XML)

searchstate:addrichtextcons
(JSP)

<SEARCHSTATE.ADDRICHTEXTCONSTRAINT
 NAME="ssname"
 [BUCKET="bucketname"]
 [TYPENAME="assettype"]
 ATTRIBUTE="attribname"
 VALUE="criteria"
 [PARSER="parsername"]
 CONFIDENCE="minlevel"
 [MAXCOUNT="number"] />

<searchstate:addrangeconst
 name="ssname"
 [bucket="bucketname"
 [typename="assettype
 attribute="attribnam
 lower="lowrange"
 upper="uprange"

[caseinsensitive="true|fal
/>
Content Server 7.0 Developer’s Guide

Chapter 4. Programming with Content Server

Variables
100
SEARCHSTATE.TOSTRING converts a searchstate object into its string representation
that is suitable for various uses, such as saving in a session variable or packing into a URL.

SEARCHSTATE.FROMSTRING provides the ability for a searchstate object to be
initialized from its string representation.

You must create an empty searchstate using the SEARCHSTATE.CREATE tag before you
can use this tag.

Variables
Content Server supports the following kinds of variables:

• Regular variables, which last for the duration of the current template or element,
unless you explicitly remove them. Regular variables have a global scope.

• Session variables, which last for the duration of the current session.

Content Server provides several standard variables whose names are reserved. You can
retrieve the values of these variables, but you cannot use their names for other variables
that you create.

This section describes the following topics:

• Reserved Variables

• Setting Regular Variables

• Setting Session Variables

• Working With Variables

• Variables and Precedence

• Best Practices with Variables

Reserved Variables
The following table defines the standard Content Server variables. Unless otherwise
noted, these are regular variables:

SEARCHSTATE.TOSTRING
(XML) searchstate:tostring (JSP)

<SEARCHSTATE.TOSTRING
 NAME="objname"
 VARNAME="varname"/>

<searchstate:tostring
 name="objname"
 varname="varname"/>

SEARCHSTATE.FROMSTRING
(XML) searchstate:fromstring (JSP)

<SEARCHSTATE.FROMSTRING
 NAME="objname"
 VALUE="stringval"/>

<searchstate:fromstring
 name="objname"
 value="stringval"/>
Content Server 7.0 Developer’s Guide

Chapter 4. Programming with Content Server

Variables
101
Variable Definition

tablename A variable that is set to a tablename before the execsql tags
can be run.

pagename The name of the Content Server page being invoked.

ftcmd A variable used in calls to CatalogManager.

username A session variable that contains the name of the user who is
currently logged in to the current session.

password A session variable that contains the password of the user who is
currently logged in to the current session.

authusername A variable that you can set to the username of a user who you
want to log in to Content Server. This can be sent to Content
Server via a URL.

authpassword A variable that you can set to the password of a user who you
want to log in to Content Server. This can be sent to Content
Server via a URL.

currentACL A session variable that contains the ACLs that the current user
belongs to.

errno Error numbers reported by Content Server tags.

context Reserved for future use in the render:calltemplate tag.
For more information, see the Developer’s Tag Reference.

site The full name of the site, as stored in the name column of the
Publication table.

The site variable is set as a resarg in all of the Template and
Site Entry assets. The site owns the Template and SiteEntry
assets that you create within the site.

sitepfx The site prefix (and short name of the site), as stored in the
cs_prefix column of the Publication table.

ft_ss An internal variable that is automatically set by Content Server
to support communication with Satellite Server. When ft_ss
is set to true, Content Server infers that a request is from
Satellite Server.

c The asset type that a template formats. CS-Direct sets this
variable by default when you save the Template asset.

cid The ID of the asset being rendered or formatted by a template.

ct The value of a child template, if there is one. For a thorough
explanation of child templates, see “Example 3: Using the ct
Variable” on page 581.

p The ID of an asset’s parent page, if there is one.
Content Server 7.0 Developer’s Guide

Chapter 4. Programming with Content Server

Variables
102
Setting Regular Variables
Most of the variables that you will use while coding Content Server templates and
elements are regular variables. Regular variables last for the duration of the current
template or element, unless they are explicitly deleted using Content Server tags.

Setting Variables with SETVAR
Inside a Content Server element, you can call the SETVAR XML or JSP tags to create a
variable and establish its initial value. For example, the following SETVAR XML tag
creates a variable named dog and sets its value to fido:

<SETVAR NAME="dog" VALUE="fido"/>

If the variable already exists, SETVAR resets its value to the new value. For example, the
following command resets the value of dog to mocha:

<SETVAR NAME="dog" VALUE="mocha"/>

Setting Variables via a URL
Content Server creates a page when a browser goes to a URL managed by a Content
Server application. Each page is associated with a particular URL. Imagine, for example, a
page associated with a URL having the following format:

http://host:port/servlet/ContentServer?pagename=Experiment/
Hello

At the end of every URL, you can set one or more variables. For example, the following
URL creates three variables in the Hello page:

http://host:port/servlet/ContentServer?pagename=Experiment/
Hello&dog=fido&cat=fifi

The preceding URL creates the following variables available to Hello:

• A variable named pagename whose value is Experiment/Hello

• A variable named dog whose initial value is fido.

• A variable named cat whose initial value is fifi.

rendermode Specifies whether a page entry is to be delivered live, exported,
or previewed. By default, rendermode is live. When you
Export to Disk, or use the Preview function, CS-Direct
automatically overrides the value of this variable with export
or preview. This value is used internally and must not be
modified.

seid The ID of a SiteEntry asset.

tid The ID of a Template asset.

eid The ID of a CSElement asset, eid is available to the
CSElement’s root element.

Variable Definition
Content Server 7.0 Developer’s Guide

Chapter 4. Programming with Content Server

Variables
103
Setting Default Variables for Elements and Templates with
Content Server Explorer
You can use Content Server Explorer to create default variables in a page by placing the
variables in either of the following fields:

• resargs1 or resargs2 fields of the SiteCatalog database table

• resdetails1 or resdetails2 fields of the ElementCatalog database table

For example, you can use Content Server Explorer to access the SiteCatalog table, and
then create variables dog and cat by placing name/value pairs in the resargs1 and
resargs2 fields:

Note that we placed one name/value pair in resargs1 and another in resargs2.
Alternatively, we could have put both name/value pairs in resargs1, as shown in the
following diagram:

You can also set the values of dog and cat in the ElementCatalog table by putting
name/value pairs in the resdetails1 and resdetails2 fields:

Variables set through the URL or through POST and GET operations take precedence over
variables set using the SiteCatalog or ElementCatalog tables. For example, if a
URL sets variable dog to rex and the SiteCatalog sets dog to fido, then the resulting
value of dog will be rex.

Setting Variables Using HTML Forms
In CGI programming, a buyer fills out a form. Then, the browser encodes the buyer’s
responses as name/value pairs, which get passed to the CGI script.

Although Content Server does not use traditional CGI programming, a Content Server
element can still display a form. As in traditional programming, the browser encodes the
buyer’s responses as name/value pairs. However, instead of passing these name/value
pairs to a CGI program, the pairs get passed to a different Content Server page. The
receiving Content Server page can access the name/value pairs as it would access any
Content Server variable.

Cookie names and values are also instantiated as variables. For more information about
cookies, see Chapter 9, “Sessions and Cookies.”

Setting Session Variables
HTTP is a stateless protocol. To overcome this limitation, Content Server can maintain
state between requests and, thus, keep track of sessions.
Content Server 7.0 Developer’s Guide

Chapter 4. Programming with Content Server

Variables
104
A browser connection to the Content Server system establishes a session. Thereafter, the
session is uniquely identified to the system. Content Server can deliver pages whose
content and behavior are based on this unique identity.

When a client first enters your site, a unique session is established. Content Server
associates a default user identity with a new session and maintains that information in
session variables. Session variables contain values that are available for the duration of
the session. They are saved as part of the user’s session and are used to retain the value of
a variable across page requests.

In a clustered configuration, the session state is maintained across all cluster members.
Session variables should be used carefully, since there is a resource cost that is
proportionate to the number and size of session variables used.

Session state is lost under these conditions:

• The client exits.

• The session has timed out. Content Server can optionally terminate a session if no
requests have been made for some period of time.

• The application server has been restarted.

Server resources associated with the session are deallocated when the following occurs:

• The session has been explicitly terminated by the client via a Content Server tag.

• The session has timed out.

• The application server has been restarted.

Use the SETSSVAR XML and JSP tags to create a session variable. If the session variable
already exists, SETSSVAR resets the variable’s value. For example, the following
SETSSVAR XML tag sets the session variable profile to the value 10154:

<SETSSVAR NAME="profile" VALUE="10154"/>
Content Server 7.0 Developer’s Guide

Chapter 4. Programming with Content Server

Variables
105
Working With Variables
The following sections describe how to work with Content Server variables.

Retrieving a Variable’s Value
The syntax you use to read the value of a variable depends on the kind of variable:

Content Server XML provides quite a few methods for accessing list variables.

Displaying a Variable’s Value
Use the CSVAR XML tag to display the value of any kind of variable, including properties
and session variables. Use the ics:getvar JSP tag to view the value of a regular Content
Server variable; or the ics:getssvar JSP tag to display the value of a session variable.
For example, if the following code appears in an XML element:

<SETVAR NAME="mood" VALUE="happy"/>
<p>My dog is <CSVAR NAME="Variables.mood"/>.</p>

then the resulting page displays the following text:

My dog is happy.

You can also include literal values as part of the NAME argument to the CSVAR XML tag;
for example, the following code will also generate “My dog is happy.”, but evaluates
more slowly:

<SETVAR NAME="mood" VALUE="happy"/>
<p><CSVAR NAME="My dog is Variables.mood"/>.</p>

Assigning One Variable Value to Another Variable
You can assign the value of one variable to another variable. You accomplish this task
differently if you are coding with XML than if you are coding with JSP.

JSP
If you are coding with JSP, you cannot use the ics:getvar tag to evaluate the variable
value because you cannot nest one JSP tag within another JSP tag. To circumvent this
limitation, use the ics.GetVar Java method to substitute variable values, as shown in the
following sample code:

<ics:setvar name="myVar" value="Fred"/>
<ics:setvar name="yourVar" value=’<%=ics.GetVar("myVar")%>’/>
<ics:getvar name="yourVar"/>

Type of
Variable Syntax Example

String Variable Variables.variable_name Variables.dog

Counter Variable Counters.variable_name Counters.position

Session Variables SessionVariables.variable_
name

SessionVariables.username

Property CS.Property.property_name CS.Property.verity.path
Content Server 7.0 Developer’s Guide

Chapter 4. Programming with Content Server

Variables
106
XML
The following lines of XML assign the value carambola to a variable named
your_favorite:

<SETVAR NAME=”my_favorite” VALUE=”carambola”/>
<SETVAR NAME=”your_favorite” VALUE=”Variables.my_favorite”/>

Taking this one step further, you can concatenate two variable values and assign the result
to a third variable. For example, the following sets the variable car to the value red
rabbit.

<SETVAR NAME="color" VALUE="red"/>
<SETVAR NAME="model" VALUE="rabbit"/>
<SETVAR NAME="car" VALUE="Variables.color Variables.model"/>

Using Variables in HTML Tags
You can use XML and JSP variables within traditional HTML tags, although you code
differently to accomplish this in XML and JSP.

JSP
If you are coding with JSP, you use the ics:getvar tag or the ics.GetVar Java method
to evaluate the variable value.

You can also use the ics.resolvevariables tag to resolve variables that are contained
within a string. For example, the following code displays the phrase "The date is," along
with the value of the CS.Date variable:

<ics.resolvevariables name="The date is $(CS.Date)."
delimited="true"/>

The delimited parameter indicates that you have used the delimiters $(and) to
explicitly mark the variable or variables that you want to resolve. If you want to use
variables to specify a list name and a column in that list, for example, you use the
following syntax:

<ics.resolvevariables
name="$(Variables.listname).$(Variables.columnname)"
delimited="true"/>

If the delimited parameter is set to false, no delimiters are used to set off variables.

XML
You can use XML variables inside HTML tags if you use the appropriate attributes. For
example, the following code does not contain the appropriate attributes and, therefore,
does not set the background color to red:

<SETVAR NAME="color" VALUE="red"/>
<TABLE bgcolor="Variables.color">
...

Note

You must enclose the expression that evaluates the variable value
(’<%=icsGetVar(“myVar”)%>’ in the example) in single quotes. Otherwise
your JSP element will throw an exception.
Content Server 7.0 Developer’s Guide

Chapter 4. Programming with Content Server

Variables
107
To use XML variable values within an HTML tag, you must use the REPLACEALL
attribute within that HTML tag. The REPLACEALL attribute tells the system to substitute
the current value of this XML variable within this HTML tag. Therefore, the correct way
to code the preceding lines is as follows:

<SETVAR NAME="color" VALUE="red"/>
<TABLE bgcolor="Variables.color" REPLACEALL="Variables.color">
...

You can combine multiple variable values within one REPLACEALL attribute. For
example, the following HTML TABLE tag uses two XML variables:

<SETVAR NAME="color" VALUE="red"/>
<SETVAR NAME=”myborder” VALUE=”3”/>
<TABLE bgcolor="Variables.color" border=”Variables.myborder”
 REPLACEALL="Variables.color,Variables.myborder">
...

The <REPLACEALL> tag is an alternative to the REPLACEALL attribute. The
<REPLACEALL> tag performs substitutions within its domain; for example:

<SETVAR NAME="highlight" VALUE="red"/>
<SETVAR NAME="diminish" VALUE="gray"/>
<REPLACEALL LIST="Variables.highlight,Variables.diminish">
<TABLE>
 <TR BGCOLOR="Variables.highlight"><TD>Diamonds</TD></TR>
 <TR BGCOLOR="Variables.highlight"><TD>Pearls</TD></TR>
 <TR><TD>Malachite</TD></TR>
 <TR BGCOLOR="Variables.diminish"><TD>Coal</TD></TR>
</TABLE>
</REPLACEALL>

The output of this section is:

The REPLACEALL tag performs a string search and replace, and is, therefore, potentially
very slow. Use the REPLACEALL attribute where possible. If you must use the
REPLACEALL tag, keep the amount of code you enclose with it as small as possible.

Evaluating Variables with IF/THEN/ELSE
Content Server XML and JSP provides the IF/THEN/ELSE construct available in most
computer languages. However, the only conditional operation for variables is to compare
two values for equality or inequality. You can’t, for example, compare two values to see if
one is greater than another. (You can write Java code to do that, however.)

For example, the following code branches depending on the value of a variable named
greeting.

<IF COND="Variables.greeting=Hello">
<THEN>
 <p>Welcome.</p>
Content Server 7.0 Developer’s Guide

Chapter 4. Programming with Content Server

Variables
108
</THEN>
<ELSE>
 <p>So long.</p>
</ELSE>
</IF>

If greeting is set to Hello, then Content Server generates the HTML:

<p>Welcome.</p>

If greeting is set to anything other than Hello, Content Server generates:

<p>So long.</p>

Variables and Precedence
Variables set through a URL or through HTTP GET and POST operations take precedence
over variables set with the resargs and resdetails columns in the SiteCatalog and
ElementCatalog tables.

Best Practices with Variables
Because all variables are global and the syntax for accessing variables from items in lists
and from other sources is the same, good coding practices help you to avoid errors. For
example:

• Because it is easy to reuse base names in your elements, use prefixes in front of
variables to define them uniquely. The recommended syntax to use is:
Variables.assettype:fieldname.

For example, Variables.Article:description.

The ASSET.SCATTER tag makes it easy for you to use this syntax through its PREFIX
attribute. (For more information about this tag, see Chapter 24, “Coding Elements for
Templates and CSElements.”)

• If you are going to use the RESOLVEVARIABLES tags to resolve your variables, set the
DELIMITED parameter to true and use the delimiters $(and) to explicitly indicate
the variables you want to resolve.

• Use debugging to catch naming conflicts. Use the Property Editor to set the
ft.debug property in the futuretense.ini file to “yes” (ft.debug=yes). When
this setting is enabled, CS-Direct writes a record of all the variables that are created to
the futuretense.txt log. For more help with debugging, use the XML Page
Debugger utility.

For a list of the error values that Content Server and CS-Direct tags can write to the errno
variable, see the Content Server Tag Reference.
Content Server 7.0 Developer’s Guide

Chapter 4. Programming with Content Server

Other Content Server Storage Constructs
109
Other Content Server Storage Constructs
In addition to regular and session variables, Content Server supports a number of storage
constructs. The following sections describe these constructs and how to use them:

• Built-ins

• Lists

• Counters

Built-ins
Content Server provides several built-ins, which return values such as the current date.

The general syntax of a built-in is:

CS.builtin

For example, UniqueID is a built-in that generates a unique ID. The following syntax
generates or references this built-in variable:

CS.UniqueID

For a list of built-ins in Content Server, see the Content Server Tag Reference.

Lists
A list consists of a table of values organized in rows and columns. Use the SETROW or
GOTOROW tags to identity the proper row.

The following entities create lists:

• The SELECTTO, EXECSQL, CATALOGDEF, STRINGLIST and CALLSQL tags

• CatalogManager commands

• TreeManager commands

• Custom tags

Use the following syntax to refer to a current row’s column value:

listname.colname

For example, if a list named cars had a column named color, the value of the current
row would be referenced as:

cars.color

Looping Through Lists
Use the LOOP XML tag or the ics:listloop JSP tag to iterate through a list. For each
row in the list, Content Server executes the instructions between the loop tags.

For example, consider a table named MyCars containing the following rows:

id Model Color Year

224 Ford Focus blue 2001

358 VW Rabbit red 1998
Content Server 7.0 Developer’s Guide

Chapter 4. Programming with Content Server

Other Content Server Storage Constructs
110
The following XML searches MyCars for red cars. The SELECTTO XML and JSP tags
write this information into a list variable named carlist.

<SETVAR NAME="color" VALUE="red"/>
<SELECTTO FROM="MyCars" WHERE="color" WHAT="*" LIST="carlist"/>
Red cars:

<LOOP LIST="carlist">
 <CSVAR NAME=”carlist.model"/>
</LOOP>

The preceding XML generates the following HTML:

Red cars:

 VW Rabbit
 Alpha Romeo Spider
 Porsche 911

Counters
A counter is an XML variable whose value is an integer. Three tags control counters:

To create a counter, you call SETCOUNTER. To change its value, call INCCOUNTER. For
example, consider the following code:

<SETCOUNTER NAME="c" VALUE="10"/>
<INCCOUNTER NAME="c" VALUE="3"/>
<p>Current value is <CSVAR NAME="Counters.c"/></p>

The output of this code is:

Current value is 13

Notice that you reference counter variables using the syntax:

Counters.name

359 Toyota Corolla yellow 2000

372 Alpha Romeo Spider red 1982

401 Porsche 911 red 1984

423 Dodge Voyager tan 1991

Tag What It Does

SETCOUNTER Initializes a counter variable

INCCOUNTER Changes the counter’s value by a specified amount

REMOVECOUNTER Destroys the counter variable

id Model Color Year
Content Server 7.0 Developer’s Guide

Chapter 4. Programming with Content Server

Values for Special Characters
111
Values for Special Characters
If you need to use special (non-alphanumeric) characters in your XML or JSP, you will
need to use their hexadecimal character representation. For example, the following line
specifies a space as part of a variable value:

 <SETVAR NAME="foo" VALUE="foo%20bar"/>

The following are hexadecimal values for special characters that are commonly used in
Content Server:

Hexadecimal
Value Character

%22 doublequote (")

%20 one space

%3c less than sign (<)

%3e greater than sign (>)

%26 ampersand (&)

%09 tab (\t)

%0a newline (\n)

%0d carriage return (\r)

%25 percent (%)
Content Server 7.0 Developer’s Guide

Chapter 4. Programming with Content Server

Values for Special Characters
112
Content Server 7.0 Developer’s Guide

113
Chapter 5

Page Design and Caching
Caching your web pages can improve your site’s performance. Whether your site is static
or dynamic, you need to design your site so that part or all of a given page is cached. This
chapter describes how Content Server caching works, and includes the following sections:

• Modular Page Design

• Caching

• Viewing the Contents of the Satellite Server Cache

• Double-Buffered Caching

• Caching and Security
Content Server 7.0 Developer’s Guide

Chapter 5. Page Design and Caching

Modular Page Design
114
Modular Page Design
FatWire recommends that you design your web pages using a modular page design
strategy, where a web page that a web site visitor sees is composed of multiple elements.
Modular page design has several benefits:

• It improves system performance by allowing you to develop an efficient caching
strategy

• It allows you to code common design elements, like navigation bars, one time and use
them on multiple web pages

The following diagram shows a simple modular page:

Figure 3: A modular page

Each rectangle in Figure 5 represents a pagelet—the generated output of one or more
elements. These pagelets are called by a containing page. The containing page lays out
how the pagelets appear on the finished page and contains any code that must be evaluated
each time the page is viewed—custom ACL checking code, for example. This strategy
allows you to code an element once and use it in many places in your web site.

Pagelet A

Pagelet B

Pagelet C

Containing Page
Content Server 7.0 Developer’s Guide

Chapter 5. Page Design and Caching

Caching
115
Caching
Content Server allows you to cache entire web pages and/or the components that make up
those web pages. An efficient page caching strategy improves system performance by
reducing load.

Two members of the Content Server product family implement page caching:

• Content Server, which caches pages on the Content Server system

• Satellite Server, which provides a second level of caching for your Content Server
system, and can also be used as a remote cache for your web pages

Content Server utilizes both the Content Server and Satellite Server caches to create an
efficient caching strategy.

Content Server Caching
Pagelets generated by requests to the ContentServer servlet can be cached on disk. If a
page is accessed frequently and its content depends on a small number of parameters, then
it is a good candidate for disk caching.

To disk-cache a pagelet, you use one of the following tags:

If the pagelet that you want to cache is not already in the disk cache, ContentServer adds it
to the cache and then serves the pagelet. If the specified pagelet is already in the disk
cache, ContentServer simply serves it.

The expiration of disk-cached pagelets is time-based and governed by properties in the
futuretense.ini file, in conjunction with the values set in the cscacheinfo column
of the SiteCatalog table. Items in cache are bound by the same security rules as
uncached pages; Content Server ACLs apply to cached pagelets just as they do to
elements.

BlobServer and Caching
The term blob is an acronym for binary large object. Although a blob is usually an image
file, a blob can be any binary object, including a Microsoft Word file or a spreadsheet.
Most web sites serve a number of blobs.

To serve blobs, Content Server offers a special servlet called BlobServer. The BlobServer
gathers a blob from a table and performs all relevant security checks.

You access BlobServer with the BlobServer tags:

• For Content Server systems: satellite:blob

• For CS-Direct systems: render:satelliteblob

Both of these tags cache blobs in the Content Server and Satellite Server caches. For more
information about the BlobServer tags, see the Content Server Tag Reference.

Product JSP Tag XML Tag

Content Server satellite:page SATELLITE.PAGE

Content Server Direct render:satellitepage RENDER.SATELLITEPAGE
Content Server 7.0 Developer’s Guide

Chapter 5. Page Design and Caching

Caching
116
Deleting Blobs from the Content Server Memory Cache
To delete a specific blob from the Content Server cache, rename the blobtable
parameter in the BlobServer URL to flushblobtable, as shown in the following
BlobServer URL:

http://hostname:port/servlet/BlobServer?blobcol=urlbody
&blobheader=text%2Fcss&blobkey=name&flushblobtable=StyleSheet
&blobwhere=BF-MSIE-Win

To delete all blobs, rename the blobtable parameter to flushblobtables (notice the
“s”) and set its value to true.

Satellite Server Caching
Satellite Server, automatically installed with Content Server, provides an additional layer
of caching. To improve your Content Server system’s performance, you can add remote
Satellite Server systems, putting your content closer to its intended audience.

Satellite Server caches pages, pagelets, and blobs to disk or to memory. You can use the
Inventory servlet to view the contents of the memory and disk caches in varying
degrees of detail. Note that items cached on Satellite Server are not protected by Content
Server APIs. You can overcome this limitation by using the caching strategy outlined in
“Pagelet Caching Strategies” on page 128.

Satellite Server caches small items to memory and large items to disk. You control the
definitions of small and large through the file_size property. For more information on
setting Satellite Server properties, see the Content Server Property Files Reference.

On a busy site, each Satellite Server system’s cache fills up quickly with the most popular
pages. When the cache is full, Satellite Server deletes old pages to make room for new
ones. Satellite Server uses a Least Recently Used algorithm (LRU) to determine which
items should be removed from the cache. In other words, when a new page needs to be
cached, Satellite Server removes the page that hasn’t been accessed for the longest time.
For example, given two cached pages—one that hasn’t been accessed in 36 hours and the
other that hasn’t been accessed in 2 hours—Satellite Server removes the page that hasn’t
been accessed in 36 hours.

Cache Expiration
Page and pagelet expiration on Satellite Server is specified in the sscacheinfo column
of the SiteCatalog table. Each time a page or pagelet is invoked through Satellite
Server, Satellite Server processes the sscacheinfo field's value and determines when the
page or pagelet should expire. Consult “CacheInfo String Syntax” on page 145 for
information about the sscacheinfo field.

Note

Deprecation notice: It is possible to override the sscachinfo expiration
information for pagelets by specifying the cachecontrol attribute in the
satellite.page and render.satellitepage tags. However, this practice
is deprecated because it can lead to non-deterministic behavior: some pagelets
may be accessed through the default method—without the cachecontrol
attribute—while others may be accessed with an override. The first method
invoked will set the expiration for Satellite Server, and the second one will have
no effect on the expiration.
Content Server 7.0 Developer’s Guide

Chapter 5. Page Design and Caching

Caching
117
Blobs cached on Satellite Server expire using the following algorithm:

• You can use Satellite Server tags to override the default expiration time on a blob-by-
blob basis.

• If there is no Satellite tag to override the default expiration, Satellite Server gets the
expiration time from the value of the satellite.blob.cachecontrol.default
property. This property is described in “Content Server Page Caching Properties” on
page 123.

• If no value is set for the satellite.blob.cachecontrol.default property,
Satellite Server gets the expiration time from the value of the expiration property,
described in “Satellite Server Properties” on page 124.

Caching with the Satellite Servlet
The following sections describe how the Satellite servlet caches web pages and how you
can implement Satellite Server caching on your site. Use caching with the Satellite servlet
in tandem with modular page design to create a fast, efficient web site.

How the Satellite Servlet Caches Pages
The Satellite servlet allows caching at the pagelet level. To implement caching with the
Satellite servlet, you use Satellite Server XML or JSP tags in your Content Server pages,
and you access pages using special Satellite URLs.

For example, suppose that you used the Satellite servlet to implement pagelet-level
caching on a web page named myPage. myPage, shown in Figure 3, is composed of a
containing page and three pagelets: A, B, and C. The containing page and pagelets A and
B are already cached on a Satellite Server system, but pagelet C is not cached.
Content Server 7.0 Developer’s Guide

Chapter 5. Page Design and Caching

Caching
118
When a user requests myPage:

1. Satellite Server examines the URL. If it is a Satellite URL, the Satellite servlet gets the
cached copy of the containing page. The servlet then looks for pointers to pagelets
which are not currently in its cache, and requests those pagelets from Content Server.
So, in our example, the Satellite servlet gets the containing page, and gets pagelets A
and B from its cache.

2. The Satellite servlet requests Pagelet C from Content Server.

3. Content Server parses the appropriate XML to create Pagelet C and sends it to the
Satellite servlet.

4. The Satellite servlet assembles Pagelets A, B, and C into the page, and sends the
assembled page to the requester. The servlet also caches Pagelet C.

Implementing Caching with the Satellite Servlet
To implement pagelet-level caching with the Satellite servlet, you add Satellite tags to
your Content Server templates. You do not develop any XML, JSP, or Java code on
Satellite Server systems. In fact, Satellite Server does not know how to parse XML.

The Satellite tags in your elements are interpreted by the Java code you installed as part of
Satellite Server. If this code is being called with a Satellite URL, it generates the
information that the Satellite servlet uses to cache and construct the pagelets. If you do not
call an element containing Satellite tags with a Satellite URL, the resulting page functions
as if the Satellite tags were Content Server tags.

Pagelet A
(Cached)

Pagelet B
(Cached)

Pagelet C
(Uncached)

Containing Page
(Uncached)
Content Server 7.0 Developer’s Guide

Chapter 5. Page Design and Caching

Caching
119
Satellite URLs look like the following example:

http:\\host_name:port/servlet/Satellite?pagename=page

where host_name and port are the hostname and port number of your Satellite Server
machine, and page is the name of the page you are requesting. A Satellite URL can also
include name/value pairs you want to pass to the called page.

Caching a Pagelet
The following sample code uses the render:satellitepage tag to call a pagelet. If the
pagelet is not already in Satellite Server’s cache, the Satellite servlet loads and caches the
page. If the pagelet encounters an error during the processing and cannot be evaluated, it is
not cached.

The render:satellitepage tag (and the satellite:page tag and their xml
equivalents) identifies a cached pagelet by the pagename and name/value pairs passed to
it. If the parameters or the name/value pairs differ from one invocation to another, a
different pagelet will be cached, even if the content generated is the same. It is important
to use name/value pairs to pass arguments to a pagelet through these tags.

Values passed through the ICS object pool, ICS List pool, page attribute context, and
session (including session variables) may not be available to all called pagelets, because
nested pagelets may not always be called at the same time as the parent. Furthermore,
pagelets that rely on session or context data are rarely cacheable anyway, so attempting to
cache them can result in non-deterministic behavior.

All parameters passed to a nested pagelet through render:satellitepage (and the
satellite:page tag, and their xml equivalents) must be specified in the SiteCatalog as
page criteria. This is Content Server’s way of determining which parameters are relevant
when building a pagelet for caching. Parameters other than those listed in the SiteCatalog
are not permitted (an error indicating this will be written to the log).

<cs:ftcs>
<html>
<body>
<render:satellitepage pagename="My/Sample/Page" />
</body>
</html>
</cs:ftcs>

Caching a Blob
Using Satellite tags to load and cache a blob is similar to the way you use Satellite tags to
load and cache a pagelet. The following sample code adds to the previous example by
calling a blob as well as a pagelet.

Line 8 uses the ics:selectto tag to perform a simple SQL query that retrieves a blob
from the database. Results are returned in the form of an IList named imagelist.

Line 13 uses the satellite:blob tag to load the blob that was retrieved from the
database in line 8. As with the satellite.page tag, if the blob is not in Satellite’s
cache, Satellite will load and cache the blob. The cachecontrol parameter is set so that
the blob will expire at a given time; in this case, every 30 minutes.

1 <html>
2 <body>
3 <!-- NOTE: This will fail if list has no content (== null)

-->
Content Server 7.0 Developer’s Guide

Chapter 5. Page Design and Caching

Caching
120
4
5 <ics:setvar name="category" value="logo"/>
6 <ics:setvar name="errno" VALUE="0"/>
7 <ics:selectto from="SmokeImage" list="imagelist"

where="category" limit="1"/>
8 <ics:if cond="IsError.Variables.errno=false">
9 <ics:then>
10 <!-- Test a blob -->
11
12 <render:satelliteblob service="img src"

blobtable="SmokeImage"
blobkey="id"
blobwhere="imagelist.id"
blobcol="urlpicture"
blobheader="image/gif"
cachecontrol="*:30:0 */*/*"
alt="imagelist.alttext"
border="0" />

13 </ics:then>
14
15 <render:satellitepage pagename="QA/Satellite/Functional/

xml/”pagelet1"cachecontrol="never"/>
16 </body>
17 </html>

Never-Expiring Blobs
If there are binary files (or blobs) on your site that seldom change or never change, such as
company logos, and you are using the Satellite servlet to cache at the pagelet level, you
can improve performance by using an alternative method to serve these blobs.

To serve never-expiring blobs

1. Copy the never-expiring images to all your Satellite Server hosts. Place them under
the doc root for your web server.

2. Access the images through HTML tags rather than
through satellite:blob Satellite tags.

For example, consider a never-expiring corporate logo file named CorporateLogo.gif.
To use the alternative method of serving blobs, you would first copy the file to the web
server’s doc root on all your Satellite Server hosts. Then, instead of serving this logo
through a satellite.blob tag, your element could simply use a tag like the following:

Note

Be careful when using this mechanism for serving never-expiring images. For
example, Satellite Server cannot warn you that one of the Satellite Server hosts
does not contain the same image file as the other hosts.
Content Server 7.0 Developer’s Guide

Chapter 5. Page Design and Caching

Viewing the Contents of the Satellite Server Cache
121
http://myloadbalancer:1234/servlet/
ContentServer?pagename=myPage

The expiration of the page is controlled by the expiration property. For more
information on the expiration property, see the Content Server Property Files
Reference.

Viewing the Contents of the Satellite Server Cache
The Inventory servlet allows you to view the various items stored in the cache. You invoke
the Inventory servlet by using the following URL:

http://host:port/servlet/
Inventory?username=username&password=passwordword&detail
=value

where:

The header contains the following information:

Parameter Description

host:port
(required)

The host name and port number of the Satellite Server host
whose cache you want to view.

username
(required)

The user name that you enter to log you in to the
Satellite Server host.

password
(required)

The password that you enter to log you in to the
Satellite Server host.

detail (optional) The type of information you wish the Inventory servlet to
display. Valid values are:

• names - Displays the header information, plus the page
names of the pages in the cache.

• keys - Displays the header information, plus the page
names and keys of the items in the cache.

If you do not supply the detail parameter, or if you set its
value to be anything other than name or keys, the header
information displays.

Information type Description

Remote host The host that this Satellite Server system forwards requests to.

Maximum cache objects The maximum number of items allowed in the cache.

Current size The number of items currently in the cache.

Cache check interval How often the cache is checked for expired items, in minutes.

Default cache expiration The value of the expiration property.
Content Server 7.0 Developer’s Guide

Chapter 5. Page Design and Caching

Viewing the Contents of the Satellite Server Cache
122
CacheManager
Content Server’s CacheManager object maintains both the Content Server and
Satellite Server caches. CacheManager can do the following:

• Log pagelets in the cache tracking tables

• Keep a record of the content (assets) that pages and pagelets contain by recording
cache dependency items in cache-tracking tables. Cache dependency items are items
that, when changed, invalidate the cached pages and pagelets that contain them. A
cache dependency item is logged as a dependency for the current page and all of that
page’s parent pages.

• Remove pages and pagelets containing invalid items from the Content Server and
Satellite Server caches.

• Rebuild the Content Server and Satellite Server caches with updated pages and
pagelets after the invalid pages have been removed.

For web sites that use CS-Direct, CacheManager completes these operations
automatically, ensuring that the pages are always up to date for web site visitors.

For web sites that use Content Server alone, CacheManager’s cache tracking and flushing
are not automatic; however you can use CacheManager’s Java API to implement similar
functionality on your site.

The SiteCatalog Table
Content Server’s SiteCatalog table lists the pages and pagelets generated by Content
Server. An element must have an entry in the SiteCatalog table to be cached on Content
Server and Satellite Server.

The fields in the SiteCatalog table set the default behavior of a Content Server page,
including default caching behavior. For more information on the SiteCatalog table and
its fields, see “Creating Template Assets” on page 462 and “Creating SiteEntry Assets” on
page 493.

The Cache Key
Items stored in the Content Server and Satellite Server caches are given a name called a
cache key. The cache key uniquely identifies each item in the cache. CacheManager
locates items in the cache using the cache key. Content Server and Satellite Server
generate cache keys automatically, based on the values in the pagename, resargs, and
pagecriteria fields of the SiteCatalog table, and other internal data.

pagecriteria and the Cache Key
You include variables used by the page in the cache key by specifying them in a comma-
separated list in the pagecriteria field of the SiteCatalog table. For example,
suppose that you have a page called myPage which uses the values “red” and “blue.” To
include “red” and “blue” in myPage’s cache key, enter

Minimum file size (in
bytes)

Items larger than this value are stored in files. Items smaller
than this value are stored in RAM.

Information type Description
Content Server 7.0 Developer’s Guide

Chapter 5. Page Design and Caching

Viewing the Contents of the Satellite Server Cache
123
favoritecolor,second_favoritecolor in the pagecriteria column and
favoritecolor=red&second_favoritecolor=blue in the resargsl column.

Content Server and Satellite Server use the pagecriteria and parameters that are
passed to cached pages to help generate the cache keys. If the parameters differ from one
invocation to another, a different page will be cached even if the content being generated
is the same. For example:

http://mysatellite:1234/servlet/
ContentServer?pagename=myPage&favoritecolor=red

calls a different page than:

http://mysatellite:1234/servlet/
ContentServer?pagename=myPage&second_favoritecolor=blue

whether or not the content being generated is the same. Values passed in by the URL
override values set in pagecriteria. For example, you have myPage’s
pagecriteria set to red,blue:

• If the URL passes in a value of green, then green,blue (not red,blue) will go
into myPage’s cache key.

• If the URL passes in values of green,violet, then green,violet (not
red,blue) will go into myPage’s cache key.

• If the URL passes in values of green,violet,yellow, an error results.

If a page does not have pagecriteria set, the values in the resargs fields go into the
cache key. As with pagecriteria, values passed in by a URL override values specified
in the resargs fields.

Caching Properties
The default cache settings for Content Server and Satellite Server are contained in the
futuretense.ini file. Additional Satellite Server properties are contained in
satellite.properties. All properties can be modified by use of the Property Editor.

This section summarizes the Content Server and Satellite Server caching properties. For
detailed information about the properties and the Property Editor, see the Content Server
Property Files Reference.

Content Server Page Caching Properties
The following properties in futuretense.ini control disk caching on Content Server:

• cs.pgCacheTimeout, which specifies the default timeout for pages in the Content
Server cache.

• cs.freezeCache, which controls whether the cache pruning thread should run to
remove expired entries from the cache.

• cs.nocache, which disables the entire Content Server page cache.

• cc.SystemPageCacheTimeout, which specifies the number of minutes a cached
page is held in memory.

• cs.alwaysUseDisk, which specifies the default behavior for page entries in the
SiteCatalog that have no cache override property specified.

• cc.SystemPageCacheSz, which specifies the maximum number of pages that can
be cached in memory.
Content Server 7.0 Developer’s Guide

Chapter 5. Page Design and Caching

Double-Buffered Caching
124
Satellite Server Properties
Satellite Server has two sets of properties (given in detail in the Content Server Property
Files Reference):

• One set of properties is in the futuretense.ini file on your Content Server system
and includes the following:

- satellite.page.cachecontrol.default, a deprecated property that
specifies a default value for the cachecontrol parameter for the
satellite.page, and RENDER.SATELLITEPAGE tags and their JSP
equivalents.

- satellite.blob.cachecontrol.default, which specifies a default value
for the cachecontrol parameter for the satellite.blob, and
RENDER.SATELLITEBLOB tags and their JSP equivalents.

• The other set of properties is in the satellite.properties file on each Satellite
Server host and comprises the following:

- cache_folder, which specifies the directory into which Satellite Server will
cache pagelets to disk.

- file_size, which separates disk-cached pagelets and blobs from
memory-cached pagelets and blobs according to the size that you specify.

- expiration, which sets the default value for the length of time blobs stay in
Satellite Server’s cache.

- cache_check_interval, which controls the frequency of the cache cleaner
thread, and therefore when expired objects are pruned from cache.

- cache_max, which specifies the maximum number of objects (pagelets and
blobs) that can be cached (memory cache and disk cache combined) at a time.

Double-Buffered Caching
CS-Direct, CS-Direct Advantage, and Engage implement a double-buffered caching
strategy, which uses the Content Server and Satellite Server caches in tandem on your live
web site. This double-buffered caching strategy ensures that pages are always kept in
cache, either on Content Server or Satellite Server.

You can implement a similar caching strategy if you are running the Content Server core
and Satellite Server without any of the other CS modules or products, by using the
CacheManager Java API. For more information about the CacheManager Java API, see
the Content Server Javadoc.

If you are running CS-Direct, both the Content Server core and Satellite Server caches are
maintained by Content Server’s CacheManager object. CacheManager tracks when
content changes by logging elements and the assets that those elements call in cache
tracking tables.

When assets are updated and published, the Content Server and Satellite Server caches are
automatically flushed and updated in the following order:
Content Server 7.0 Developer’s Guide

Chapter 5. Page Design and Caching

Double-Buffered Caching
125
• Content providers publish updated assets to the delivery system. CacheManager
checks the cache tracking tables to see which cached items are affected by the updated
assets.

• CacheManager flushes the outdated Page1 from the Content Server cache, then
reloads the Content Server cache with the updated Page1.

Any requests for Page1 will be served the old version of Page1 from the Satellite
Server cache. This protects the Content Server machine from undue load as it deletes
and rebuilds its cache.

Content Server Cache

Page1

CS-Satellite/Web Server

New
Content

for Page1

Page1

Satellite Server/Web Server

Content Server Cache

CS-Satellite/Web Server

New
Content

for Page1

Page1

Satellite Server/Web Server
Content Server 7.0 Developer’s Guide

Chapter 5. Page Design and Caching

Double-Buffered Caching
126
• CacheManager flushes the outdated items from the Satellite Server cache. As visitors
come to the web site and request Page1, the Satellite Server searches to see if Page1
is in its cache. Because Page1 is not in the Satellite Server cache, the request is passed
on to Content Server.

Content Server Cache

SatelliteServer

New
Content

for Page1

New

Requests
for Page1

CS-Satellite/Web ServerSatellite Server/Web Server
Content Server 7.0 Developer’s Guide

Chapter 5. Page Design and Caching

Double-Buffered Caching
127
• The Satellite Server system’s cache is filled with an updated version of Page1, taken
from the Content Server cache. The updated page is served to the requestors. If Page1
were requested again, the page would be served from the Satellite Server cache.

Implementing Double-Buffered Caching
The first step in implementing double-buffered caching on your web site is to design
modular pages, as described in “Modular Page Design” on page 114. Once you have
developed a modular page design, you implement a double-buffered caching strategy in
three steps:

• Develop a pagelet caching strategy

• Set how individual pages and pagelets are cached by using the pagecriteria field
of the SiteCatalog table

• Code your elements with Satellite tags

Content Server Cache

New
Content

for Page1

Content

New
Content

for Page1

CS-Satellite/Web Server

for Page1

NewNew
Content

for Page1

Satellite Server/Web Server
Content Server 7.0 Developer’s Guide

Chapter 5. Page Design and Caching

Double-Buffered Caching
128
Pagelet Caching Strategies
With a modular page design, caching occurs at the pagelet level; the containing page is
never cached, so that any cached pagelets are always protected by ACLs. You choose
which pagelets get cached based on how frequently they are updated.

The following table summarizes the guidelines for caching pagelets:

The following diagram is an example of a modular page:

The containing page should never be cached; this allows you to put logic, which requires
evaluation by Content Server, into your pages, while still gaining the performance benefits
of caching. It also allows your page to be protected by Content Server ACLs.

Cache a Pagelet Don’t Cache a Pagelet

• If the content seldom changes.
• If the pagelet does not contain

logic that requires evaluation to
work.

• If the content changes frequently.
• If the content must be “real time.”
• If the pagelet contains code that checks for

ACLs, or other logic that requires
evaluation to work.

Sidebar

Header

Body

Containing Page

Footer
Content Server 7.0 Developer’s Guide

Chapter 5. Page Design and Caching

Double-Buffered Caching
129
The header and footer pagelets in this example should be disk cached. They rarely gets
updated, and should be designed accordingly. The header and footer may be static HTML
written into your template, or disk-cached content from Content Server.

The sidebar is also a good candidate for disk caching. It has a small number of variations,
and its content is determined by a small number of parameters.

Determining how to cache the body pagelet is more complex. The contents of the body
pagelet probably depend on where the web site visitor is in the site. There are three
possible types of content for the body pagelet:

• The results of a search that the web site visitor runs

• The results of a frequently run query

• An article

Your caching strategy should be as follows:

• If the content of the body pagelet is the result of a search based on parameters that the
web site visitor enters, you do not want to cache it. Such pages change for each visitor,
and there is little benefit to caching them.

• If the content is the product of a standard query that visitors often use, you should use
resultset caching. Caching frequently run queries in the memory cache improves
performance. For more information on resultset caching, see Chapter 14, “Resultset
Caching and Queries.”

• If the content of the body pagelet is the text of an article, you should cache the pagelet
to disk.

Setting cscacheinfo
The values in the cscacheinfo field of the SiteCatalog table allow you to control how
pages get cached on Content Server on a page-by-page basis.

You can change these properties for each page and pagelet in your web site. For example,
if you want a containing page element to be uncached on Content Server, set the values in
cscacheinfo to false.

For more information on the cscacheinfo field, see “Creating Template Assets” on
page 462.

Coding for Caching
To implement double-buffered caching, you code your elements with Satellite Server tags.
If you are running Content Server and Satellite Server only, use the Satellite tags
documented in the Satellite Server sections of the Content Server Tag Reference.

Automatic cache maintenance is dependent upon logging your assets in the cache tracking
tables. If you use the ASSET.LOAD tag to load an asset, that asset is automatically logged
in the cache tracking tables. For those sections where ASSET.LOAD is not used, use the
RENDER.LOGDEP tag to log content in the cache tracking tables.
Content Server 7.0 Developer’s Guide

Chapter 5. Page Design and Caching

Double-Buffered Caching
130
Caching and Security
Cached pagelets require special security considerations as you design your site and
develop your caching strategy. The following sections outline security considerations for
pages cached in the Content Server and Satellite Server caches.

Content Server Security
Pagelets that are disk cached on Content Server are bound by Content Server’s ACLs,
allowing you to use those ACLs to prevent unauthorized access to a page.

Note, however, that although Content Server checks the ACL of a containing page, it does
not check the ACLs of the pagelets that the containing page calls. For example, suppose
that your site uses three ACLs: Open, Secret, and TopSecret. Your containing page
can be viewed by members of the Open ACL, but it calls pagelets that should be viewed
only by members of the Secret and TopSecret ACLs. Because Content Server only
checks a visitor’s ACL of the containing page, visitors with the Open ACL can view
content meant for members of the Secret and TopSecret ACLs.

To ensure that all the relevant ACLs are checked

1. Include the ACL for the page that you want to protect in that page’s cache criteria, as
shown in the following sample code:

<render.satellitepage pagename="innerwrapper"
userAcl="SessionVariables.member" c="Article" cid="123">

2. In the pagelet, insert code to check the ACLs, as shown in the following sample:

<asset.load name="art" type="Variables.c"
OBJECTID="Variables.cid"/>
<ASSET.GET NAME="art" FIELD="myACL"/> <!-- note you need a
column in your db to support this -->
<IF COND="Variables.userACL=Variables.myACL">
<THEN>
<render.satellitepage pagename="protected_art_tmpl1"
c="Variables.c" cid="Variables.cid"/>
</THEN>
<ELSE>
<render.satellitepage pagename="accessDenied"/>
</ELSE>
</IF>

Note

Cache dependencies are logged only if a page or pagelet is cached on Content
Server. If a page is uncached on Content Server but cached on
Satellite Server, that page will not be automatically flushed from the cache when
its content is updated.
Content Server 7.0 Developer’s Guide

Chapter 5. Page Design and Caching

Double-Buffered Caching
131
Satellite Server Security
Pagelets that will be cached on Satellite Server are bound only by Content Server ACLs
under the following circumstances:

• If they are retrieved from the Content Server cache

• If they must be generated by Content Server to fulfill the page request

If a pagelet is served from the Satellite Server cache, it is no longer protected by Content
Server ACLs.

To ensure that the content of your Satellite Server pages is secure, never cache your
containing page and be sure that you put an ACL checking mechanism in the uncached
container.

If your elements are coded with Satellite tags but you do not yet have
Satellite Server installed, the page design considerations outlined in the Content Server
Security section apply to you. Once Satellite Server is installed, however, Content Server
checks the ACLs of uncached pagelets called from a containing page. The ACLs of
pagelets cached on Satellite Server are not checked.
Content Server 7.0 Developer’s Guide

Chapter 5. Page Design and Caching

Double-Buffered Caching
132
Content Server 7.0 Developer’s Guide

133
Chapter 6

Intelligent Cache Management with Content
Server
Whenever a site is built, it is critical that the rendering engine cache be properly
configured so that all of the components work in concert. This chapter describes the
rendering engine cache and its components. It also describes the cache configuration
properties that enable CacheManager to clear all caches—ContentServer, BlobServer, and
Satellite Server caches—of any object which becomes obsolete because of changes in its
underlying content.

This chapter contains the following sections:

• Content Server’s Rendering Engine Cache

• CacheManager

• Enabling CacheManager
Content Server 7.0 Developer’s Guide

Chapter 6. Intelligent Cache Management with Content Server

Content Server’s Rendering Engine Cache
134
Content Server’s Rendering Engine Cache
Content Server’s rendering engine cache is a two-tier cache. Tier 1 consists of
ContentServer and BlobServer; Tier 2 consists of Satellite Server. Each component is
independently configurable with fine controls that tune cache size, cache timeout, and
dependency management behavior.

Whenever a site is built, it is critical that the rendering engine cache be properly
configured so that all of the components work in concert. If the components are
configured correctly, Content Server can perform extremely well, effectively preventing
users from viewing uncached content nearly all of the time. However, if these components
are mis-configured, Content Server’s behavior can be non-intuitive and unpredictable.
Inadequate caching can hamper performance, and improper co-ordination of the cache
inventory can result in stale content being rendered indefinitely. To address this, Content
Server includes a module called CacheManager, which can actively manage the cache on
behalf of the whole system.

CacheManager
When a site uses CacheManager, it can record the existence of a “compositional
dependency” against an object that is to be cached by the rendering engine. For example,
if a pagelet renders an asset, then the asset is a compositional dependency on that page. If
the asset changes, the page is no longer valid and must be flushed from cache.

Utilizing CacheManager to flush the cache requires ceding full control over the lifecycle
of rendering engine cache objects to CacheManager by specifying that the objects never
expire from the cache. When CacheManager determines that they are obsolete because of
changes in the underlying content (i.e., in one of the compositional dependencies recorded
against each object), it removes those objects from the cache.

Enabling CacheManager's features is almost completely automatic:

• By default, the cache is configured so that objects never expire.

• Compositional dependencies are recorded against the Blob and Page cache on the
lower tier. Tags such as <asset:load> and <render:sateliteblob> provide
automatic compositional dependency recording (see the Tag Reference for a complete
list), whereas the two tags <portal:logdep>, and <render:logdep> provide
explicit compositional dependency recording.

Note

The reason for specifying an infinite expiration time is to ensure that
CacheManager keeps a record of all objects that are cached, as well as what
dependencies are tracked against them. This record is stored on Content
Server, and it is linked to the existence of the cached object on the first tier.
This record enables CacheManager to infer the existence of objects in the
second tier cache and therefore flush the objects from the second tier cache.

If, however, an object were to expire from the cache, its record would be
removed, leaving CacheManager without the information it requires to
properly flush the object from the second tier cache.
Content Server 7.0 Developer’s Guide

Chapter 6. Intelligent Cache Management with Content Server

Enabling CacheManager
135
• Whenever assets are modified or published, CS-Direct automatically invokes
CacheManager to purge the old content from the cache and, in the case of publishing,
instructs CacheManager to pre-cache the new content in the background prior to
flushing the second tier cache.

Site visitors enjoy the best possible cache performance by never having to view uncached
content. For more information about recording compositional dependencies, consult the
Developer’s Guide and the Tag Reference Guide.

Enabling CacheManager
This section describes the Tier 1 and Tier 2 cache configuration properties and how they
must be set in order to enable CacheManager.

Tier 1 Cache Configuration Properties
The tables in this section describe properties that regulate the Content Server page cache
and BlobServer blob cache:

• Table 2, “Content Server Page Cache Properties”

• Table 3, “BlobServer Cache Properties”

More detailed descriptions are given in the Property Files Reference.

Table 2: Content Server Page Cache Properties

Property Description

cs.pgCacheTimeout This property specifies how long a page should
reside in the Content Server page cache, and it
affects CacheManager as follows:

By default, this property is set to 0, which means
that the pages should reside in this cache forever,
and that removal of these pages must be done
explicitly. For CacheManager to operate
properly, this property must be set to 0.
Otherwise, pages will expire, making it
impossible for CacheManager to remove the
corresponding pages from the Tier 2 cache, and
users will view stale data.

Setting this property to a positive integer causes
pages to expire after the number of minutes
specified by the integer.
Content Server 7.0 Developer’s Guide

Chapter 6. Intelligent Cache Management with Content Server

Enabling CacheManager
136
cs.IItemList This property specifies the class implementing the
IItemList interface, and it affects
CacheManager as follows:

The IItemList interface is used to record
compositional dependencies in the page cache. If
this property is set to a legal class, then
dependency items will be recorded against a
page id in the SystemItemCache table, and this
is what enables CacheManager.

An illegal value results in CacheManager having
no effect.

cc.SystemPageCacheCSz

cc.SystemPageCacheTimeout

cs.alwaysusedisk

cs.freezeCache

cs.nocache

cs.requiresessioncookies

These properties are used to configure page
caching, but have no effect on CacheManager. For
more information about the properties, see the
Content Server Property Files Reference.

Table 3: BlobServer Cache Properties

Property Description

bs.bCacheTimeout This property specifies how many seconds a blob
should remain cached by BlobServer, and it
affects CacheManager as follows:

When compositional dependencies are
recorded against a blob in the
SystemItemCache table, they are configured
such that they will be removed from the table
after the blob expires from the cache. This
prevents excessive growth of the
SystemItemCache table. However, removing
the entry from the table disables
CacheManager from removing the
corresponding blobs from the Tier 2 cache, and
users will view stale data.

bs.bCacheSize This property specifies how many blobs will be
stored in the BlobServer cache, and has no effect
on CacheManager.

Unlike the bs.bCacheTimeout property, when
a blob is evicted from the blob memory cache
due to the cache being full, the corresponding
row is not removed from the
SystemItemCache table. Consequently, this
property has no effect on CacheManager.

Table 2: Content Server Page Cache Properties (continued)

Property Description
Content Server 7.0 Developer’s Guide

Chapter 6. Intelligent Cache Management with Content Server

Enabling CacheManager
137
Tier 2 Cache Configuration Properties
Tier 2 cache configuration properties deal with the Satellite Server cache, both page and
blob.

None of the Tier 2 properties affect the correct operation of CacheManager. They do,
however, serve as important diagnostic aids if CacheManager happens to be operating
incorrectly. The timeout and configuration values of the Tier 2 cache properties are
important in troubleshooting unpredictable behavior.

Typically, unpredictable behavior results when objects are cached on the Tier 2 cache but
not on the Tier 1 cache, and so they are not actively flushed when the dependent asset is
saved or published. (Consult the Property Files Reference for configuration details.)

Unpredictable behavior can also result if no compositional dependency is recorded against
an object that is cached. This scenario precludes all active management of that object in
the caches. Consult the Tag Reference for details about which tags automatically record

cs.recordBlobInventory This property specifies whether compositional
dependencies should be recorded against blobs.

This property must be set to true (the default)
for CacheManager to operate on blobs.

bs.security This property controls the security feature of
BlobServer, and it affects CacheManager as
follows:

When BlobServer security is enabled, caching
is disabled. Consequently, BlobServer security
is incompatible with CacheManager’s
Intelligent Cache Management features.

By default, this level of security is disabled.

For more information about BlobServer security,
see Chapter 5, “Page Design and Caching” and
Chapter 7, “Advanced Page Caching
Techniques.”

cs.manage.expired.blob.
 inventory

This property controls the removal of blob
dependency records from the
SystemItemCache table after a blob expires
from the blob cache. Its effect on CacheManager
depends on the value of bs.bCacheTimeout.

• If bs.bCacheTimeout is set to 0 or less, this
property has no effect.

• If bs.bCacheTimeout is set to a positive
integer, setting this property to true ensures
that CacheManager still operates correctly, but
at the cost of growth in the
SystemItemCache table. The default value is
false.

Table 3: BlobServer Cache Properties (continued)

Property Description
Content Server 7.0 Developer’s Guide

Chapter 6. Intelligent Cache Management with Content Server

Enabling CacheManager
138
compositional dependencies, and which tags must be used in conjunction with explicit
recording using one of the :logdep tags.

Caution

Do not record excessive compositional dependencies on your pages or blobs.
Doing so will cause unnecessary flushing of the cache, which under certain
circumstances, can result in severe performance problems during publishing.
Be especially judicious when recording “unknown” compositional
dependencies. Consult Chapter 24, “Coding Elements for Templates and
CSElements” for more information about compositional dependencies.
Content Server 7.0 Developer’s Guide

139
Chapter 7

Advanced Page Caching Techniques
Caching improves Content Server’s performance in serving pages. Caching rendered
content eliminates the need to render the content each time it is requested. This reduces the
hardware requirements for the Content Server system, reduces the number of times clients
make requests for uncached content, and ultimately improves response time.

The caching system has multiple layers, which allows regeneration of cached objects to be
done on one cache level, while the client is being served cached content from another
cache level. Content Server comprises the inner level of cache, and Satellite Server
comprises the outer layer of cache.

This chapter describes how rendered object caching works in the Content Server platform.
It describes how pages and blobs are cached, where they are cached, and how they are
retrieved from cache on both Content Server and Satellite Server systems.

This chapter contains the following sections:

• CacheInfo String Syntax

• Configuring the Content Server Cache

• Configuring the Blob Server Cache

• Configuring the Satellite Server Cache

• CacheInfo String Syntax
Content Server 7.0 Developer’s Guide

Chapter 7. Advanced Page Caching Techniques

Overview
140
Overview
Both Content Server and Satellite Server cache pages, pagelets, and blobs. Content Server
provides three different rendering engine caches: CS page cache, BlobServer cache, and
SS cache. All the caches are controllable. They can be configured and emptied as follows:

• Maximum cache size can be configured. For information and instructions, see
“Configuring Maximum Cache Size,” on page 141 (Content Server cache), page 143
(BlobServer cache), and page 144 (Satellite Server cache).

• Objects can be stored in the cache with expiration information, such that when the
object has expired from cache it is removed. For information and instructions, see
“Setting Expiration Time for an Individual Entry,” on page 141 (Content Server
cache) and page 143 (BlobServer cache).

• Objects can be explicitly removed from the cache either manually, or automatically by
using CacheManager. For information and instructions, see “Explicitly Removing
Entries from Cache,” on page 141 (Content Server cache), page 144 (BlobServer
cache), and page 144 (Satellite Server cache).
Content Server 7.0 Developer’s Guide

Chapter 7. Advanced Page Caching Techniques

Configuring the Content Server Cache
141
Configuring the Content Server Cache
There are two levels of caching for the Content Server page cache:

• In the database.

• In memory. Memory cache is a transparent subset of the database cache; however, it is
independently configurable.

This section describes the main configuration settings for each cache.

Configuring Maximum Cache Size
• Content Server’s database cache does not have a maximum size configuration option.

• The memory subset of the page cache allows you to specify the maximum number of
entries present by using the cs.SystemPageCacheSz property in the
futuretense.ini file. Setting cs.SystemPageCacheSz to a negative value
disables the size restriction. Setting a positive integer specifies the maximum number
of entries that will be allowed to exist in the cache (the cache uses a Least Recently
Used (LRU) algorithm for identifying the entry to be pruned when the maximum size
has been reached). Setting a value of 0 will cause all entries to be added and then
promptly removed. However, this should be avoided.

The maximum size does not have anything to do with the aggregate number of bytes
stored in cache.

Setting Expiration Time for an Individual Entry
The lifetime of an individual entry in the CS page cache is determined by the cscacheinfo
setting for each entry. The CacheInfo object derives values, if not explicitly set in the
cscacheinfo field, from the configuration file. For CacheInfo syntax, see “CacheInfo
String Syntax” on page 145.

Explicitly Removing Entries from Cache
Content Server provides two ways of removing entries from cache: manually and
automatically, using CacheManager.

Manual Removal
You can manually remove an entry from the page cache, you can use the CacheServer
servlet. The CacheServer provides two options:

• Flushing the entire cache.

• Forcing a flush of all pages at the moment they expire. In order to invoke
CacheServer’s “flush all” functionality, you must be logged in as a user with “destroy”
privileges on the SiteCatalog table, and specify the parameter all=true when
invoking the CacheServer servlet. If you do not specify a parameter, then all expired
entries (those whose expiry date is in the past) will be cleared from the cache
immediately. Entries that have not yet expired will not be cleared.
Content Server 7.0 Developer’s Guide

Chapter 7. Advanced Page Caching Techniques

Configuring the Content Server Cache
142
Automatic Removal
CacheManager is a module that ties in very closely with the internals of the Content
Server page and blob cache mechanisms. It is a tool that allows you to manage the
contents of all of the rendering caches based on the items loaded on a page, on the
expiration of the pages, or on parameters passed into pages.

CacheManager itself could be the subject of an entirely independent document. However,
an overview of its functionality is described herein. For detailed information about its
methods and required arguments, consult the COM.FutureTense.Cache.CacheManager
JavaDoc.

1. A CacheManager is instantiated using one of two constructors. One constructor sets
CacheManager with all of the currently registered Satellite Servers. The other
constructor allows you to specify which Satellite Servers this instance of
CacheManager will actually manage.

2. Next, the CacheManager needs to be populated with pages and blobs. This is done by
using one of the following methods:

setByCachedDate(ICS ics, boolean before, String timestamp)

setByItemDate(ICS ics, boolean before, String timestamp)

setPagesByArg(ICS ics, String paramName, String paramValue)

setPagesByID(ICS ics, String[] ids)

The contents of the Page, Blob and Satellite caches are closely tied together. It is
always the case, except as a result of a configuration error, that any object cached on
Satellite Server will be present in the Content Server cache. This means that Content
Server has a record of all entries in all rendering engine caches. CacheManager uses
this record in order to be able to manage the contents of each of the caches, without
having to directly interrogate each cache for the information explicitly.

setByCachedDate(ICS ics, boolean before, String timestamp)

This method allows you to populate CacheManager based on the date an entry was
last added to the cache. You can choose whether you want to populate it with all of the
entries modified either before or after the date specified.

setByItemDate(ICS ics, boolean before, String timestamp)

This method allows you to populate CacheManager based on the date an item on an
entry was last modified. As with setByCachedDate(ICS, boolean, String),
you can choose whether you want all entries whose items were modified before or
after the date specified.

Note

In no case will an expired entry be served from the cache, even if it is still
in the database table. Content Server checks the expiry date of any page it
retrieves from cache before serving the page. If Content Server attempts
to serve a page that has expired, the page will be removed from the cache
immediately and a new page will be generated.
Content Server 7.0 Developer’s Guide

Chapter 7. Advanced Page Caching Techniques

Configuring the Blob Server Cache
143
setPagesByArg(ICS ics, String paramName, String paramValue)

This method allows you to populate CacheManager based on name-value pairs
present in the cache key (including pagename).

setPagesByID(ICS ics, String[] ids)

This method allows you to populate CacheManager based on the exact item IDs of the
items stored on the pages or blobs in the cache.

Once fully populated, CacheManager is able to manage the contents of the caches.
This is done using one of the four main service methods:

- flushCSEngine(ICS ics, int mode)

This method flushes all of the pages and blobs currently populated in the
CacheManager from the Content Server page and blob caches.

- flushSSEngines(ICS ics)

This method flushes all of the pages and blobs currently populated in the
CacheManager from the Satellite Server cache. This is done by sending an http
request to the FlushServer servlet with the appropriate <page> and <blob> tags
embedded in it. Satellite Server interprets these tags and converts them into a
cache key, then flushes the corresponding pages from cache.

- refreshCSEngine(ICS ics, int mode)

This method sends a request (using ICS.ReadPage or ICS.BlobServer) that
regenerates the object and automatically re-populates the cache

- refreshSSEngines(ICS ics)

This method sends a request via http to Satellite Server to read the pages. The
returned bytes are ignored, but the result is that the Satellite Server cache is re-
populated.

Using these methods it is possible to take advantage of double-buffered caching, a tool
that can enable extremely high performance dynamic sites. For more information about
double-buffered caching, see “Double-Buffered Caching” on page 124.

Configuring the Blob Server Cache
The BlobServer cache is an “all or nothing” cache—entries are either globally cached or
globally not cached.

BlobServer caching is disabled if security is enabled. Thus, if bs.security=true,
caching is disabled.

Configuring Maximum Cache Size
The property bs.bCacheSize in futuretense.ini specifies the number of entries the
blob cache will contain. If the size is set to a negative number, the blob cache will be
allowed to grow indefinitely.

Setting Expiration Time for an Individual Entry
Blob Server does not support individual entry expiration for cached entries. All cached
objects will reside in cache for the timeout determined by the bs.bCacheTimeout
property in futuretense.ini. A negative timeout indicates that entries should not time
out. A positive integer specifies the number of minutes an object will reside in cache.
Content Server 7.0 Developer’s Guide

Chapter 7. Advanced Page Caching Techniques

Configuring the Satellite Server Cache
144
Explicitly Removing Entries from Cache
BlobServer supports the flushing of both individual entries and all entries from the cache.

Manual Removal
To manually remove an entry from cache, simply rename the blobtable parameter to
flushblobtable. This will remove the entry corresponding to the rest of the parameters
from the cache.

To manually remove all entries from the cache, there are two options. One is to invoke the
BlobServer servlet with the parameter “flushblobtables” (notice the “s”). The other
is to invoke the CacheServer servlet as described above. However, this will flush all pages
and all blobs from the cache.

Automatic Removal
Because blob dependency items are recorded when blob links are generated, it is possible
to invoke CacheManager to manage blobs as well as pages. (In fact, CacheManager
always manages blobs and pages together). Refer to the sections about CacheManager and
Content Server for details about using CacheManager.

Configuring the Satellite Server Cache
The generic Satellite Server cache configuration is done in the satellite.properties
file; typically, however, cache configuration is overridden on an object-by-object basis.

Configuring Maximum Cache Size
The maximum number of entries that can be stored in the cache at once is configurable
using the cache_max property in the satellite.properties file. If the property is set
to a negative integer, the cache will not be limited by size. Any positive integer will
specify the maximum number of entries that can be stored in the cache.

Explicitly Removing Entries from Cache
Individual entries can be removed from the Satellite Server cache either manually or using
CacheManager, as explained in this section.

Manual Removal
Satellite Server includes a servlet called FlushServer. By submitting a GET request to this
servlet (specifying the username, password and reset parameters), it is possible to flush all
of the contents of the Satellite Server cache. It is not possible to flush individual entries
using GET.

Automatic Removal
As described above, it is possible to flush the Satellite Server cache using CacheManager.
As described, CacheManager is only able to flush entries on Satellite Server if a
corresponding object is cached on Content Server. This is the case because of the way
Content Server tracks the contents of the Satellite Server cache.

As described above, it is possible to flush the Satellite Server cache by using
CacheManager, as long as a corresponding object is cached on Content Server. The
corresponding object is required because of the way Content Server tracks the contents of
the Satellite Server cache.
Content Server 7.0 Developer’s Guide

Chapter 7. Advanced Page Caching Techniques

CacheInfo String Syntax
145
The relevant CacheManager methods for dealing with the Satellite Server cache are
flushSSEngines() and refreshSSEngines(). For information about the methods,
see page 143.

CacheInfo String Syntax
The cscacheinfo and sscacheinfo fields of the SiteCatalog are populated with a
CacheInfo string. This section describes the format of the string. It is a two-part, comma-
separated string. The first part indicates whether the page will be cached. The second part
describes the expiration.

Sample values:

false
true
true,*
true,~4
true,@1987-06-05 04:32:10
true,#00:00:00 */*/*
*
(blank)

CacheInfo String: First Part
The first part in CacheInfo must be one of the following values:

false
true
(blank)
*

• If the value is false, then the page will not be cached.

• If the value is true, then the page will be cached according to the information
provided in the second element.

• If the value is blank, then Content Server will consult the futuretense.ini
property cs.alwaysusedisk. If this property is set to yes, then a blank value will
be interpreted as having the same behavior as true. If the value is set to no (the
default value), then a blank value will be interpreted as having the same behavior as
false.

• If the value is *, then it will be treated as blank.

CacheInfo String: Second Part
The second part in CacheInfo describes when a page that is to be cached should be
removed from cache. If the first element is false (or is interpreted as false), then the
second element is ignored.

There are three ways of specifying the expiration of a page:
Content Server 7.0 Developer’s Guide

Chapter 7. Advanced Page Caching Techniques

CacheInfo String Syntax
146
page timeout (in minutes)
instant in time expiration
cron-like TimePattern expiration

Legal values include:

~<number of minutes>
@<date in JDBC format>
#<COM.FutureTense.Util.TimePattern format>
*
(blank)

Page Timeout
If the second element starts with ~, then the value following the ~ must be an integer. The
value of this integer is the number of minutes a page will remain in cache after it was first
created. A value of 0 indicates that the page will expire immediately. A negative value
means that the page should never expire, and it will remain in cache forever.

Absolute Moment in Time
If the second element starts with @, then the value following the @ must be a date
expressed in the JDBC date string format, namely, YYYY-MM-DD HH:MM:SS. Once that
date has passed, cached pages will be flushed from cache and the page will no longer be
cached.

TimePattern
Starting with CS 6.1.0, the TimePattern format is now supported for describing page cache
expiration. If the second element starts with #, then the value following the # must be a
valid TimePattern string as defined by the public class COM.FutureTense.Util.Time
Pattern.

This document does not describe valid TimePattern syntaxes in detail. For more
information, consult the TimePattern JavaDoc for more information.

In general though, the TimePattern syntax corresponds to the format used in most UNIX
cron tables. It allows you to specify expiration at a specific time or times every day,
month, week, day of week, and year.

It is expected that the TimePattern format will become the most widely used format for
page expiration.

Wildcard
If the second element is *, then the page will assume a timeout expiration behavior, as
described in Timeout above. The timeout value will be read from the futuretense.ini
file’s cs.pgCacheTimeout property.

Blank
If the second element is blank, then it assumes the same behavior of *.
Content Server 7.0 Developer’s Guide

147
Chapter 8

Content Server Tools and Utilities
Content Server includes several tools and utilities that you use together with the Content
Server browser-based interface for developing and maintaining your web sites. This
chapter provides brief descriptions of these utilities, and tells you how to start them. It
includes the following sections:

• Content Server Explorer

• CatalogMover

• Property Editor

• Page Debugger

• XMLPost
Content Server 7.0 Developer’s Guide

Chapter 8. Content Server Tools and Utilities

Content Server Explorer
148
Content Server Explorer
The Content Server Explorer tool is a Microsoft Windows application for viewing and
editing tables and rows in the Content Server database, and for creating and editing
executable elements (or files) written in XML or JSP. You use Content Server Explorer to
do the following:

• Add entries to tables

• Edit rows within tables

• Track revisions to rows of tables

• Create and drop Content Server tables

• Organize tables and folders into projects

• Preview SiteCatalog records as pages in a browser

• Export and import records as integrated .cse type files

• Export and import tables and projects in .zip files

Content Server Explorer is installed along with Content Server.

Connecting to a Content Server Database
You can use Content Server Explorer on any remote Microsoft Windows machine simply
by copying the Content Server Explorer directory on a machine where Content Server is
installed (tools/ContentServerExplorer) to a directory on the remote machine. You
then start the Content Server Explorer executable file (ContentServerExplorer.exe)
and log in to Content Server by supplying a user name, password, hostname, port, and
protocol information.

To connect to a system that is running Content Server

1. Start Content Server Explorer.

2. Choose File > Open Content Server to display the Login dialog box.

3. Enter the following values:

Name – Your Content Server user name.

Password – Your Content Server password. (Depending on your site security, it may
not be necessary to enter a name and password.)

Host name – The hostname or IP address. You cannot leave this field blank.

Port – The port number (the default is 80).

Protocol – Typically, this is HTTP. (You may select HTTPS if the web server is
running SSL.)

Application server URL path – The type of application server for your site.

4. Click OK to log in. The Content Server Explorer window appears:
Content Server 7.0 Developer’s Guide

Chapter 8. Content Server Tools and Utilities

CatalogMover
149
You may want to create a shortcut on your Windows desktop to Content Server Explorer.
For instructions about using Content Server Explorer, see the online help as well as
sections in this manual that describe specific tasks requiring Content Server Explorer. For
more information on Content Server Explorer and its features, see the Content Server
Explorer online help.

CatalogMover
You use the CatalogMover tool to export and import Content Server database tables,
including the ElementCatalog and SiteCatalog tables. For example, you can use
CatalogMover to export page elements and content assets to one system, and load the
same elements and assets into the database on another system. You can export and import
database tables as either HTML files or ZIP files.

You can use CatalogMover through either the Windows interface described in the
following sections, or the command line interface described in “Command Line Interface”
on page 156.

Starting CatalogMover

To start CatalogMover

Execute the following scripts at the MS DOS prompt or in a UNIX shell:

• Windows: CatalogMover.bat

• Solaris: CatalogMover.sh

Note

In previous versions of Content Server, tables in the Content Server database were
called “catalogs.” This term still applies to the names of some database tables as
well as to the CatalogMover tool itself.
Content Server 7.0 Developer’s Guide

Chapter 8. Content Server Tools and Utilities

CatalogMover
150
The following JAR files must be in the classpath, or be specified by the -classpath
switch:

cs.jar
swingall.jar
commons-logging.jar
cs-core.jar

The CatalogMover window appears:

Connecting to Content Server
Before using CatalogMover, you must first connect to a Content Server system.

To connect to Content Server

1. Choose Server > Connect. The Connect to Server dialog box appears.

2. In the Server field, enter the name of the HTTP server you want to connect to, and the
port on which the server is running.

3. In the Name field, enter your user name.

4. In the Password field, enter your password.

5. To merge Content Server property (.ini) files, enter the names of two property files
separated by a semicolon in the ‘inifile’(s) field. If you do not want to merge property
files, leave this field blank. (For more information, see “CatalogMover Menu
Commands” on page 151.)

6. Select one of the following radio buttons:

- Standard Servlets – to connect to a system using WebSphere or WebLogic.
- Sun ONE Application Server – to connect to a system using Sun ONE

Application Server.
- Custom – to connect to a different application server, enter the following value in

the text box:
<ft.approot><ft.cgipath>/CatalogManager.

7. Click Connect.
Content Server 7.0 Developer’s Guide

Chapter 8. Content Server Tools and Utilities

CatalogMover
151
CatalogMover Menu Commands
CatalogMover includes the following menu commands:

File Menu
• Exit – Disconnect from Content Server and close CatalogMover.

Server Menu
• Connect – Display the Connect to Server dialog box.

• Reconnect – Display the Connect to Server dialog box and renew the current Content
Server connection.

• Disconnect – Disconnect from Content Server.

• Purge Temporary Tables – Purge imported tables before committing.

• Commit Individual Tables – Commit imported tables to the database.

• Normalize Filenames on Export – Enable CatalogMover’s file name normalization
behavior, which changes the names of files that are being moved to names that match
their corresponding ID numbers. If this feature is not enabled, file names are not
altered.

CatalogList Menu
• Load – Display a list of all tables in the database.

Catalog Menu
• Load – Load into local memory a table from the list. The following figure shows a

loaded ElementCatalog table:

Click the Element Catalog tab to view all rows in the table, and to select specific
rows for export.

• Refresh – Update the loaded tables from the Content Server database.

• Auto Import Catalog(s) – Import a previously exported ZIP file.

• Import Catalog – Import into the local database a table that was exported from
another Content Server database.

• Export Catalog Rows – Export the selected rows in the loaded table.
Content Server 7.0 Developer’s Guide

Chapter 8. Content Server Tools and Utilities

CatalogMover
152
Selection Menu
• Select All Rows – Select all rows in the currently displayed table.

• Deselect All Rows – Deselect all rows in the currently displayed table.

• Select Rows By SubString – Select rows in the currently displayed table by typing a
portion of any field value string that uniquely identifies a set of rows.

Help Menu
• About – Display version information about the Content Server installation.

Exporting Tables
Exporting is the process of retrieving table rows and their content from the database and
saving them in local HTML files and associated data directories. CatalogMover creates
one HTML file per table.

To export selected table rows

1. Connect to Content Server as described in “Connecting to Content Server” on page
150.

2. Choose CatalogList > Load to display a list of all tables in the database

3. Choose Catalog > Load to load a table, and select rows as described in “Selecting
Rows for Export” below.

4. Choose Catalog > Export Catalog Rows.

A dialog box appears prompting you to specify a directory for the HTML file
containing the exported rows.

5. Navigate to your directory of choice, and click Save.

CatalogMover exports the selected rows to your selected directory.

Selecting Rows for Export
You can select specific rows for export in a loaded table by clicking on them, or you can
search for specific rows by substring.

To search for and select rows according to a substring

1. Choose Selection > Select Rows By SubString.

The following dialog box appears:

2. In the text field, enter the substring you want to locate. For example, if you wanted to
search the ElementCatalog primary key for all rows with “folder” in the element
name, enter folder and click OK.
Content Server 7.0 Developer’s Guide

Chapter 8. Content Server Tools and Utilities

CatalogMover
153
CatalogMover searches the table and selects the rows that match your substring query
against the primary key for the table, as shown in the following figure:

Exporting to a ZIP File
You can select several rows from several tables and export them to a ZIP file on local
machine from which you are running CatalogMover. Once you create the ZIP file, you can
import the contents of the file into server tables.

To export a ZIP file with CatalogMover

1. Choose CatalogList > Load to display a list of all tables in the database.

2. Choose Catalog > Load to load a table, and select rows as described in “Selecting
Rows for Export.”

Note

Selecting rows by substring only works for the left-most column in the table.
However, you can change column positions so that any column can become the
left-most column. To do this, simply click and drag the column header.

Rows selected from
ElementCatalog for

export to ZIP

Loaded catalogs
Content Server 7.0 Developer’s Guide

Chapter 8. Content Server Tools and Utilities

CatalogMover
154
3. Choose Catalog > Export Catalog Rows. The following dialog box appears:

4. Navigate to the directory where you want to save the ZIP file.

5. In the File Name field, enter a name for the files and type a .ZIP file extension.

6. Click Save. The rows you selected from all of the tables are exported to a ZIP file in
the directory you chose.

Importing Tables
Importing is the process of sending locally stored HTML files and the associated data to
the server. You can select a particular HTML file to import, or you can choose to import
all HTML files.

To import HTML files that have been previously exported from another table

1. Connect to the Content Server installation you want to import the HTML files to, as
described in “Connecting to Content Server” on page 150.

2. Choose CatalogList > Load to display a list of all tables in the database.

3. Choose Catalog > Import Catalog.

4. Navigate to the HTML file containing the previously exported table rows.

5. Select the HTML file and click Open. The following dialog box appears:

6. If you are importing new table rows that do not currently exist, enter the information
in the Catalog Data Directory and the Catalog ACL List fields.
Content Server 7.0 Developer’s Guide

Chapter 8. Content Server Tools and Utilities

CatalogMover
155
If you are replacing existing table rows with the imported table rows, leave these
fields blank.

7. Click OK. The table rows contained in the previously export HTML file are imported
into the Content Server database to which you are connected.

A dialog box appears, listing the table rows that were imported.

Importing a Previously Exported ZIP File
You can import table rows stored in an exported ZIP file to your server using
CatalogMover.

To import a previously exported ZIP file

1. While connected to your database, choose Catalog > Auto Import Catalogs.

2. In the resulting dialog box, navigate to the directory where you previously exported
the table rows. To see the ZIP file, change the Files by Type drop-down menu to all
files.

3. Select the ZIP file and click Save. The rows contained in the ZIP file are automatically
imported to your database.

Merging Existing CatalogMover Files

To merge CatalogMover files

1. Connect to the Content Server installation you want to import the HTML files to, as
described in “Connecting to Content Server” on page 150.

2. Choose CatalogList > Load to display a list of all tables in the database.

3. Choose Catalog > Load to load a table, and select the rows that you want to merge
into another file, as described in “Selecting Rows for Export”.

4. Choose Catalog > Export Catalog Rows.

5. Navigate to the HTML file you want to merge the rows with. Click Save. The
following dialog box appears:

6. Click Update existing exported data. CatalogMover merges the exported rows into
the HTML file you selected.

Note

If you import tables that do not exist on the server to which you are connected,
the new tables are automatically created as they are imported.
Content Server 7.0 Developer’s Guide

Chapter 8. Content Server Tools and Utilities

CatalogMover
156
Replacing Existing CatalogMover Files

To replace CatalogMover files

1. Connect to the Content Server installation you want to import the HTML files to, as
described in “Connecting to Content Server” on page 150.

2. Choose CatalogList > Load to display a list of all tables in the database.

3. Choose Catalog > Load to load a table, and select the rows that you want to merge
into another file, as described in “Selecting Rows for Export.”

4. Choose Catalog > Export Catalog Rows.

5. Navigate to the HTML file you want to merge the rows with. Click Save. The
following dialog box appears:

6. Click Replace existing exported data. CatalogMover replaces rows in the HTML file
you selected with the exported rows.

Command Line Interface
The following parameters allow CatalogMover to perform functions without displaying a
GUI. The parameter is followed by a space followed by the value:

Parameters Description

-h display command line parameters

-u username username

-p password password

-s servername servername to connect

-b baseurl base URL – either http://($host)/cgi-bin/
gx.cgi/AppLogic+FTCatalogManager (NAS) or
http://($host)/servlet/
CatalogManager(WebLogic)

-t table table name – used when exporting to designate tables to
export, use multiple -t parameters to export multiple tables

-x function function to perform – legal values are import,
import_all, export, export_all

-d directory directory – When exporting, directory to contain exported
tables. When importing all, directory containing all tables
to import.
Content Server 7.0 Developer’s Guide

Chapter 8. Content Server Tools and Utilities

CatalogMover
157
-f filename file containing table to import – Can either be an HTML
file or a ZIP file generated by export.

-c directory upload directory to be used if creating a table

-a aclone,acltwo,... ACL list – comma-separated list of ACLs to be used if
creating a table

Parameters Description
Content Server 7.0 Developer’s Guide

Chapter 8. Content Server Tools and Utilities

Property Editor
158
Property Editor
The Property Editor tool provides an easy-to-use Windows interface that lets you view,
modify, and add properties in the Content Server futuretense.ini file.

Starting the Property Editor

To start the Property Editor

Run the following scripts:

• On Windows NT: propeditor.bat

• On Solaris: propeditor.sh

The Properties window appears:

The Properties window displays properties in functional groups, such as Database and
Caching, on the left side of the window.

The Items pane lists the properties in the selected functional group.

The Value pane lists the current value for the selected item, a brief description of the item,
and the acceptable values for it.

Setting Properties

To set Content Server properties on your system

1. If necessary, start the Property Editor.

2. Choose File > Search and open the .ini file you want to edit.

Note

The futuretense.ini file contains a release number string, ft.version,
which contains a value such as 4.0.0. that is set by Content Server.

Do not modify this property—it is for reference only.
Content Server 7.0 Developer’s Guide

Chapter 8. Content Server Tools and Utilities

Property Editor
159
3. Select a properties group from the tabs on the left side of the window. The Property
Editor displays the properties in the Items: pane.

4. Select a property in the Items: pane. The Property Editor displays the current property
value and a brief description in the Values: pane.

5. In the Values: pane, enter the new value in the text field.

6. In the Values: pane, click the Accept button.

7. Repeat steps 3 through 6 for all the properties you want to change.

8. When you finish, choose File > Save to save your changes.

9. Click OK in the confirmation message box.

10. Choose File > Save to save your changes and close the Property Editor.

11. Stop and restart the application server to apply the changes.

Merging Property Files
You ordinarily use the Property Editor to modify the futuretense.ini property file.
You can also add properties to your property file from the property file on the server to
which you are connecting. For example, if the futuretense.ini file on the server you
are connecting to contains properties from another application like CS-Direct, those CS-
Direct properties can be automatically added to your futuretense.ini file upon
connection. If you have the same properties with different values defined in multiple .ini
files, Content Server uses the values in the last property file that it loads.

To merge a property file with the futuretense.ini file, enter the names of the two
property files separated by a semicolon in the ‘inifile’(s) field when you connect to
Content Server. If you do not want to merge property files, leave this field blank.

For example, the following Connect to Server dialog box shows a merge between
futuretense.ini and alt.ini:

As another example, if you have CS-Direct installed on top of Content Server, you would
merge property files for Content Server (futuretense.ini) and CS-Direct
(futuretense_xcel.ini). In this case, you would enter the following:

futuretense.ini;futuretense_xcel.ini
Content Server 7.0 Developer’s Guide

Chapter 8. Content Server Tools and Utilities

Page Debugger
160
Page Debugger
The Page Debugger is a tool that lets you step through the execution of XML and JSP
elements. You can view the values of variables as the element executes, and more easily
determine where errors occur in your code.

The Page Debugger provides basic debugging commands that you can use to:

• Step into a called element

• Step over a called element

• Step out of a called element

• Continue to the cursor location

• Continue executing to the end of the element file

For more information, see Chapter 10, “Error Logging and Debugging.”

XMLPost
The XMLPost utility imports data into the Content Server database. This utility is based
on the Content Server FormPoster Java class and it is delivered with the Content Server
base product. It imports data using the HTTP POST protocol.

To import assets, you use XMLPost with posting elements that are delivered with CS-
Direct and CS-Direct Advantage. For information about using XMLPost to import assets,
see the following chapters:

• Chapter 18, “Importing Assets of Any Type”

• Chapter 19, “Importing Flex Assets”
Content Server 7.0 Developer’s Guide

161
Chapter 9

Sessions and Cookies
This chapter explains how to use XML tags to manage sessions and cookies. It contains
the following sections:

• What Is a Session?

• Session Lifetime

• Sessions Example

• What Is a Cookie?

• Cookie Example

• Tips and Tricks

• Satellite Server Session Tracking
Content Server 7.0 Developer’s Guide

Chapter 9. Sessions and Cookies

What Is a Session?
162
What Is a Session?
Imagine a web site containing two pages: main and water. Suppose a visitor sees main
first and then moves on to water. HTTP is a stateless protocol. So, if a typical web server
is managing this site, any knowledge gathered at main is lost when the visitor browses
over to water. In other words, water cannot take advantage of any information that the
visitor might have provided at main.

To get around this limitation, application servers detect when a visitor first enters a web
site. At that point, the application server starts a session for this visitor. In the preceding
example, when the visitor requests the main page, the application server starts a session.
The web site designer can use main to gather information about the visitor and store that
information in session variables. The information in session variables is available to all
subsequent pages. So, for example, if Bob provides his age to main, and main’s designer
wrote the age to a session variable, then water could easily access Bob’s age.

Session variables contain values available for the duration of the session. When the
session ends, the application server destroys the session variables associated with that
session. Each session variable consumes memory on the application server, so creating
unnecessary session variables can hurt performance.

Content Server automatically creates some session variables; the web site developer can
optionally create others.

The application server can maintain sessions on a cluster.

Session Lifetime
A session begins when a visitor first hits your web site. The session ends when any of the
following happens:

• The visitor terminates his browser.

• The session has timed out. The cs.timeout property is used by Content Server to set
the session timeout value in the application server. If this property is set to 300, then a
user session becomes invalid in 300 seconds, or 5 minutes.

• The system administrator stops the application server.

Session Variables Maintained by Content Server
Upon creating a session, Content Server automatically creates the following session
variables:

Session Variable What it Holds

SessionVariables.currentUser The id of the visitor logged in.

SessionVariables.currentAcl The comma-separated list of all ACLs to which
this visitor belongs. If the visitor has not
explicitly logged in, the default ACL is
Browser.

SessionVariables.username The username under which this visitor is logged
in. If the visitor has not explicitly logged in, the
default username is DefaultReader.
Content Server 7.0 Developer’s Guide

Chapter 9. Sessions and Cookies

Sessions Example
163
Logging In and Logging Out
When a visitor first hits the site, Content Server creates a session and implicitly logs in the
visitor as DefaultReader. During the session, if the visitor explicitly logs in, Content
Server automatically updates the values of SessionVariables.currentUser,
SessionVariables.currentAcl, and SessionVariables.username. Logging in
does not affect the values of any other session variables. In other words, if your pages
create session variables prior to a login, then those values are still valid after the login.
When a visitor explicitly logs out, the Content Server-generated session variables
automatically revert to the values they held prior to login. For example, consider the
following sequence:

1. A visitor first hits a page, so the value of SessionVariables.username is
DefaultReader.

2. The visitor logs in as marilyn, so the value of SessionVariables.username is
marilyn.

3. If marilyn logs out, the value of SessionVariables.username reverts to
DefaultReader.

To trigger a logout, you call the <CATALOGMANAGER> tag with the ftcmd=logout
modifier. When issuing this tag, you can optionally supply the killsession modifier,
which destroys the current session. You can then create a new session by invoking the
<CATALOGMANAGER> tag with the ftcmd=login modifier.

Sessions Example
Here’s a simple session example, consisting of three very short elements:

FeelingsForm Element
The feelings form doesn’t really involve sessions or variables; this element merely
generates a form. The visitor’s chosen mood is passed to the SetFeeling element:

<form action="ContentServer" method="post">
 <input type="hidden" name="pagename"
 value="CSGuide/Sessions/SetFeelings"/>

SessionVariables.iniFile The name of the file containing Content Server
properties.

Element What it Does

FeelingsForm Asks visitors to pick their current mood.

SetFeelings Assigns the current mood to a session variable.

Meat Evaluates the session variable.

Session Variable What it Holds
Content Server 7.0 Developer’s Guide

Chapter 9. Sessions and Cookies

Sessions Example
164
 <P>How are you feeling right now?</P>
 <P>
 <select name="Feeling" size="1">
 <option>Good</option>
 <option>Not so Good</option>
 </select>
 </P>

 <P><input type="submit" name="doit" value="Submit"/></P>
</form>

The resulting page looks like the following:

SetFeeling Element
Upon clicking the Submit button, the visitor is transported to SetFeeling. This element
assigns the visitor’s mood to a new session variable named CurrentFeeling.

<SETSSVAR NAME="CurrentFeeling" VALUE="Variables.Feeling"/>

<P>Welcome to our site.</P>

<P>Now proceed to

some meaty content.
</P>

The resulting page looks as follows:

Welcome to our site.

Now proceed to some meaty content.

If an element in this application asked the visitor to login, Content Server would have
automatically set the username session variable to the visitor’s login name. In that case,
you could have personalized the welcome message in SetFeeling as follows:

<P>Welcome to our site, <CSVAR
NAME=”SessionVariables.username”/>
</P>

Meat Element
Upon clicking some meaty content, the visitor is transported to the Meat page. This page
evaluates the session variable:

<IF COND="SessionVariables.CurrentFeeling=Good">
 <THEN>
 <P>Sessions are happiness.</P>
Content Server 7.0 Developer’s Guide

Chapter 9. Sessions and Cookies

What Is a Cookie?
165
 </THEN>
 <ELSE>
 <P>Don’t let sessions get you down.</P>
 </ELSE>
</IF>

A visitor in a not so good mood sees:

Don’t let sessions get you down.

Notice how CurrentFeeling was available to Meat. In fact, CurrentFeeling is
available to any other elements in the session.

What Is a Cookie?
A cookie is a string that your application writes to the visitor’s browser. A cookie stores
information about visitors that lasts between sessions. The visitor’s browser writes this
string to a special cookie file on the visitor’s disk. When that visitor returns to your web
site, the visitor’s browser sends a copy of the cookie back to the web server that set it.
Once a cookie has been created, it is available as a variable to elements on a page.

For example, your application might store the visitor’s favorite sports team in a cookie.
Then, when the visitor returns, your application could retrieve the cookie and use its
information to display the team logo in a banner.

When cookies are no longer needed, you can delete them.

CookieServer
CookieServer is a servlet that sets cookies for you. You access CookieServer by creating
cookies with the satellite.cookie tag.

Cookie Tags
Content Server offers two tags for managing cookies:

There is no special tag to obtain the value of a cookie. Instead, when a visitor returns to the
web site, Content Server loads the value of the cookie as a regular variable.

When creating a cookie (by calling satellite.cookie), you can specify the following
attributes:

Tag Use

satellite.cookie Sets a cookie on the client’s browser.

REMOVECOOKIE Deletes a cookie from the client’s browser.

Attribute Value

name Name of the cookie. This also serves as the name of the incoming
variable containing the value of the cookie.
Content Server 7.0 Developer’s Guide

Chapter 9. Sessions and Cookies

Cookie Example
166
Because they feel that cookies are a security threat, some visitors configure their browsers
to reject cookies. If the information in the cookie is critical, your application must be
prepared for this.

You must set or remove cookies before using any tags that stream content back to the
visitor’s browser. You must set or remove cookies even before the <HTML> tag.

Cookie Example
This example consists of several very short elements:

Start.xml
The Start.xml element determines whether the cookie has already been set. If the
cookie has been set, Content Server stores its value inside a regular variable named
Variables.ColorCookie. The code for Start.xml is as follows:

<IF COND="IsVariable.ColorCookie=true">
 <THEN>
 <CALLELEMENT NAME="CSGuide/Sessions/DisplayWelcome"/>

expiration Time in seconds after which the cookie no longer is sent to the
web server.

security Optionally set security on the cookie.

URL Restrict that the cookie only be sent on this URL

Domain Restrict that the cookie only be sent to URLs in the specified
domain.

Note

Set the xmldebug property to NO before running an element that calls
REMOVECOOKIE. If xmldebug is set to YES, REMOVECOOKIE does not work
properly.

Element What it Does

Start Determines whether a cookie is set. If cookie is set, call
DisplayWelcome. If cookie is not set, call
GetColorPreference.

ColorForm Displays a form that asks visitor to pick her favorite color.

CreateCookie Creates a cookie on this visitor’s browser. Then, redirects visitor
to DisplayWelcome.

DisplayWelcome Displays a simple welcome message in the visitor’s favorite
color.

Attribute Value
Content Server 7.0 Developer’s Guide

Chapter 9. Sessions and Cookies

Cookie Example
167
 </THEN>
 <ELSE>
 <CALLELEMENT NAME="CSGuide/Sessions/ColorForm"/>
 </ELSE>
</IF>

ColorForm
The ColorForm.xml element displays some an HTML form to gather the visitor’s
favorite color. The code for ColorForm.xml is as follows:

<form action="ContentServer"
 method="post">
 <input type="hidden" name="pagename"
 value="CSGuide/Sessions/CreateCookie"/>

 <P>What is your favorite color?</P>
 <P>
 <select name="FavoriteColor" size="1">
 <option>Red</option>
 <option>Green</option>
 <option>Blue</option>
 </select>
 </P>

<P><input type="submit" name="doit" value="Submit"/></P>
</form>

CreateCookie
The CreateCookie.xml element sends a cookie named ColorCookie to the visitor’s
browser. If the visitor has disabled cookies, the browser ignores the request to set a cookie.
If the visitor has enabled cookies (the default), the browser writes the cookie to this
system’s cookie file.

The following is the code for CreateCookie.xml:

<satellite.cookie NAME="ColorCookie"
VALUE="Variables.FavoriteColor"
TIMEOUT="31536000" SECURE="false"/>

<CALLELEMENT NAME="CSGuide/Sessions/DisplayWelcome"/>

The preceding code sets the value of the cookie to the visitor’s favorite color. This cookie
lasts for one year (31,536,000 seconds).

DisplayWelcome
By the time DisplayWelcome is called, the cookie has been set. The following code uses
the value of the cookie to display a welcome message in the visitor’s favorite color.

<H1><font color="Variables.ColorCookie"
 REPLACEALL="Variables.ColorCookie">
Displaying a Friendly Welcome.
</H1>
Content Server 7.0 Developer’s Guide

Chapter 9. Sessions and Cookies

Tips and Tricks
168
Running the Cookie Example
To run the cookie example, use your browser to go to the following pagename:

CSGuide/Sessions/Start

The first time you run this example, all four elements execute. After the first time, only
Start and DisplayWelcome execute.

Tips and Tricks
The following suggestions might be useful:

• In a cluster, session state must be replicated across cluster members. In a cluster, try to
keep session size to a minimum; don’t store more than 2 Kilobytes of session data per
client.

• Determine reasonable session timeout values. Setting timeouts that are too large tie up
system resources. Setting them too small forces visitors to log in with annoying
frequency.

Satellite Server Session Tracking
Web sites that present personalized content to visitors must track sessions. Content Server
and Satellite Server both track sessions. Both set cookies in the visitor’s browser; thus, two
cookies (rather than one) each independently track a session. This redundancy is useful if
a Satellite Server goes down; when a Satellite Server goes down, the Content Server
session is maintained.

Flushing Session Information
Though Satellite Server will only serve session-specific pagelets back to the person who
originally requested them, explicitly flushing session-specific information on user logout
is a wise way to conserve space in the Satellite Server cache.

The following sections describe how to flush session information from Satellite Server.

Flushing a Session Via URL
You can flush all data pertaining to a particular session. You do this from Content Server
by posting a form to a URL in the following format:

https://host:port/servlet/
FlushServer?reset=true&username=username&password=password&
ssid=sessionID

where:

Parameter Value

host Specify the name of the Satellite Server host whose cache is to be
flushed

port Specify 80 (the default) unless you reconfigured Resin to run on a
different port.
Content Server 7.0 Developer’s Guide

Chapter 9. Sessions and Cookies

Satellite Server Session Tracking
169
Flushing Current Session Information
To flush the information for the Satellite Server session that you are currently in, use the
FlushServer URL with the current session’s ID. The current session ID (ssid) is stored
in a session variable with a name that is dependent upon your application server. You can
see this name by looking at the session variable HTTP_COOKIE.

The following java code flushes the information for the current session:

String value;
String name = "WebLogicSession";
value = ics.GetVar(name);

String sFlushSessionUrl ="http://mysatellite:80/servlet/
FlushServer?username=ftuser&password=ftuser&
reset=true&ssid=" + value;"

String sSatTest1Results = Utilities.readURL(sFlushSessionUrl);

Flushing Other Session Information

To flush information from a session other than the one you are in

1. Add the following tag to the container page that contains the pagelets that you want to
flush:

<satellite.page
pagename="QA/Satellite/Functional/xml/pagelet4"
cachecontrol="session:0:00:00 */*/*"/>

The cachecontrol value of "session:0:00:00 */*/*" means that every
session that requests this page creates a pagelet that can only be viewed by subsequent
requests by that session. Once the session for a given page expires, that page cannot be
viewed again. The container page will expire from the cache at midnight each day.

2. After setting the cachecontrol parameter for the container page, use the Inventory
servlet with the keys parameter to get its session ID (ssid). The ssid is the string
that precedes the protocol and server name. For example, if the Inventory servlet
displays:

OuCOTrh9yporWfgu8Uthttp://myserver:80/servlet/
ContentServer?pagename=QA/Satellite/Functional/xml/pagelet4

then the ssid is OuCOTrh9yporWfgu8U.

3. Flush information from the session by using the ssid you found with the FlushServer
URL. For example:

username Specify the value assigned to the username property.

password Use the value assigned to the password property.

sessionID Specify the session ID (the one maintained by Content Server,
and not by Satellite Server) representing the session to be
removed.

Parameter Value
Content Server 7.0 Developer’s Guide

Chapter 9. Sessions and Cookies

Satellite Server Session Tracking
170
http://myserver:80/servlet/
FlushServer?username=ftuser&password=ftuser&reset=true&
ssid=OuCOTrh9yporWfgu8U

Note

You should have session affinity enabled if you want to flush information from a
session other than the one you are in.
Content Server 7.0 Developer’s Guide

171
Chapter 10

Error Logging and Debugging
Content Server provides several options for logging error messages and debugging source
code. This chapter gives you information about general error logging and debugging
techniques that apply throughout the Content Server development environment. It
contains the following sections:

• Overview

• Debugging Properties

• Using Error Codes with Tags

• Using the Page Debugger

• Debugging Content Server Applications
Content Server 7.0 Developer’s Guide

Chapter 10. Error Logging and Debugging

Overview
172
Overview
Content Server can write information related to requests it receives to the log file
futuretense.txt, typically located in the application server folder. For example:

ContentServerInstallDir/futuretense.txt

The log file futuretense.txt contains various logged messages and errors, as well as
XML parse and flow information for Content Server sessions. futuretense.txt
includes the following information:

• XML parse and runtime errors

• Element processing messages

• Conditional evaluation prints

• Variables and their values

To enable logging, start the Property Editor and set the ft.debug property in the
futuretense.ini file to yes:

ft.debug=yes

To write your own error messages to the Content Server log file, use the ics.LogMsg
Java method. The following sample code writes a message to the logfile if the ft.debug
property is set to true.

// ics.LogMsg() will write to the log file whether or not ftdebug
is set to true unless you wrap it in a statement like

boolean bDebug = ftMessage.truestr(ics.GetProperty("ft.debug");
if (bDebug)
 ics.logmsg("Hello");

By default, ics.LogMsg writes messages to the Content Server log file. If you want to
log something to the stdout, use the System.out.println method.

You can set the maximum size (in bytes) of the log file. In a development environment, a
large value is recommended.

For example, the following means the log file size will not exceed 100k bytes:

ft.logsize=100000

When the log file maximum size is reached, Content Server truncates the log file, resumes
logging, and overwrites existing log file data.

See Chapter 8, “Content Server Tools and Utilities,” for information about starting the
Property Editor.

Which debugging messages appear in the logfile are governed by the various debug
properties. See “Debugging Properties” on page 178 for descriptions of these
futuretense.ini properties.

Note

FatWire recommends that you enable error logging on your development or
management system, but not on the delivery system. There is a significant
performance setback, and the log file contains information that should not be
available publicly.
Content Server 7.0 Developer’s Guide

Chapter 10. Error Logging and Debugging

Overview
173
Error Log File Contents
Depending on which debug properties are set, the Content Server applications all append
different messages to the futuretense.txt file.

Error Logging (ft.debug=yes)
With debugging enabled (ft.debug=yes), Content Server logs error messages in
futuretense.txt about XML and JSP tags. The messages are summarized here:

These lines indicate a request to Content Server, and report its version number:

Open Market, Inc. ContentServer 4.0.0
Copyright © 1999, 2000, 2001 Open Market,Inc. All Rights
Reserved.
Beta Kit Build

This line reports the component of Content Server and its build date:

CacheServer JumpStart 4.0 Build 43 Date: Nov 9 2001 at
09:13:57

This line reports the date/time the request was made:

Thu Dec 06 14:18:08 EST 2001

HTTP Headers
These lines report incoming HTTP headers:

skipping non string data for [GXAgentHops]
skipping non string data for [GX_reqstart]
skipping non string data for [GXPort]
skipping non string data for [GX_exec]
adding variable[HTTP_HOST]
adding variable[PATH_INFO]
adding variable[pagename]
adding variable[SERVER_PROTOCOL]
skipping data for [gx_session_id_FutureTenseContentServer]
skipping non string data for [GXUpdateTime]
adding variable[HTTP_CONNECTION]
adding variable[REQUEST_METHOD]
skipping non string data for [GXHost]
adding variable[REMOTE_ADDR]
adding variable[HTTP_ACCEPT]
adding variable[HTTP_USER_AGENT]
skipping non string data for [GX_stream]
logging for AppLogic+FTContentServer

Variable Values
These lines report default variables created and their values:

key:SystemAssetsRoot value:/futuretense_cs/
key:HTTP_USER_AGENT value:Java1.3.0
key:SERVER_PROTOCOL value:HTTP/1.1
key:HTTP_CONNECTION value:keep-alive
key:REQUEST_METHOD value:GET
key:QUERY_STRING value:inifile=futuretense.ini
key:SERVER_NAME value:localhost
Content Server 7.0 Developer’s Guide

Chapter 10. Error Logging and Debugging

Overview
174
key:REMOTE_HOST value:localhost
key:REMOTE_ADDR value:127.0.0.1
key:SERVER_PORT value:7001
key:HTTP_ACCEPT value:text/html, image/gif, image/jpeg, *;
q=.2,

/; q=.2
key:PATH_INFO value:/servlet/CacheServer
key:errdetail value:0
key:HTTP_HOST value:localhost:7001
key:Browser value:Unknown Browser
key:inifile value:futuretense.ini
key:errno value:0
key:HTTPS value:off

Element Processing Messages
These lines indicate a call to an element. Subsequent lines are messages about processing
the instructions of this element:

Seeding from element catalog the element:
OpenMarket/Demos/CatalogCentre/GE/Templates/blurb-story

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>Evaluating:
OpenMarket/Demos/CatalogCentre/GE/Templates/blurb-story

These lines indicate the results of instructions for setting variables, running a query, and
doing a conditional test:

setting tablename to :t_images
setting id to :892041205000
no orderBy clause, ok.
[false]=[false] is true

This line indicates that evaluation is complete for an element:

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<Done:
 OpenMarket/Demos/CatalogCentre/GE/Templates/blurb-story.xml

XML Messages (ft.xmldebug=yes)
With XML debugging enabled (ft.xmldebug=yes), Content Server writes the XML tree
structure of processed pages to the log file futuretense.txt. For example:

Parsed:
DOCUMENT
|---XMLDECL
| +---CDATA " VERSION="1.0" "
|---WHITESPACE 0xa
|---DOCTYPE NAME="FTCS" URL="file:///E:/APPS/
futuretense_cs.dtd"
|---WHITESPACE 0xa 0xa
|---ELEMENT FTCS Version="1.0"
| |---ELEMENT CSVAR NAME="SessionVariables.myvar"
| |---WHITESPACE 0xa
| |---ELEMENT IF COND="IsSessionVariable.myvar=false"
| | |---ELEMENT THEN
| | | |---ELEMENT SETSSVAR NAME="myvar" VALUE="5"
| | | +---WHITESPACE 0xa 0x20 0x20
Content Server 7.0 Developer’s Guide

Chapter 10. Error Logging and Debugging

Overview
175
| | +---WHITESPACE 0xa
| |---WHITESPACE 0xa 0x20 0x20 0x20 0x20
| |---ELEMENT SETSSVAR NAME="myfive" VALUE="5"
| +---WHITESPACE 0xa
+---WHITESPACE 0xa

Session Messages (ft.ssdebug=yes)
With session debugging enabled (ft.ssdebug=yes), Content Server writes the values of
session variables to the log file futuretense.txt:

adding ssvariable[username] value[DefaultReader]
adding ssvariable[currentACL] value[Browser]
adding ssvariable[currentUser] value[id:DefaultReader]

Time Messages (ft.timedebug=yes)
With time debugging enabled (ft.timedebug=yes), Content Server writes request performance
data in the log file futuretense.txt.

This line indicates total time related to display of a page:

Execute time Hours: 0 Minutes: 0 Seconds: 2:633

These lines indicate processing time related to queries:

Executed 12 Queries in Hours: 0 Minutes: 0 Seconds: 0:500
Fetched 2 Result Sets in Hours: 0 Minutes: 0 Seconds: 0:020

These lines indicate processing time related to parsing elements:

XML Parsed 1 Templates in Hours: 0 Minutes: 0 Seconds: 1:612
XML engine ran 1 templates in Hours: 0 Minutes: 0 Seconds:
1:962

Resultset Cache Messages (ft.cachedebug=yes)
With cache debugging enabled (ft.cachedebug=yes), Content Server determines when
resultsets are fetched from cache and when caches are flushed, and writes this information
to the log file futuretense.txt:

Table from hash...t_images

Fetched from resultset (t_images)
 key:futuretense.ini-t_images-id = ’892050387000’-*

Query imgQ clearing FRS due flush
Query imgQ FRS COM.FutureTense.Common.FResultSet@1f366b

Page Cache Messages (ft.pgcachedebug=yes)
Controls whether Content Server should put page/pagelet caching management status
messages in the futuretense.txt log file.

Error: ObjectDispatcher.Load() invalid object identifier
Variables.p
Error: ObjectDispatcher.Load() invalid object identifier
Variables.p
Content Server 7.0 Developer’s Guide

Chapter 10. Error Logging and Debugging

Overview
176
Parameter(s) not pagecriteria ... BurlingtonFinancial/AdvCols/
RecListBox
INVALID PARAM: cid=991330858149
Error: java.util.ConcurrentModificationException invoking

method SatellitePage

Synchronization Messages (ft.syncdebug=yes)
Define whether Content Server logs data cache synchronization processing in the
futuretense.txt log file.

SiteCatalog cache timeout absolute:false
SiteCatalog syncing cache:true
SiteCatalog cache timeout absolute:false
SiteCatalog syncing cache:true
Recording item 968685129142
Warning missing WHAT converted to * for catalog SitePlanTree
SystemEvents cache timeout absolute:false
SystemEvents syncing cache:true
Grabbing SystemEvents

Browser-Based Logging (ft.dbl=yes)
With browser-based logging enabled (ft.dbl=yes), Content Server logs messages for a
specific IP address in a log file named futuretense_client_ip_address.txt in the
application server installation directory.

With browser-based logging disabled (ft.dbl=no), all debug messages go into the log
file futuretense.txt.

When many users are developing on a single system, this feature isolates the requests from
a single client machine, thus simplifying the process of tracking information associated
with a request.

You can easily display the log for a specific IP address in a browser by using the
CatalogManager command, exportlog.

To view the log file from a browser

1. Use the Property Editor to set the ft.dbl property to yes.

2. Use your browser to go to the following URL (on the iPlanet Application Server):

http://host:port/NASApp/cs/CatalogManager?ftcmd=exportlog

or to the following URL (on a servlet engine, including Sun ONE Application Server):

http://host:port/servlet/CatalogManager?ftcmd=exportlog

Additional Error Message Locations
Java run-time output provides messages and database debug messages, including:

• Stack traces for unhandled exceptions.

• Database SQL statements and errors.

Some XML tag exceptions can appear in your browser’s page source window. Misspelled
or erroneous tag names appear in the browser source window as text. Normal tags are
processed by Content Server and replaced by generated HTML.
Content Server 7.0 Developer’s Guide

Chapter 10. Error Logging and Debugging

Overview
177
You can also add print statements to your source code, as shown below:

• XML code: <CSVAR NAME="..."/>

• Java code: System.out.println("...");

Variables.errno and Variables.errdetail can contain useful information. For
more about Variables.errno, see “Using Error Codes with Tags” on page 179.

You can also find helpful information in the following additional locations:

Browser Error Messages
The browser window displays error messages, which unfortunately can be somewhat
cryptic. You can also use your browser to view source code, but remember that the
browser shows the generated HTML, not the original XML.

Application Server Log Files
Read the documentation for your application server to determine the location of any
application server log files.

XML Syntax and Runtime Error Checking
The XML parser that processes Content Server tags ensures that the tags are syntactically
correct. This simplifies tracking down hard-to-find problems related to tagging syntax
errors. However, the XML parser does not report misspelled tag names as errors, because
not all tag names are required to exist in the DTD.

When a page request is made to Content Server and an XML syntax error is detected, the
results streamed back contain information that can help you locate the problem. A general
error description is given, followed by the offending line or column location:

This error reports a bad parameter name:

Illegal attribute name NAM Illegal attribute name NAM
Location: null(6,11)
Context:

This error reports an incorrect tag nesting:

Close tag IF does not match start tag THEN Close tag
 IF does not match start tag THEN
Location: null(13,3)
Context:

The XML parser also detects run-time errors, where the XML tags are syntactically
correct, but some structural error is detected during processing. For example, this error
reports an invalid use of Argument:

Failed to run template:c:\FutureTense\elements\dan.xml
 Runtime error Argument invalid
[Argument 5]
Containing tag: FTCS
Content Server 7.0 Developer’s Guide

Chapter 10. Error Logging and Debugging

Debugging Properties
178
Debugging Properties
To debug Content Server source code, set the properties in the futuretense.ini file, as
shown in the following example. These are a few of the most commonly used properties
for Content Server debugging. Your own property settings depend on your specific
debugging requirements.

ft.debug=yes
ft.dbdebug=yes
ft.xmldebug=yes
ft.logsize=100000
cs.timeout=30000

The following table describes all debugging properties in the futuretense.ini file.
(All of these properties are on the Debug tab in the Property Editor except for
thecs.timeout, which is on the IPS tab.)

Property Value Description

ft.debug yes | no (default) If yes, Content Server adds debug
messages to the log file
futuretense.txt

ft.dbdebug yes | no (default) If yes, Content Server adds database
debug messages to futuretense.txt
and also to the standard output log file.

ft.xmldebug yes | no (default) If yes, Content Server adds XML
evaluation messages to
futuretense.txt

ft.logsize n (in bytes;
default is 10000)

Specifies the maximum size, in bytes, of
the output log. FatWire recommends a
large value (for example, 100000).

cs.timeout n (in seconds;
default is 300)

Specifies the maximum connection idle
time before Content Server terminates the
connection. FatWire recommends a large
value (for example, 30000) so you can
maintain context while debugging.

ft.ssdebug yes | no (default) If yes, Content Server adds session-
specific debug messages to the log file
futuretense.txt.

ft.timedebug yes | no (default) If yes, Content Server adds messages
about evaluation timing to the log file
futuretense.txt.

ft.evaldebug yes | no (default) If yes, Content Server includes diagnostic
messages about EvalServer service to the
log file futuretense.txt.

ft.cachedebug yes | no (default) If yes, Content Server adds messages
about cache management status to the log
file futuretense.txt.
Content Server 7.0 Developer’s Guide

Chapter 10. Error Logging and Debugging

Using Error Codes with Tags
179
For information about all other property settings in the futuretense.ini file, see the
Content Server Property Files Reference.

Using Error Codes with Tags
Content Server has a reserved variable named Variables.errno which most JSP and
XML tags use for returning an error code (generally referred to as an errno) if the tag did
not successfully complete its task.

For example, the <CALLELEMENT> XML tag sets Variables.errno as follows:

• -10 if you specified a nonexistent element.

• -12 if you specified an existing element that Content Server could not evaluate.

On success, <CALLELEMENT> does not modify the value of Variables.errno.

ft.pgcachedebug yes | no (default) If yes, Content Server adds page and
pagelet caching management status
messages to the log file
futuretense.txt.

ft.debugport n (default is 1025) The port that the debug server uses to
communicate with the template debugger.

ft.syncdebug yes | no (default) If yes, Content Server logs datacache
synchronization processing.

ft.eventdebug yes | no (default) If yes, Content Server logs event
management processing.

ft.dbl yes | no (default) If yes, enables browser-based retrieval of
a log file with debug messages. The file
futuretense_client_ip_address.
txt is created in the application server
installation directory.

If no, browser-based retrieval is disabled,
and all debug messages go into the log
file futuretense.txt.

verity.debug yes | no (default) If yes, the Verity search engine adds
debug messages to the log file
futuretense.txt.

Note

Because enabling any debugging property can affect performance, you should not
set any of the debug properties if you are doing performance testing.

Property Value Description
Content Server 7.0 Developer’s Guide

Chapter 10. Error Logging and Debugging

Using Error Codes with Tags
180
You typically use the following strategy with tags that use Variables.errno:

1. Initialize Variables.errno to 0 before calling the tag.

2. Call the tag.

3. Evaluate Variables.errno.

Tag Examples Using Error Codes
For example, the following code performs all three steps:

<SETVAR NAME="errno" VALUE="0"/>
<SETCOUNTER NAME="pi" VALUE="3.14159"/>
<IF COND="Variables.errno=-501">
 <THEN>
 <p>Bad value of pi</p>
 </THEN>
</IF>

Running this code yields the following HTML because SETCOUNTER cannot handle
floating-point values:

<p>Bad value of pi</p>

The ASSET, RENDER, and SITEPLAN tags clear errno before they execute. You do not need
to set errno to 0 when you use these tags. For example, after you use an ASSET tag, just
check the value of errno to determine whether it has changed:

<ASSET.LOAD NAME="topArticle" TYPE="Article"
OBJECTID="Variables.cid"/>
<IF COND="IsError.Variables.errno=false">

<THEN>
<ASSET.CHILDREN NAME="topArticle"

LIST="listOfChildren”/>
</THEN>

</IF>

At the end of CS-Direct template elements, you can include error checking code such as
this:

<IF rendermode=“preview”>
<THEN>

<IF COND=“IsError.Variable.errno=true”>

<THEN>

Error <CSVAR NAME=“Variables.errno”/>
while rendering <CSVAR NAME=“pagename”/>
with asset ID <CSVAR NAME =“Variables.cid”/>.</

FONT>

Note

For revision tracking operations, the reserved variable named
Variable.errdetails provides additional information about the error.
Content Server 7.0 Developer’s Guide

Chapter 10. Error Logging and Debugging

Using the Page Debugger
181
</THEN>
</IF>

</THEN>
</IF>

Java Interface
After making calls to Content Server, the String variable errno can be retrieved and tested
for success or failure. Here’s an example:

cs.clearErrno();
IList rslt = cs.SelectTo(SYSTEMUSERS_TABLE, ALL_FIELDS,
USERNAME,
 null, NO_LIMIT, null, CACHE_RESULTS, errstr);
errno = cs.GetVar("errno");

if (errno.compareTo(ERRNO_SUCCESS) == 0)
 {
 ...

Error Number Rules
Error numbers are always integers. The following table briefly summarizes error
numbering rules for Variables.errno.

See the Content Server Tag Reference for specific error numbers for each tag.

Using the Page Debugger
The Page Debugger is a Content Server tool that lets you step through the execution of
XML and JSP elements. You can view the values of variables as the element executes, and
more easily determine where errors occur in your code.

The Page Debugger is installed when you install Content Server using the Single Server
with Page Debugger option. If you do not have the Page Debugger, you can install it by
upgrading your existing installation. To do so, run the Content Server upgrade script and
select the Upgrade with Page Debugger option.

FatWire recommends that you install the Page Debugger on your development system
only.

Number Significance

Negative integers Failure

0 (zero) Success

Positive integers in a tag other than a revision tracking tag. Information

Positive integers in a revision tracking tag. Failure
Content Server 7.0 Developer’s Guide

Chapter 10. Error Logging and Debugging

Using the Page Debugger
182
Invoking the Page Debugger
Invoking the Page Debugger is a two-step process:

1. Start the Debug Listener.

2. Alter the URL that invokes a page.

Start the Debug Listener
Before running the Page Debugger, you must first start the Debug Listener.

To start the Debug Listener

1. Run the DebugListener.bat file.

The following Debug Listener window appears:

2. By default, the Debug Listener runs on port 1025. If you want to run the Debug
Listener on another port (for example, because another service is already using port
1025), then do both of the following:

- Use the Property Editor to change the ft.debugport setting to your chosen port
number; for example, 2025.

- On the Debug Listener invocation line, use the -p option, followed by a space and
then the port number. For example:
java -classpath cs.jar
COM.FutureTense.Apps.DebugListener -p 2025

Alter the URL that Invokes a Page
With Debug Listener running, use your Web browser to request the page to be debugged.
In the browser’s address field, replace the phrase ContentServer with DebugServer.
The page is then requested through the Page Debugger instead of Content Server.

If you are running WebLogic or WebSphere, replace the following address:

http://host:port/servlet/ContentServer?pagename=xxx

with this address:

http://host:port/servlet/DebugServer?pagename=xxx

Note

The Debug Listener and the browser that you use to make the page request to the
DebugServer must be on the same machine.
Content Server 7.0 Developer’s Guide

Chapter 10. Error Logging and Debugging

Using the Page Debugger
183
The Debugger main window appears:

The tabs in the bottom pane of Page Debugger’s window provide the following
information:

• Names of variables and their values

• The names and values of objects in the object pool

• The state of all session variables and their values

In the following examples, the Page Debugger windows display information about session
variables, objects, and variables:

The Variables window displays the names and values of the variables that are used in the
element that you are currently debugging.
Content Server 7.0 Developer’s Guide

Chapter 10. Error Logging and Debugging

Using the Page Debugger
184
The SSVariable window shows the names and values of all the session variables in the
element that you are currently debugging.

The ObjectPool window shows the names and values of all of the objects in the object
pool.

Page Debugger Commands
The Page Debugger has the following commands:

• Continue to Next Breakpoint

• Step Into

• Step Over

• Step Out

• Toggle Breakpoint

• Continue to Cursor

• Done

To choose a command, click the buttons in the Page Debugger button bar, or choose any of
the following commands from the Debug menu:

Continue to Next Breakpoint

Use Continue to Next Breakpoint to continue to the next breakpoint that you have set
using the Toggle Breakpoint button.

Note that you cannot set breakpoints until you start a debugging session; as a result, you
cannot use the Continue to Next Breakpoint button to step though an element the first
time you debug it.
Content Server 7.0 Developer’s Guide

Chapter 10. Error Logging and Debugging

Using the Page Debugger
185
For example, the first time you debug a page, you have to step through it manually, setting
breakpoints as you go. If you refresh the page to debug it again, the breakpoints you set
will be there, and you can use the Continue to Next Breakpoint button to step though the
element.

Breakpoints do not persist between sessions of the DebugListener.

Step Into

Use Step Into to open the element called by the element that you are currently debugging.

To use the Step Into function, select the CALLELEMENT tag and click the Step Into button.
In the following example, the element being called is used to display the date to a visitor
who is logged in to the site:

The following window appears:

Step Over

Use Step Over to move from the currently highlighted tag to the next tag in the element,
without executing any elements that are called in between the tags.
Content Server 7.0 Developer’s Guide

Chapter 10. Error Logging and Debugging

Using the Page Debugger
186
Step Out

Use Step Out to step out of the elements currently opened by the Page Debugger. If you
have opened an element as a result of using the Step Into command, use Step Out to
return to the original Page Debugger file from which you opened the element.

You can also use Step Out to exit the original element that you opened with the Page
Debugger.

Toggle Breakpoint

Use the Toggle Breakpoint button to set or remove breakpoints in the elements you have
opened in Page Debugger.

For more information about breakpoints, see the “Continue to Next Breakpoint” section of
this chapter.

Continue to Cursor

Use Continue to Cursor to select a location within the element where you want the Page
Debugger to move to next. To check a specific tag located in the middle of the element,
complete the following steps:

1. Use the cursor to select part of the tag.

2. Click Continue To Cursor.

The Page Debugger highlights the tag that you selected with your cursor.

Done

Use Done to complete the Page Debugger session and exit the file. When you click Done,
the Page Debugger moves through the entire file, listing all information in the bottom
window of the Page Debugger main view.

Note

You must select at least one text character or space in the tag for Continue To
Cursor to work. It does not work if you simply place the cursor within the tag.
Content Server 7.0 Developer’s Guide

Chapter 10. Error Logging and Debugging

Debugging Content Server Applications
187
Debugging Content Server Applications
This section provides some debugging and error logging information for developers using
other Content Server products. It contains the following sections:

• Debugging Engage

• Property Messages

•

Debugging Engage
During your development phase, you must verify that session linking is set up correctly,
that specific attributes obtain the value that you expect, and that recommendations return
the items that you expect. There are several Engage object methods that you can use to
retrieve and review information and values by writing information to a browser window or
to the JRE log, or by examining it with the Page Debugger utility.

This section lists the Visitor Data Manager object methods that you will probably use the
most. For information about these and any other XML and JSP object methods, see the
Content Server Tag Reference.

Session Links
Use the following Visitor Data Manager object methods to verify that pages that handle
session linking are creating the aliases correctly:

• <VDM.GETALIAS KEY="keyvalue" VARNAME="varname"/>
Retrieves an alias.

• <VDM.GETCOMMERCEID VARNAME="varname"/>
Retrieves the visitor’s commerce ID from session data.

• <VDM.GETACCESSID KEY=“pluginname” VARNAME="varname"/>
Retrieves the visitor’s access ID from session data.

Visitor Data Collection
Use the following Visitor Data Manager object methods to retrieve and examine values
stored for specific visitor attributes, history attributes, and history types (records):

• <VDM.GETSCALAR ATTRIBUTE="attribute" VARNAME="varname"/>
Retrieves a specific visitor attribute.

• <VDM.LOADSCALAROBJECT ATTRIBUTE= “attribute” VARNAME=
“varname”/>
Retrieves (materializes) an object stored as a visitor attribute of type binary.

• <VDM.GETHISTORYCOUNT ATTRIBUTE="attribute" VARNAME="varname"

[STARTDATE="date1" ENDDATE="date2" LIST="constraints"]/>

Retrieves the number of history type records that were recorded for the visitor that
match the specified criteria.

• <VDM.GETHISTORYSUM ATTRIBUTE="attribute" VARNAME="varname"

[STARTDATE="date1" ENDDATE="date2" LIST="constraints"]
FIELD=”fieldname”/>

Sums the entries in a specific field for the specified history type.
Content Server 7.0 Developer’s Guide

Chapter 10. Error Logging and Debugging

Debugging Content Server Applications
188
• <VDM.GETHISTORYEARLIEST VARNAME="varname" [STARTDATE="date1"
ENDDATE="date2" LIST="constraints"] /> retrieves the timestamp of the
first time the specified history type was recorded for this visitor.

• <VDM.GETHISTORYLATEST VARNAME="varname"[STARTDATE="date1"
ENDDATE="date2" LIST="constraints"] /> retrieves the timestamp of the last
time (that is, the most recent time) the specified history type was recorded for this
visitor.

Recommendations and Promotions
Use the following Commerce Context object methods to verify pages that display
recommendations and promotions:

• <COMMERCECONTEXT.CALCULATESEGMENTS/> lists the segments that the visitor
belongs to. It examines the available visitor data, compares it to the data types that
define the segments, and then lists the segments that are a match.

• <COMMERCECONTEXT.GETPROMOTIONS LISTVARNAME=“promotionlist”/>
creates the list of promotions that the current visitor is eligible for

• <COMMERCECONTEXT.GETRATINGS ASSETS=”assetlist”
LISTVARNAME=”ratinglist” DEFAULTRATING=”defaultrating”/>
calculates the ratings of the assets in a named list according to how important the asset
is to this visitor based on the segments that the visitor belongs to.

• <COMMERCECONTEXT.GETSEGMENTS LISTVARNAME=”segmentlist”/>
retrieves the list of segments that the current visitor belongs to.

Verifying Visitor Data Assets
To determine that you correctly set up your visitor attributes, history attributes, and history
types, examine the Segment Filtering forms and decide whether the visitor assets that you
created were configured correctly:

• Create segments that use each of the visitor attributes and history types that you
created.

• Determine that the constraint types are correct and that the input ranges are accepting
the correct range of input.

For help with creating segments, see the Content Server User’s Guide.

Verifying Recommendation Assets
To verify that you configured your recommendation assets correctly, complete the
following kinds of exercises:

• Create some test segments.

• In the product and product group forms, assign ratings for the segments.

• Browse your site as a visitor and register yourself so that you qualify for the test
segment.

• Examine the items that the recommendation assets return.

• If you find problems, use the Engage XML or JSP object methods to write test pages
that isolate the problem.
Content Server 7.0 Developer’s Guide

Chapter 10. Error Logging and Debugging

Debugging Content Server Applications
189
Property Messages

Message Text Meaning

Cache max error Error loading the
Caching.cache_max property.

Cache check time error Error loading the
Caching.cache_check_interval
property.

Time pattern error Error loading the Caching.expiration
property.

Read timeout error Error loading the
Configuration.readtimeout
property.

Block timeout error Error loading the
Configuration.blocktimeout
property.

Refresh time error Error loading the
Configuration.control_refresh_i
nterval property.

File size error Error loading the
Caching.file_size property.

Cache max size: The Caching.cache_max property
value has been loaded.

Cache check interval: Error loading the
Caching.cache_check_interval
property value.

host <Host:Port> The Remote Host.host property value
has been loaded.

Default fragment expiration: The Caching.expiration property
value has been loaded.

Socket timeout value: The Configuration.readtimeout
property value has been loaded.

Thread block time: The Configuration.blocktimeout
property value has been loaded.
Content Server 7.0 Developer’s Guide

Chapter 10. Error Logging and Debugging

Debugging Content Server Applications
190
Content Server 7.0 Developer’s Guide

191
Par t 3

Data Design
This part describes the Content Server database and explains how to design the data
(assets) that your Content Server system delivers.

It contains the following chapters:

• Chapter 11, “Data Design: The Asset Models”

• Chapter 12, “The Content Server Database”

• Chapter 13, “Managing Data in Non-Asset Tables”

• Chapter 14, “Resultset Caching and Queries”

• Chapter 15, “Designing Basic Asset Types”

• Chapter 16, “Designing Flex Asset Types”

• Chapter 17, “Designing Attribute Editors”

• Chapter 18, “Importing Assets of Any Type”

• Chapter 19, “Importing Flex Assets”

• Chapter 20, “Importing Flex Assets with the BulkLoader Utility”
Content Server 7.0 Developer’s Guide

192
Content Server 7.0 Developer’s Guide

193
Chapter 11

Data Design: The Asset Models
The Content Server servlets are the operating system that runs your Content Server
content management system—but the Content Server database is the brains of the system.
It stores the system information that makes the Content Server applications run, the
content that you are using the Content Server applications to manage (that is, assets), and
the structural information that provides the format and business logic for displaying your
content to the visitors of your online sites.

For the most part, data design means asset design. However, developers frequently need to
create tables that hold supporting data for their assets. Determining the need for those
tables and then designing them is also a part of data design.

This chapter contains the following sections:

• Asset Types and Asset Models

• The Basic Asset Model

• The Flex Asset Model

• Search Engines and the Two Asset Models

• Tags and the Two Asset Models

• Summary: Basic and Flex Asset Models

Designing and creating tables that do not hold assets is discussed in Chapter 12, “The
Content Server Database.”
Content Server 7.0 Developer’s Guide

Chapter 11. Data Design: The Asset Models

Asset Types and Asset Models
194
Asset Types and Asset Models
An asset is an object that is stored in the Content Server database, an object that can be
created, edited, inspected, deleted, duplicated, placed into workflow, tracked through
revision tracking, searched for, and published to your delivery (live) site.

An asset type is a definition or specification that determines the characteristics of asset
objects of that type.

Developers design and create asset types while designing your content management
system and your online sites. Content providers then create and edit assets of those types

In general, assets perform one of the following three roles:

• Provide content that visitors read and examine on your online sites

• Provide the formatting logic or code for displaying the content

• Provide data structure for storing the content in the Content Server database

The developer’s job is to design asset types that are easy for content providers to work
with on the management system and that can be delivered efficiently to visitors from the
delivery system.

Two Data Models
The Content Server products provide two data models for the assets types that you design:
basic and flex.

• Basic asset types have a simple data structure: they have one primary storage table
and simple parent-child relationships with each other.

The basic asset model is delivered with CS-Direct.

Basic asset types are separate, standalone asset types that represent individual kinds of
content: an article, an image file, a page, a query, and so on. You use the AssetMaker
utility (located on the Admin tab in the Content Server interface when CS-Direct is
installed) to create new basic asset types.

• Flex asset types have a complex data structure with several database tables and the
ability to support many more fields than do basic asset types. Additionally, they can
have more than one parent, any number of grandparents, and so on, that they can
inherit attribute values from.

The flex asset model is delivered with CS-Direct Advantage only. You cannot create
flex asset types with CS-Direct.

Flex asset types comprise families of asset types that define each other and assign
attribute values to each other. You use the Flex Family Maker utility (located on the
Admin tab in addition to the AssetMaker utility when you have CS-Direct Advantage
installed) to create a family of flex asset types.

Default (Core) Asset Types
Several core asset types are delivered by CS modules and products. Because Content
Server has a stack architecture, the core asset types are made available as follows:

• CS-Direct delivers the template, query, collection, SiteEntry, CSElement, Link, and
page asset types. All of the other modules and products use the template and page
asset types.
Content Server 7.0 Developer’s Guide

Chapter 11. Data Design: The Asset Models

Asset Types and Asset Models
195
• CS-Direct Advantage delivers the attribute editor asset type. It supports any flex
attribute asset types that you create.

• Engage delivers the visitor attribute, history attribute, history definition, segment,
recommendation, and promotion asset types.

Assets of these types provide format or logic for the display of asset types that hold your
content by retrieving, ordering, organizing, and formatting those assets. In other words,
you use the core asset types to organize and format the content on your online site.

CS-Direct
The core asset types delivered with CS-Direct provide basic site design logic. You can
create as many individual assets of these types as you need, but you cannot modify the
asset types themselves:

• Query stores queries that retrieve a list of assets based on selected parameters or
criteria. You use query assets in page assets, collections, and recommendations. The
database query can be either written directly in the “New” or “Edit” form for the query
asset as a SQL query, or written in an element (with Content Server query tags or a as
a search engine query) that is identified in the “New” or “Edit” form.

• Collection stores an ordered list of assets of one type. You “build” collections by
running one or more queries, selecting items from their resultsets, and then ranking
(ordering) the items that you selected. This ranked, ordered list is the collection. For
example, you could rank a collection of articles about politics so that the article about
last night’s election results is number one.

• Page stores references to other assets. Arranging and designing page assets is how you
represent the organization or design of your site. You design page assets by selecting
the appropriate collections, articles, imagefiles, queries, and so on for them. Then, you
position your page assets on the Site Plan tab that represents your site in the tree on
the left side of the Content Server interface.

Note that a page asset and a Content Server page are quite different. The page asset is
an organizational construct that you use in the Site Plan tab as a site design aid and
that you use to identify data in your elements. A Content Server page is a rendered
page that is displayed in a browser or by some other mechanism.

• Template stores code (XML or JSP and Java) that renders other assets into Content
Server pages and pagelets. Developers code a standard set of templates for each asset
type (other than CSElement and SiteEntry) so that all assets of the same type are
formatted in the same way.

Content providers can select templates for previewing their content assets without
having access to the code itself or being required to code.

• CSElement stores code (XML or JSP and Java) that does not render assets. Typically,
you use CSElements for common code that you want to call from more than one
template (a banner perhaps). You also use CSElements to provide the queries that are
needed to create DynamicList recommendations in Engage.

• SiteEntry represents a Content Server page or pagelet and has a CSElement assigned
as the root element that generates the page. Template assets do not have associated
SiteEntry assets because they represent both an element and a Content Server page.

• Link stores a URL to an external web site. You use this asset to embed an external
link within another asset.
Content Server 7.0 Developer’s Guide

Chapter 11. Data Design: The Asset Models

Asset Types and Asset Models
196
Because the data needs of each organization using a Content Server content management
system are different, there are no default asset types that represent content. However, the
sample sites deliver sample content asset types that you can examine and modify for use
on your sites.

CS-Direct Advantage
There is one core asset type in the CS-Direct Advantage application: attribute editor.

An attribute editor specifies how data is entered for a flex attribute when that attribute is
displayed on a “New” or “Edit” form for a flex asset or a flex parent asset. It is similar to a
Template asset. However, unlike a Template asset, you use it to identify the code that you
want CS-Direct Advantage to use when it displays an attribute in the Content Server
interface—not when it displays the value of an attribute on your online site.

Engage
The Engage application delivers several core asset types that you use to gather visitor
information so that you can personalize the product placements and promotional offerings
that are displayed for each visitor:

• Visitor attribute holds types of information that specify one characteristic only
(scalar values). For example, you can create visitor attributes named “years of
experience,” “job title,” or “number of children.”

• History attributes are individual information types that you group together to create
a vector of information that Engage treats as a single record. This vector of data is the
history definition. For example, a history type called “purchases” can consist of the
history attributes “SKU,” “itemname,” “quantity,” and “price.”

• Segments are assets that divide visitors into groups based on common characteristics
(visitor attributes and history types). You build segments by determining which visitor
data assets to base them on and then setting qualifying values for those criteria. For
example, a segment could define people who live in Alaska and own fly fishing gear,
or it could define people who bought a personal computer in the past six months, and
so on.

After you define and categorize the visitor data that you want to collect, you use the
following asset types to select, organize, and display the flex assets that represent your
content on your online site:

• Recommendation is something like an advanced collection. It collects, assesses, and
sorts flex assets (products or articles, perhaps) and then recommends the most
appropriate ones for the current visitor, based on the segments that visitor belongs to.

• Promotion is a merchandising asset that offers some type of value or discount to your
site visitors based on the flex assets (products, perhaps) that the visitor is buying and
the segments that the visitor qualifies for.

Note

Engage interacts with assets that are built using the flex asset model only. You
cannot program recommendations and promotions to work with assets that use the
basic asset model.
Content Server 7.0 Developer’s Guide

Chapter 11. Data Design: The Asset Models

Asset Types and Asset Models
197
Which Asset Model Should You Use to Represent Your Content?
During the process of designing your online site with the Content Server content
management system, you and others on your team create the asset types that you need to
represent the content for your site. The CS-Direct template and page asset types provide
the formatting framework for the asset types that represent your data, whether you use the
basic data model or the flex data model.

The asset data model (basic or flex) that you should choose to represent the data that you
want to display on your online site depends on the nature of that data, as described in the
following two sections.

When to Use the Basic Model
The basic model is a good choice when your data has the following characteristics:

• It is fixed, predictable: there will be no need to add attributes to the asset type.

• It is homogenous: all assets of the same type have similar attributes.

• It has a moderate number of attributes. You are limited by your database as to how
many columns/attributes you can have in the asset type table for a basic asset.

• You want to use the Export to Disk publishing method. There are very limited
applications of the flex asset model in which it makes sense to use the Export to Disk
publishing method.

• Visitors browse your online site by navigating from link to link.

When the data for an asset type can be imagined as a spreadsheet, as a simple flat table
where each asset of that type is a single record and every record has the same columns,
that asset type should use the basic asset model.

When to Use the Flex Model
The flex model is the right choice when your data has the following characteristics:

• It has lots of attributes. For example, products can have potentially hundreds of
attributes. Because attribute values for the flex family member are stored as rows
rather than columns, flex assets can physically have many more attributes than basic
assets can.

• It can be represented in a hierarchy in which assets inherit attribute values from parent
assets.

• You cannot predict what attributes might be necessary in the future and your data
might need additional attributes periodically.

• Asset instances of the same type can vary widely. That is, not all assets of that type
should have the same attributes. For example, a bath towel product asset would have
attributes that a toaster product asset would not, but both the bath towel and the toaster
are product assets.

• Visitors browse your online site by navigating through “drill-down” searches that are
based on the attribute values of your data.

• You want to use Engage.

For example, products fit into the flex asset model because markets are constantly
changing. You cannot always predict what products you will be selling next year or what
attributes those products will have.
Content Server 7.0 Developer’s Guide

Chapter 11. Data Design: The Asset Models

The Basic Asset Model
198
If your business needs will require you to make modifications to your asset types such as
adding or changing their attributes, the flex data model is probably the right choice for
you. The flex asset model gives you the extensibility that you need to represent data whose
characteristics cannot be predicted.

The Basic Asset Model
CS-Direct delivers the basic asset model. In general, the data model for basic asset types is
one database table per asset type. All basic assets of the same type have the exact same
fields (properties) and all assets of a single type are stored in the same database table.

Most of the core CS-Direct asset types use the basic data model.

To create new basic asset types, you use the AssetMaker utility. You code XML files
called asset descriptor files using a custom tag named PROPERTY and then upload the file
with AssetMaker. A property is both a column and a field. A PROPERTY statement
defines a column in the table that stores assets of that type and defines how data is to be
entered into the corresponding field for that column in the CS-Direct forms.

For information about coding asset descriptor files and creating new basic asset types, see
Chapter 15, “Designing Basic Asset Types.”

Basic Asset Types from the Burlington Financial Sample Site
If you installed the Burlington Financial sample site, CS-Direct installed five asset types
that represent content. These sample site asset types use the basic asset model delivered
with CS-Direct:

• Article stores the text of an article and information about it. It has fields for headline,
byline, credit line, body, and so on. Note that this is a custom asset type that was not
created with AssetMaker.

• ImageFile stores an image file as an uploaded binary large object (blob). These image
files can be associated with other assets such as a page or an article. This asset type
was created with AssetMaker.

This sample site also provides an example of how you can create additional formatting
asset types, if necessary, with the following asset type:

• StyleSheet stores style sheet files of any format (CSS, XSL, and so on). You create the
style sheet in a text editor and then upload it into CS-Direct as a style sheet asset.
When you store style sheets as assets, you can assign a workflow to them, use revision
tracking, and so on. This asset type was created with AssetMaker.

Burlington Financial installs the following asset types, but does not use them:

• Linkset stores a group of links to either the URLs of related assets or the URLs of
external Web sites. Assets of this type can be associated with other assets like a page
or an article.

• Image stores the URL for an image file that can be associated with other assets like a
page or an article.

These asset types were used by a previous sample site. They are included with the 6.1
version of the CS-Direct application for backward compatibility.
Content Server 7.0 Developer’s Guide

Chapter 11. Data Design: The Asset Models

The Basic Asset Model
199
Relationships Between Basic Assets
Basic asset types have very simple parent-child relationships. You use these relationships
to associate or link assets to each other. Then, when you design the online pages for your
online sites you code template elements that identify, extract, and then display an asset’s
children or parent assets in appropriate ways.

The relationships that basic assets can have with each other are called named associations
and unnamed relationships. When these relationships occur between individual assets,
they are written to the AssetRelationTree table.

Named Associations
Named associations are defined, asset-type-specific relationships that are represented as
fields in the CS-Direct asset forms. After you create an asset type with AssetMaker, you
use the “Association” form for that asset type to create association fields.

You use named associations to set up relationships that make sense for the asset types in
your system and then you use the names of these relationships to identify the related assets
and display them in appropriate ways on your site pages.

For example, the Burlington Financial sample asset named article has three named
associations with the imagefile asset type: Main ImageFile, Teaser ImageFile, and
SpotImageFile. The Burlington Financial article templates are coded to display the
imagefiles that are linked to articles through these associations. The association is what
enables the template to determine which imagefile is the correct one to display for an
individual article asset.

When a content provider selects an image asset in the Main Image field of the “New” and
“Edit” article forms, the selected imagefile asset becomes a child of the article asset. (Note
that this same imagefile asset can also be a child of other articles.)

When you create a new named association between asset types, CS-Direct creates a row
for that type of association in the Association table. Then, when you create an asset and
specify the name of another asset in an association field, that relationship is written to the
AssetRelationTree table.

Unnamed Relationships
Unnamed relationships occur in the following situations:

• When you build a collection, the items in the collection become children of the
collection.

• When you select queries or other assets for page assets from the tree, which places
them in the Contains list box, on the “New” and “Edit” forms for page assets, those
assets become children of the page asset.

Neither of these relationships is identified by a name.

The Burlington Financial sample site has two page assets with an unnamed relationship set
up through that page asset’s Candidates list. The “About Us” article placed on the About
page asset has an unnamed relationship to the About page asset. The article is a child of
the page asset. Additionally, the “Contact Us” article placed on the Contact page asset has
an unnamed relationship to the Contact page asset.

Because there is no name for these kinds of relationships, CS-Direct does not create rows
in the Association table for them. However, the individual instances of these unnamed
associations are written to the AssetRelationTree table.
Content Server 7.0 Developer’s Guide

Chapter 11. Data Design: The Asset Models

The Basic Asset Model
200
Category, Source, and Subtype
There are three additional ways to organize or categorize basic assets: category, source,
and subtype. Categories and subtypes are specific to an asset type. Source, however,
applies to all the asset types in a content management site. In other words, source is site-
specific.

Category
Category is a default column and field that you can use to categorize assets according to
a convention that works for your sites. Although all basic asset types have a category
column by default, you do not have to use it (it is not a required field).

For example, the Burlington Financial sample site has categories named Personal Finance,
Banking and Loans, Rates and Bonds, News, and so on. Articles identified with these
categories are selected by queries that use “category” as a selection criterion and displayed
on specific site pages, as appropriate.

When you create a new basic asset type, AssetMaker creates one category code for assets
of that type. You then use the “Category” form for your new asset type to create additional
categories if you want to use this feature.

New categories are written to the Category table, which serves as the lookup table for the
Category field on the “New” and “Edit” asset forms for asset types that use the basic asset
model.

The purpose of the Category field and column is for site design. You can use category, or
not, in your queries and query assets for your online site. The CS-Direct application does
not base any of its functions on category codes. (With the exception that you can Search
for assets based on this field, if you are using it.)

Source
Source is a column and field that you can use to identify where an asset originated.
Although CS-Direct provides administrative support (through the “Source” form) for you
to use this feature in the design of your online site, the source column does not exist by
default in the primary storage tables for basic asset types other than Article. If you want to
use source with your basic asset types, you must include a property statement in your asset
descriptor file for it.

For example, the Burlington Financial sample site has sources named WireFeed, Asia
Pulse, UPI, and so on. Certain online pages select stories to display based on the results of
queries that search for articles based on the value in their source column.

After you create a new basic asset type, you add new sources in the “Source” form on the
Admin tab, if necessary. New sources are written to the Source table, which serves as the
lookup table for the Source field on the “New” and “Edit” asset forms for basic-style
assets.

Subtype
The subtype concept provides a way to further classify an asset type. In the flex asset data
model, the definition asset types create subtypes of flex assets and flex parent assets. In the
basic asset data model, the concept of subtype is implemented through the subtype
column in the primary storage table for the asset type.
Content Server 7.0 Developer’s Guide

Chapter 11. Data Design: The Asset Models

The Basic Asset Model
201
The CS-Direct application uses the value of an asset’s Subtype in many ways:

• For Template assets, subtype means the type of asset that the template formats.
Templates that format articles are a different subtype of template than templates that
format images. When you create an article asset, only the templates that format
articles appear as options in the Template field on that asset’s “New” or “Edit” form.

In addition, you can use the Content Server user interface to specify a subtype that will
be displayed using a given template. For example, if your web site uses two subtypes
of article asset, Sports and News, you can create a template that only displays articles
with the Sports subtype.

• For query assets, subtype means the type of asset that the query returns. Query assets
that return articles are a different subtype of query asset than those that return
imagefiles.

• For collection assets, subtype means the type of asset that the collection holds.
Collections that hold articles are a different subtype of collection asset than those that
hold imagefiles.

• For the basic asset types that you design, subtype is designed to classify an asset based
on how it is rendered. You can define a default template for each subtype of an asset
type for each of your publishing targets.

If you do not need to assign a different template to assets of a specific type based on the
publishing target for the asset, you do not need to create new subtypes.

If you create any subtypes for an asset type, the “New” and “Edit” forms for assets of that
type display a field named Subtype. The drop-down list in the field displays all the
possible subtypes for that asset type.

For some asset types, the subtype is set implicitly and cannot be changed. Other asset
types allow users to choose a subtype for the asset using the Content Server user interface.
The following table lists the Content Server asset types according to whether they have
configurable subtypes:

For information about setting configurable subtypes, see Chapter 15, “Designing Basic
Asset Types.”

Note

In the flex asset model, the definition asset types serve as subtypes. For example,
in the GE Lighting sample site, there is one product definition: lighting. This
means that there is one subtype for product assets: the lighting subtype.

Implicit Subtypes Configurable Subtypes

• All flex assets
• Query assets
• Collection assets
• Template assets

• All custom basic assets (made with
AssetMaker)

• Article assets
• Image assets
• Linkset assets
• Recommendation assets
• Link assets
• Page assets
Content Server 7.0 Developer’s Guide

Chapter 11. Data Design: The Asset Models

The Basic Asset Model
202
Basic Asset Types and the Database
Although there is one primary storage table for basic asset types, CS-Direct keeps other
kinds of supporting information for basic assets in other tables. When you create a new
asset of a basic type, CS-Direct writes to the following database tables:

• The primary database table that holds assets of its type. For example, each page asset
has a row in the Page table and each article asset has a row in the Article table.

These tables store all of the asset’s attribute or field values, such as the asset’s name,
its object ID, who created it, which template it uses, and so on. The name of this table
always matches the name of the asset type.

When you create a new basic asset type, the AssetMaker utility creates the primary
storage table (a Content Server object table) for the asset type as a part of that process.

• The AssetRelationTree table, if the asset has unnamed parent-child relationships
or named associations with other assets. (The relationships that basic assets can have
are described in “Relationships Between Basic Assets” on page 199.)

• The AssetPublication table, which specifies which content management sites
(publications) give you access to the asset. If the asset is shared among sites
(publications), there is a row entry for each pubid. A pubid is a unique value that
identifies a site (publication).

• The SitePlanTree table, if the asset is a page asset. This table stores information
about the page asset’s hierarchical position in your site plan.

When you develop the templates that display the assets that represent your content, you
code elements with CS-Direct XML or JSP tags that extract and display the information
from the tables in the preceding list.

Be sure to examine the CS-Direct “New” and “Edit” forms for the various sample asset
types and to use the Content Server Explorer tool to examine the tables in your Content
Server database.

Template Asset Type and the Database
Although the Template asset type is a core CS-Direct asset type, it does not use the basic
asset model. It is a complex asset type with entries in the following database tables:

• The Template table, its primary storage table

• The SiteCatalog table

• The ElementCatalog tables

When you create a new Template asset, CS-Direct automatically creates entries in both the
SiteCatalog and ElementCatalog tables for it. For more information about Template
assets, see Chapter 23, “Creating Collection, Query, Stylesheet, and Page Assets.”

Note

Do not use Content Server Explorer tool to modify the data in any of these tables.
All editing of assets and their related tables should be done only through the
Content Server interface.
Content Server 7.0 Developer’s Guide

Chapter 11. Data Design: The Asset Models

The Basic Asset Model
203
Default Columns in the Basic Asset Type Database Table
CS-Direct needs several default columns for its basic functionality and so AssetMaker
creates each of the following columns (as shown in the following table) in the asset type’s
primary storage table in addition to the columns defined in the asset descriptor file for that
asset type.

Note that you do not need to code your asset descriptor files to include property statements
for the columns in this list:

Default Column (Field)
Name Description

Where It’s Displayed
in the Content Server
Interface

id A unique ID for each asset,
automatically generated by
Content Server when you create
the asset.

You cannot change the value in
this field.

Forms:

• Inspect
• Edit
• Status
• search forms

name A unique name for the asset.
Names are limited to 64
alphanumeric characters.

Forms:

• New
• Edit
• Inspect,
• Status

Also in the search
results lists.

description A short description of the asset
that offers more information than
just the name.

Forms:

• New

• Edit

• Inspect

• Status

Also in the search
results lists.

status The status of the asset, one of the
following status codes obtained
from the StatusCode table:

PL - created

ED - edited

RF - received (from XMLPost, for
example)

UP - upgraded from Xcelerate 2.x

VO - deleted (void)

CS-Direct controls the value in
this field; it cannot be edited
manually.

Forms: Status, if the
status of an asset is
either PL (created) or
ED (edited)

Note that assets with a
status of VO (deleted)
are not displayed
anywhere in the
Content Server
Windows interface.
Content Server 7.0 Developer’s Guide

Chapter 11. Data Design: The Asset Models

The Basic Asset Model
204
createdby The identity of the user who
originally created the asset. This
user name is obtained from the
SystemUsers table.

CS-Direct controls the value in
this field; it cannot be edited
manually.

Forms: Status

Also, if revision
tracking is enabled for
assets of this type, the
Revision History list.

createddate The date and time that the asset
was written to the database for the
first time.

CS-Direct controls the value in
this field; it cannot be edited
manually.

Forms: Status

Also, if revision
tracking is enabled for
assets of this type, the
Revision History list.

updatedby The identity of the user who most
recently modified the asset in any
way. This user name is obtained
from the SystemUsers table.

CS-Direct controls the value in
this field; it cannot be edited
manually.

Forms: Status

Also, if revision
tracking is enabled for
assets of this type, the
Revision History list.

updateddate The date on which the information
in the status field was changed to
its current state.

CS-Direct controls the value in
this field; it cannot be edited
manually.

Forms: Status

Also, if revision
tracking is enabled for
assets of this type, the
Revision History list.

startdate Promotion assets (a Engage asset)
have durations during which they
can be displayed on the visitor
pages on your live system. This
column stores the start time of the
promotion’s duration.

The promotion asset type is the
only default asset type that uses
this column.

If you want to use the startdate and
enddate fields for your asset types,
see “Example: Enabling path,
filename, startdate, and enddate”
on page 299.

Forms:

• Duration, Edit, and
Inspect for
promotion assets.

• New, Edit, Inspect,
and Status if you
enable it for other
asset types.

Default Column (Field)
Name Description

Where It’s Displayed
in the Content Server
Interface
Content Server 7.0 Developer’s Guide

Chapter 11. Data Design: The Asset Models

The Basic Asset Model
205
enddate For promotion assets (a Engage
asset), this column stores the end
time of the promotion’s duration

The promotion asset type is the
only default asset type that uses
this column.

Forms:

• Duration, Edit, and
Inspect for
promotion assets

• New, Edit, Inspect,
and Status if you
enable it for other
asset types

subtype The value of the asset’s subtype.
The subtype is set in different
ways for different assets. For more
information, see “Subtype” on
page 200.

Forms:

• New, and Edit for
Template assets
(Asset Type field)

• New, and Edit for
query assets (Result
of Query field)

• New, and Edit for
any asset type that
has subtypes
configured for it

• Set Default
Templates

filename The name to use for the file
created for this asset during the
Export to Disk publishing method.

The page and article asset types
are the only asset types that have
this field enabled by default.

If you want to use the filename
field for your asset types, see
“Example: Enabling path,
filename, startdate, and enddate”
on page 299

Forms:

• New and Edit for
page and article
assets, by default

• New and Edit for
any other asset type
that has the field
enabled

path The directory path to use for
exported page files that are
generated from child assets of this
asset when the Export to Disk
publishing method renders that
asset into a file.

The page and article asset types
are the only asset types that have
this field enabled by default.

If you want to use the filename
field for your asset types, see
“Example: Enabling path,
filename, startdate, and enddate”
on page 299.

Forms:

• New and Edit for
page and article
assets, by default

• New and Edit for
any other asset type
that has the field
enabled

Default Column (Field)
Name Description

Where It’s Displayed
in the Content Server
Interface
Content Server 7.0 Developer’s Guide

Chapter 11. Data Design: The Asset Models

The Basic Asset Model
206
template The template for the asset.

This is the template that is used to
render the asset when it is either
published with Export to Disk or
rendered on a live dynamic
delivery system.

This template is also used to
calculate the dependencies when
the asset is approved for the
Export to Disk publishing method,
unless the asset type has subtypes
and there is a default approval
template assigned for the asset
based on its subtype.

Forms:

• New
• Edit
• Inspect
• Status

category The category code of the category
assigned to the asset, if any.

If you decide to use the category
field to organize assets, you add
category codes in the “Asset
Types” forms on the Admin tab.

Forms:

• New
• Edit
• Inspect
• Status

urlexternaldoc If the asset was entered with the
CS-Desktop interface rather than
the Content Server interface,
stores the external document that
is the source for the asset.

CS-Direct controls the value in
this field; it cannot be edited
manually.

not applicable

externaldoctype The mimetype of the file held in
the urlexternaldoc field.

CS-Direct controls the value in
this field; it cannot be edited
manually.

not applicable

urlexternaldocxml Reserved for future use. not applicable

Default Column (Field)
Name Description

Where It’s Displayed
in the Content Server
Interface
Content Server 7.0 Developer’s Guide

Chapter 11. Data Design: The Asset Models

The Flex Asset Model
207
The Flex Asset Model
CS-Direct Advantage delivers the flex asset model. This asset model has the following
main characteristics:

• Flex assets are defined by flex definitions–an asset type that determines which flex
attributes make up an individual flex asset. Flex definitions create subtypes of the flex
asset type.

• The definition asset types create subtypes of flex and flex parent assets, which allows
individual instances of a flex asset or flex parent asset type to vary widely.

• Flex attributes are assets. The flex data model allows you to add flex attributes to (or
remove them from) existing flex asset types at any time.

• Flex filters can take the data from one flex attribute, transform or assess it in some
way, and then store the results in another flex attribute when you save the flex asset.
The resulting value from a flex filter action is called a “derived” attribute value.

• Flex assets can inherit attribute values—even derived values—from their flex parents,
which means that you can represent your data in hierarchies.

You do not create individual flex asset types as you do basic asset types; instead, you
create a flex family of asset types.

The Flex Family
The flex asset data model can be thought of in terms of a family of asset types. There are
six asset types in a flex family. Five are required, the sixth is optional, as indicated in the
table below.

Whereas some of the asset types are used exclusively by developers to create the other
asset types in the data model, the flex asset type is always used by the content providers to
create assets of that type. (When necessary, authorized users can be given access to
additional flex family members.)

To create a flex family, you use the “Flex Family Maker” forms on the Admin tab in the
Content Server interface. You name each of the asset types in the family. For example, one
of the flex families in the GE Lighting sample site is the product family. The flex asset is
called the product asset, the flex attribute is called the product attribute, and so on.

The key member of a flex family is the flex asset. The flex asset is the unit of data that you
extract from the database and display to the visitors of your online site (delivery system).
All of the other members in the family contribute to the flex asset member in some way.

Flex Family Member Number Per Family

flex attribute asset type one

flex parent definition asset type one or more

flex definition asset type one or more

flex parent asset type one or more

flex asset type one or more

flex filter asset type none or more
Content Server 7.0 Developer’s Guide

Chapter 11. Data Design: The Asset Models

The Flex Asset Model
208
While the flex asset is the key, the attributes are the foundation of the flex asset model.
An attribute is an individual component of information. For example, color, height, author,
headline. You use attributes to define the flex assets and the flex parents. Flex assets
inherit attribute values from their parents who inherit attribute values from their parents
and so on.

You decide which attributes describe which flex assets and which flex parents by creating
“templates” with the flex definition and flex parent definition asset types. Flex parents
and their definitions implement the inheritance of attribute values.

Note that a flex parent or a flex asset cannot be defined by attributes of two types. The GE
sample site has two kinds of attributes: product attributes and content attributes. A product
asset (the flex asset member in the product flex family) can be defined by product
attributes only—its definition cannot include content attributes.

A flex filter enables you to configure some kind of action to take place on the value of an
attribute and then save the results of the action when the flex asset is saved. For example,
you can configure a filter that converts the text in a Word file into HTML code.

In summary, the flex asset member of a flex family is the reason for the family, the unit of
content that you want to display. The other members of a flex family provide data
structure for the flex asset. However, because all of the members in the family are assets,
you can take advantage of the standard CS-Direct features like revision tracking,
workflow, search, and so on.

Parent, Child, and Flex Assets
When you are using the flex asset data model, the phrase “parent-child” relationship refers
to the relationship between a flex asset and its flex parent asset(s). This is a different
parent-child relationship than the ones that basic assets have through named associations
and unnamed relationships.

Although it is possible for flex assets to have the kinds of parent-child relationships that
basic assets do, it is unlikely for the following reasons:

• CS-Direct Advantage provides the ASSETSET and SEARCHSTATE tag families, which
you use instead of the collection and query asset types to select the flex assets that you
want to display. For more information about this tag family, see “Assetsets and
Searchstates” on page 219.

• Flex assets have no need for named associations. For example, if you want to assign
an image file to a flex asset like a product, you can create an attribute that identifies
the image file and assign it to the definition for the flex asset.

• While assets that are selected from the Candidates list box on a page asset have an
unnamed parent-child relationship with that page asset, when you are using the flex
asset model, it is unlikely that you would place a flex asset directly onto a page asset.

Sample Site Flex Families
If the GE sample site is installed on your development system, there are two flex asset
families that you can examine: the product family and the content family.

To better understand the following descriptions of the sample flex asset types, examine
some of the product, article, and image assets in the Content Server interface as you read
this section.
Content Server 7.0 Developer’s Guide

Chapter 11. Data Design: The Asset Models

The Flex Asset Model
209
The Product Family
The product family provides the data structure for the lighting products that are sold from
the GE Lighting sample site. It creates an online catalog of lighting products.

These are the asset types in the product family:

• Product attribute is the flex attribute asset type used to define the products and
product parents in the GE Lighting sample catalog. For example, there are product
attributes named wattage, voltage, bulb size, ballast type, and so on.

• Product is the flex asset member of the product family. Product assets represent the
lighting products that are sold from the GE Lighting sample site. In this online
catalog, product names are numbers similar to a SKU number.

• Product definition is the flex definition asset type in the product family. It is used to
create one subtype of products: lighting. The lighting definition formats (defines) all
of the light bulbs in this online catalog.

• Product parent is the flex parent asset type in the product family. Product parents
represent categories of products such as Compact Fluorescent, Fluorescent, Halogen,
and so on.

• Product parent definition is the flex parent definition asset type in the product
family. It is used to create subtypes of product parents. There are two: Category and
Subcategory.

The product attribute, product definition, and product parent definition assets are listed on
the Design tab because you use them for data design. The product and product parent
assets are located on the sample site’s Product tab.

The product asset is the reason for the product family: the GE Lighting sample site sells
products.

The Content Family
The content family provides the data structure for the articles that describe and images that
illustrate the products that are sold from the GE Lighting sample site.

This is the content family:

• Content attribute is the flex attribute asset type used to define the articles (flex) and
images (flex) that illustrate the products sold from the GE Lighting sample site.

• Article (flex) is a flex asset type that stores the text of an article and information about
it. It has attributes such as byline, headline, subheadline, body, and so on.

• Image (flex) is a flex asset type that stores the URL of an image file. Although the GE
Lighting sample site makes this asset type available, it does not use it.

• Content definition is the flex definition asset type in the content family. It is used to
create one subtype of the article (flex) asset type called “story.”

• Content parent is the flex parent asset type in the content family. Although the GE
Lighting sample site makes this asset type available, it does not use it.

• Content parent definition is the flex parent definition asset type in the content
family. Although the GE Lighting sample site makes this asset type available, it does
not use it.

Notice that there are two flex asset types in the GE sample site’s content family. They
share attributes, parents, definitions, and parent definitions.
Content Server 7.0 Developer’s Guide

Chapter 11. Data Design: The Asset Models

The Flex Asset Model
210
The content attribute, content definition, and content parent definition assets are listed on
the Design tab because you use them for data design. The image (flex), article (flex), and
content parent assets are located on the sample site’s Content tab.

Flex Attributes
Flex attributes are the foundation of the flex asset model. An attribute represents one unit
of information. You use attribute assets to define flex assets and flex parents. They are
then displayed as fields in the “New” and “Edit” forms for your flex assets and their
parents.

An attribute is similar to a property for a basic asset. As does a property, an attribute
defines the kind of data that can be stored in a column in a Content Server database table
and describes a field in the CS-Direct Advantage forms. However, while a property
defines one column in an asset type’s database table, an attribute is an asset with database
tables of its own.

This data structure (attributes as assets rather than columns) is a one of the main reasons
why flex assets are so flexible.

Once again, a flex parent or a flex asset cannot be defined by attributes of two types. For
example, the GE Lighting sample site product asset can be defined by product attributes
only—its definition cannot include content attributes.

Data Types for Attributes
The data types for your attributes are defined by the Content Server database properties
located in the futuretense.ini file, with the exception of the money data type,
which is defined by a property in the gator.ini file (which is the name of the .ini file
for CS-Direct Advantage).

Table 4 lists the data types for flex attributes, the properties that define the data types, and
the files where the properties are located:

Table 4: Data types for flex attributes

Type Property .ini file

date cc.datetime futuretense.ini

float cc.double futuretense.ini

integer cc.integer futuretense.ini

money cc.money gator.ini

string cc.varchar futuretense.ini

text cc.bigtext futuretense.ini

asset cc.bigint futuretense.ini

blob cc.bigint futuretense.ini

url (deprecated
in version 4.0)

cc.varchar futuretense.ini
Content Server 7.0 Developer’s Guide

Chapter 11. Data Design: The Asset Models

The Flex Asset Model
211
Default Input Styles for Attributes
When a flex attribute is displayed as a field on a “New” or “Edit” form, it has default input
styles based on its data types. The following list presents the default input styles for flex
attributes:

• Date: input boxes that look like this:

• Float: text field with decimal position enforced.

• Integer: text field.

• Money: text field with currency format enforced.

• String: text field that accepts up to 255 characters.

• Text: text box. The number of characters that it accepts depends on the database and
database driver you are using.

• Asset: drop-down list of all the assets of the type that was specified.

• Blob: a text field with a Browse button.

• URL: deprecated in version 4.0 but present for backward compatibility. You should
use blob rather than URL.

If you do not want to use the default input style for a flex attribute, you can create an
attribute editor and assign it to the attribute. Attribute editors are assets but they are also
similar to the INPUTFORM statement in an asset descriptor file for a basic asset: they
specify how data is entered into the attribute field. For more information about attribute
editors, see Chapter 17, “Designing Attribute Editors.”

Foreign Attributes
You can have flex attributes that are stored in foreign tables, that is, foreign attributes.
They are subject to the following constraints:

• The foreign table must be registered with Content Server. That is, the foreign table
must be identified to Content Server in the SystemInfo table. For information, see
“Registering a Foreign Table” on page 239.

• The foreign table must have a column that holds an identifier that uniquely identifies
each row. The identifier must have fewer than 20 characters.

• The foreign table must have a column that is reserved for the attribute data value,
which can be of any appropriate data type. For example, if the attribute is of type
string, the data type must be appropriate for a string.

Flex Parents and Flex Parent Definitions
Flex parents and their flex parent definitions are organizational constructs that do two
things:

• Implement the inheritance of attribute values. The parent definitions set up (describe)
the rules of inheritance and the parents pass on attribute values to the flex assets
according to those rules of inheritance.
Content Server 7.0 Developer’s Guide

Chapter 11. Data Design: The Asset Models

The Flex Asset Model
212
• Determine the position of a flex asset on the tabs that display your assets in the
Content Server interface. The hierarchy of the parents and the flex assets on the tabs in
that tree are based on the hierarchy set up with the parent definitions.

Each parent asset type has its own set of attributes, as specified in its parent definition. The
parent definition creates a form that you see in the Content Server interface.

You use parents to organize or manage the flex assets by passing on attribute values that
are standard and do not need to vary for each individual child asset of that parent.

Parent asset types affect how you and the content providers see and interact with the data
within the Content Server interface.

For example, in the GE Lighting sample site there are two parent definitions: Category
and SubCategory. Their sole purpose is to create structure on the sample site’s Product tab
in the tree (in the Content Server interface).

In the GE Lighting site, when the product parent’s definition is Category, the product
parent is displayed at the top level on the Product tab. When the product parent’s
definition is SubCategory, the product parent is displayed at the second level and it has a
parent of its own:

For example, in the GE Sample site, there are several top-level product parents: Compact
Fluorescent, Halogen, and so on. They were created with the Category definition. The
next-level product parents, such as Double BIAX and 2-Pin, Double BIAX and 4-pin, and
so on were created with the Subcategory definition.

Business Rules and Taxonomy
The purpose of parent definitions and parent assets is not only to express the taxonomy of
your data; they also allow you to apply business rules (logic) without risk of input error
from end users. If, by creating a flex asset of a specific definition, there are dependencies
that it should inherit, that flex asset should have a parent.

For example, here is a simple product, a toaster with five attributes:

• SKU = 1234

• Description = toaster

• Price = 20

• CAT1 = Kitchen

• CAT2 = Appliances
Content Server 7.0 Developer’s Guide

Chapter 11. Data Design: The Asset Models

The Flex Asset Model
213
When the value of CAT2 is “Appliances,” the value of CAT1 can only be “Kitchen.” In
other words, there is a business rule dependency between the value of CAT1 and the value
of CAT2.

In this kind of case, there is no reason to require the content providers to fill in both fields.
Because every field whose data has to be entered manually is a field that might hold bad
data through input error, you would use inheritance to impose the business rule:

• Make CAT1 and CAT2 parent definitions.

• Make Kitchen a parent created with the CAT1 definition and Appliances a parent
created with the CAT2 definition.

• Make Kitchen the flex parent of Appliances.

Now, when content providers create products, if they select Appliances for CAT2, the
value for CAT1 is determined automatically through inheritance.

Flex Assets and Flex Definition Assets
A flex asset is the reason for the flex family. It is the asset type that represents the end goal
— a product, a piece of content that is displayed, and so on. For example, in the GE
sample site there are three flex asset types:

• Product, which represents an individual saleable unit

• Article (flex), an asset that holds text

• Image (flex), an asset that holds the URL of a picture file

All of the other members in the family contribute to the flex asset member in some way.

A flex definition asset describes one kind of flex asset in a flex family; for example, a
shoe, a toaster, a bowling ball, a brochure, a newsletter, an article, and so on. A flex
definition asset is a template in that it directly affects a form that you see in the Content
Server interface.

Although the GE sample site has only one flex definition for products (lighting) and one
flex definition for articles and images, you can create as many flex definitions as you need.

For example, if you were designing a product catalog that offered both toasters and linens,
you would certainly create a flex definition asset for toasters and a different flex definition
asset for linens.

Individual flex assets can be created according to only one flex definition asset. You could
not create a product that used both the toaster definition and the linens definition.

A flex asset has not only the attributes assigned directly to it when it was created, it also
has the attributes that it inherits from a parent. It can have more than one flex parent and
whether the parents have parents depends on the hierarchical structure that you design.
The products in the GE sample site, for example, have three levels of hierarchy:
Content Server 7.0 Developer’s Guide

Chapter 11. Data Design: The Asset Models

The Flex Asset Model
214
The Other Compact Fluorescent product parent has a parent of its own (Compact
Fluorescent) and several children (10576, 10578, and so on).

Flex Filters
Flex filters can transform, categorize, or perform other kinds of automated actions on the
data in a flex attribute when a content asset is saved.

For example, imagine that your content providers use Microsoft Word to author their
content and then use the CS-DocLink interface to save their Word documents as assets.
Because you want to display their content in HTML format, you decide to configure a flex
filter that converts the data in the .doc file to HTML and then saves and stores that data as
an .htm file when they save the asset. You then design a template that extracts and displays
the value of the attribute that holds the .htm file rather than the attribute that holds the
.doc file.

There are several parts to the flex filter framework:

• Flex filter classes

• Registered transformation engines

• Flex filter assets

Flex Filter Classes
Flex filter classes implement the transformation, classification, or other action. These
classes are listed in the Filters table in the Content Server database. When you create a
filter asset, you select a flex filter class for it.

As of version 5.5.1, CS-Direct delivers one flex filter class: Document Transformation.
This filter converts a document from one file type into another by invoking a registered
transformation engine.

Registered Transformation Engines
Registered transformation engines are document conversion engines that are specified
in the SystemTransforms table. If you create a filter asset that uses the Document
Transformation class, you must also specify which transformation engine to use.

As of version 5.5.1, CS-Direct delivers one transformation engine, the Verity Keyview
engine. This engine can convert up to 200 kinds of binary document files (.doc, .pdf, .txt,
Content Server 7.0 Developer’s Guide

Chapter 11. Data Design: The Asset Models

The Flex Asset Model
215
and so on) to either HTML or XML files. By default, it is configured to convert files to
HTML.

Note that other packages that you purchase from FatWire to work with your Content
Server system might register a transformation engine.

Flex Filter Assets
Flex filter assets do the following two things:

• Specify which registered flex filter class to use.

• Specify which information is passed to the filter class (through arguments). For
example, information about the data so the filter class knows which data to convert
and where to store it when the asset is saved.

You assign flex filter assets to flex definition and flex parent definition assets.

When you create a flex filter asset, you specify the flex filter class to be used and then
provide values for the arguments that the filter class needs in order to perform its action.
The Documentation Transformation filter class (the default class) expects values for the
following arguments:

• Document Transformer Name – the name of a registered transformation engine
exactly as it is listed in the SystemTransforms table. The name of the Verity
Keyview engine configured to convert binary files to HTML is listed as Verity:
Convert to HTML in the SystemTransforms table.

• Input Attribute Name – the name of the flex attribute whose contents are to be
converted by the flex filter. For the Document Transformation filter, the input attribute
must be of type blob because it expects to find a binary file in that attribute.

• Output Attribute Name – the name of the flex attribute that stores the results of the
document transformation. For the Document Transformation filter, the output attribute
must be of type blob because it stores the results of the transformation as a binary
file.

The data stored in the output attribute (field) is read-only because it has been derived
from the data in the input attribute. This data is regenerated from the source data in the
input attribute each time the asset is saved.

• Output Document Extension – the file extension to be assigned to the resulting file.
When you specify that the document transformation engine is Verity: Convert to
HTML, the document extension must be either .htm or .html.

After you create a flex filter asset, you assign it to the appropriate flex definition or flex
parent definition assets. Then, when content providers create a flex asset of that definition,
the filter performs its transformation or assessment when they save their assets.
Content Server 7.0 Developer’s Guide

Chapter 11. Data Design: The Asset Models

The Flex Asset Model
216
Flex Families and the Database
Each asset type in a flex family has several database tables. For example, the flex asset
member has six tables and a flex parent type has five. This data model enables the flex
member in a flex family to support more fields than an asset type in the basic asset model
can support.

The four most important types of tables in the flex model are as follows:

• The primary table for the asset type

• The _Mungo table, which holds attribute values for flex assets and flex parent assets
only

• The MungoBlobs table, which holds the values of all the flex attributes of type blob.

• The _AMap table, which holds information about the inheritance of attribute values for
flex asset and flex parents only

There are several other tables that store supporting data about the relationships between
the flex assets as well as additional configuration information (details about search
engines, the location of foreign attributes, publishing information, and, if revision tracking
is enabled, version information).

Additionally, certain kinds of site information are held in the same tables that basic assets
use. For example, the AssetPublication table specifies which content management
sites the asset type is enabled for.

When you develop the templates that display the flex assets that represent your content,
you code elements that extract and display information from the _Mungo tables and the
MungoBlobs table.

Default Columns in the Flex Asset Type Database Table
As do basic asset types, each of the flex asset types has a primary storage table that takes
its name from the asset type. For example, the primary table for the GE sample site asset
type named product is called Products. The primary table for the product attribute asset
type is called PAttributes.

Unlike the primary table for a basic asset type, the primary table for a flex asset type has
only the default columns. This is because flex asset types that have attribute values do not
store those values in the primary table—attribute values are stored in the _Mungo table for
the asset type.

In general, the default column types in the primary table for a flex asset type are the
same as the default columns in the primary storage table for a basic asset type. For the
general list of default column types, see “Default Columns in the Basic Asset Type
Database Table” on page 203.
Content Server 7.0 Developer’s Guide

Chapter 11. Data Design: The Asset Models

The Flex Asset Model
217
However, there are, of course, exceptions and additions, as described in the following
table:

Column Description

category Category is not used in the flex asset model so there is no
category column in any of the primary tables for flex
asset types.

Flex assets have no need for the category feature because
queries for flex assets are based on the values of their flex
attributes.

template Only the table for the flex asset member in a flex family—
product, article (flex), and image (flex), for example—
holds values in this column. This is because only the flex
asset member in the family can have a Template asset
assigned to it and be displayed on your online site.

renderid Holds the object ID of the Template asset assigned to a flex
asset.

attributetype An additional column in the primary table for flex attribute
types. It holds the name of the attribute editor that formats
the input style of the attribute when it is displayed in the
“New” and “Edit” forms (if there is one).

flextemplateid An additional column in the primary table for a flex asset
type (the flex asset member of a flex family.) It holds the ID
of the flex definition that the flex asset was created with.

flexgrouptemplateid An additional column in the primary table for flex parent
asset types. It holds the object ID of the parent definition
that the flex parent asset was created with.
Content Server 7.0 Developer’s Guide

Chapter 11. Data Design: The Asset Models

The Flex Asset Model
218
The _Mungo Tables
The flex asset and flex parent asset types have an AssetType_Mungo table, where
AssetType is the name of the flex asset type (and matches the name of the main storage
table). Its purpose is to store the attribute values assigned to an asset when an asset of this
type is created. For example the GE sample site table Products_Mungo holds the
attribute values for product assets.

Each attribute value has a separate row.

Each row in _Mungo table has a value in each of the following columns:

Each row in a _Mungo table also has all of the following columns but it will have a value
(data) in only one of them, depending on the data type of the attribute:

Because the _Mungo tables have URL columns (see “Indirect Data Storage with the
Content Server URL Field” on page 233), a default storage directory (defdir) must be set
for it. You use the cc.urlattrpath property in the gator.ini file to set the defdir for
your _Mungo tables.

Column Description

id A unique ID for each attribute value, automatically generated by
Content Server when the flex asset is saved and the row is created.

This is the table’s primary key.

ownerid The ID of the flex asset that the attribute value belongs to. (From
the flex asset table: Product, for example.)

attrid The ID of the attribute. (From the attribute table: PAttributes,
for example.)

assetgroupid If the attribute value is inherited, the ID of the parent who passed on
the value. (From the parent table: ProductGroups, for example.)

Column Description

floatvalue If the attribute’s data type is float, the value of the attribute.

moneyvalue If the attribute’s data type is money, the value of the attribute.

textvalue If the attribute’s data type is textvalue, the value of the attribute.

datevalue If the attribute’s data type is date, the value of the attribute.

intvalue If the attribute’s data type is int, the value of the attribute.

blobvalue If the attribute’s data type is blob, the ID of the row in the
MungoBlobs table that holds the value of the attribute.

urlvalue If the attribute’s data type is url, the path or url entered for the
attribute.

assetvalue If the attribute’s data type is asset, the ID of the asset.

stringvalue If the attribute’s data type is float, the value of the attribute.
Content Server 7.0 Developer’s Guide

Chapter 11. Data Design: The Asset Models

Assetsets and Searchstates
219
The MungoBlobs Table
There is one MungoBlobs table. It holds all the values for all flex attributes of type blob,
for all the flex attribute types in your system. Each attribute value has a separate row in the
table.

The _AMap Tables
Flex asset and flex parent asset types have an AssetType_AMap table. Its purpose is to
map the asset to the attributes it inherits from its parents. Then when you create a template
that displays the asset on a page in your online site, you can query for assets based on any
of their attributes and display any of those attributes, whether they were inherited or were
directly assigned.

The _AMap table has one row for each flex asset that has a value for the inherited attribute.
(However, if an attribute has more than one value, the _Mungo table has a row for each
value.)

An _AMap table has the following columns:

Assetsets and Searchstates
CS-Direct Advantage provides the ASSETSET and SEARCHSTATE method families for
identifying the individual flex assets that you want to display on your online pages.

Assetset
An assetset is a group of flex assets or flex parent assets only— not flex attributes or flex
definitions or flex parent definitions. For example, in the GE sample site, you can create
assetsets that contain products, articles (advanced), or images (advanced). When you code
your site pages, you code statements that create assetsets and then display the assets in
them.

Searchstate
You identify which flex assets should be in an assetset by using the SEARCHSTATE method
family in the templates for your flex assets. A searchstate is a set of search constraints
that are applied to a list or set of flex assets. A constraint can be either a filter (restriction)
based on the value of an attribute or based on another searchstate (called a nested
searchstate).

Column Description

id A unique ID for each row, automatically generated by Content
Server when the flex asset is saved and the row is created.

This is the table’s primary key.

inherited The ID of the parent the attribute was inherited from, if it was
inherited. (From the parent table: ProductGroups, for example.)

attributeid The ID of the attribute. (From the attribute table: PAttributes, for
example)

ownerid The ID of the flex asset that the attribute value belongs to. (From
the flex asset table: Product, for example.)
Content Server 7.0 Developer’s Guide

Chapter 11. Data Design: The Asset Models

Search Engines and the Two Asset Models
220
A searchstate can search either the _Mungo tables in the database or the attribute indexes
created by a search engine. This means that you can mix database and rich-text (full-text
through an index) searches in the same query.

Because these tags search only the _Mungo table or attribute indexes for that flex asset
type, using them to extract your flex assets is much more efficient than using the ASSET
tags or the query asset.

Assetsets and Attribute Asset Types
Content Server cannot perform searches across attribute asset types. Because assetsets are
created on the basis of attribute values, only assets that share the same attribute asset type
can be included in the same assetset. This is an important point to consider when you
design your flex families: if you create flex asset types that do not share a common
attribute asset type, you have separated your data and ensured that assets from different
types cannot be included in a common assetset. And displaying assetsets is the mechanism
for displaying flex assets on your delivery system.

For example, you can have two types of flex assets in the same flex family. As long as they
use the same type of attributes, you can create assetsets that include assets of both types.
Keep in mind, though, that a search across two types of flex assets creates a join between
their _Mungo tables, which can deprecate performance.

In the GE sample site there are two flex asset types: article (advanced) and image
(advanced). They share the same attribute asset type (“Content Attributes”) and the same
definitions (content definition and content parent definition). However, it is the shared
attribute asset type that enables them to be included in the same assetset—even though
they are two different flex asset types.

However, because articles and images do not share an attribute asset type with the GE
product asset type, you cannot create an assetset that includes products and articles.

Search Engines and the Two Asset Models
Because the data structure of the two asset models is so different, there is a key difference
in the way the asset models interact with a search engine:

• A basic asset type is defined by an asset descriptor file and its primary storage table
includes all of its properties as columns. To specify which fields of a basic asset type
should be indexed, you must customize certain elements for the asset type. (See
Chapter 15, “Designing Basic Asset Types.”)

• Because “fields” for flex assets are flex attributes, which are assets, you decide which
“fields” are indexed for rich-text search, attribute by attribute. Additionally, the CS-
Direct Advantage application enables you to specify which attributes should be
indexed with the Search Engine field on the attribute’s “New” and “Edit” forms. You
do not need to customize any elements to enable this feature.
Content Server 7.0 Developer’s Guide

Chapter 11. Data Design: The Asset Models

Tags and the Two Asset Models
221
Tags and the Two Asset Models
The ultimate goal of creating and managing assets is to move them to your delivery
system, where the code in your elements can extract them from the database and display
them to your site visitors. The Content Server applications offer various “toolsets,” custom
tag sets, in both XML and JSP.

The toolset you use to extract assets from the database in your templates depends on the
kind of asset that you are working with.

• For assets with the basic asset model, you use the ASSET method family.

• For the flex asset member in a flex family, you use the ASSETSET and SEARCHSTATE
method families. Note that you should not use the ASSET.LOAD tag for the flex asset
member in a flex family (product, article, and image, for example). Using
ASSET.LOAD tag for flex assets is extremely inefficient because it retrieves all of the
information for that asset from all of its tables. The SEARCHSTATE methods queries
only the _Mungo table for the asset type of the flex asset and the MungoBlobs table.

• For recommendation assets, you use the COMMERCECONTEXT method family.

There are many more method families available with these products as well as an
extensive set of custom tags from Content Server itself and several APIs.

For information about all the tags, see the Content Server Tag Reference.

See Section 4, “Site Development,” for information about coding elements and site pages.
Content Server 7.0 Developer’s Guide

Chapter 11. Data Design: The Asset Models

Summary: Basic and Flex Asset Models
222
Summary: Basic and Flex Asset Models
This section summarizes the similarities and differences between the two asset models.

Where the Asset Models Intersect
Even though there are many differences in the way that the basic and flex asset models
function, there are several points of intersection.

• No matter which asset model you are using, basic (CS-Direct) or flex (CS-Direct
Advantage), you use the template and page asset types that are delivered with the CS-
Direct application.

• All asset types have a status code, which means that all assets—whether they are flex
or basic—can be searched for with queries based on status.

• All asset types, whether they are flex or basic, have the following configuration or
administrative traits in common:

- They must be enabled by site.
- They must have Start Menu items configured for them before anyone can create

individual instances of those types.
- Individual instances of them can be imported with the XMLPost utility.

Where the Asset Models Differ
The following table summarizes the major differences between the asset models:

Basic Asset Model Flex Asset Model

Number of
database tables

One Several

Adding fields to
an asset type

Requires a schema change. Does not require a schema
change.

Links to other
assets

Through named associations and
unnamed relationships.

Through flex family
relationships.

Subtypes Usually available through the
Subtype item on the Admin tab.
For more information on how
subtypes are set, see “Subtype”
on page 200.

Through flex definitions and flex
parent definitions.

Search engine
indexing

Must customize certain elements
for the asset type.

Use the Search Engine field in
the flex attribute form.

Main tag families ASSET, SITEPLAN, and RENDER ASSETSET, SEARCHSTATE, and
RENDER

Publishing
methods

Export to Disk

Mirror to Server

Export to Server is possible, but
is atypical for the flex model.

Mirror to Server
Content Server 7.0 Developer’s Guide

Chapter 11. Data Design: The Asset Models

Summary: Asset Types
223
Summary: Asset Types
The following table lists all the asset types delivered by the Content Server modules,
products, and sample sites:

Name of asset type Product or Sample Site

page CS-Direct

template CS-Direct

collection CS-Direct

query CS-Direct

CSElement CS-Direct

SiteEntry CS-Direct

link CS-Direct

article CS-Direct, Burlington Financial

imagefile CS-Direct, Burlington Financial

stylesheet CS-Direct, Burlington Financial

linkset CS-Direct, Burlington Financial (for backward
compatibility only)

image CS-Direct, Burlington Financial (for backward
compatibility only)

HelloArticle CS-Direct, HelloAssetWorld

HelloImage CS-Direct, HelloAssetWorld

attribute editor CS-Direct Advantage

product CS-Direct Advantage, GE Lighting

product attribute CS-Direct Advantage, GE Lighting

product definition CS-Direct Advantage, GE Lighting

product parent CS-Direct Advantage, GE Lighting

product parent definition CS-Direct Advantage, GE Lighting

article (flex) CS-Direct Advantage, GE Lighting

image (flex) CS-Direct Advantage, GE Lighting

content attribute CS-Direct Advantage, GE Lighting

content definition CS-Direct Advantage, GE Lighting

content parent CS-Direct Advantage, GE Lighting

content parent definition CS-Direct Advantage, GE Lighting
Content Server 7.0 Developer’s Guide

Chapter 11. Data Design: The Asset Models

Summary: Asset Types
224
visitor attribute Engage

history attribute Engage

history definition Engage

segment Engage

recommendation Engage

promotion Engage

DrillHierarchy Engage, Burlington Financial Extension

PDF Engage, Burlington Financial Extension

Name of asset type Product or Sample Site
Content Server 7.0 Developer’s Guide

225
Chapter 12

The Content Server Database
Just about everything in Content Server, its modules, and CS products is represented as a
row in a database table.

This chapter describes the various kinds of tables and columns in the Content Server
database and presents procedures for creating tables. The Content Server modules (CS-
Direct, for example) and products (Engage, for example) deliver most of the tables that
you need. However, if you are using Content Server to develop your own application or
you need to use a table that does not hold assets—a lookup table, for example—you create
that table using one of the methods described in this chapter.

This chapter contains the following sections:

• Types of Database Tables

• Types of Columns (Fields)

• Creating Database Tables

• How Information Is Added to the System Tables

• Property Files and Remote Databases

For information about managing the data in non-asset tables, see Chapter 13, “Managing
Data in Non-Asset Tables.”

Note

Content Server database tables used to be called “catalogs” and there are still
remnants of that terminology throughout the application in table names, servlet
names (CatalogManager), and the Java interfaces that you use to work with data in
the database.
Content Server 7.0 Developer’s Guide

Chapter 12. The Content Server Database

Types of Database Tables
226
Types of Database Tables
There are five types of tables in the Content Server database:

• Object tables, which hold data as objects and provides a unique identifier,
automatically, for each row in the table

• Tree tables, which hold the hierarchical information about relationships between
objects in object tables

• Content tables, which hold flat data and do not provide a unique identifier for each
row

• Foreign tables, which can be either of the following:

- Tables that are outside of the Content Server database but that Content Server has
access to.

- Tables that are in the Content Server database but that Content Server did not
create.

• System tables, which are core Content Server application tables whose schema cannot
be modified

Content Server can cache the resultsets from queries against any table in the Content
Server database, including foreign tables.

Object Tables
Object tables store data as an object and can be represented in hierarchies. Those objects
can be loaded, saved, and managed with the CatalogManager API. The asset type tables
for CS-Direct and CS-Direct Advantage are object tables.

The primary key for object tables is always the ID (id) column and that cannot be
changed. When you instruct Content Server to add an object table, it creates an ID column
in that table. ID is a unique identifier that Content Server assigns by default to each row as
it is added to the table. For example, when someone creates a new asset with CS-Direct,
Content Server determines the ID and assigns that value as the ID for that asset.

You cannot change the ID that Content Server assigns to objects (such as assets).

Anytime you need to store data and you want to ensure that each row of that data is
uniquely identified, use an object table because Content Server handles ID generation for
you.

Examples of object tables (catalogs)

• All tables that hold assets

• Many of the CS-Direct publishing tables

• The Engage tables that hold visitor data

Note

When AssetMaker or Flex Family maker creates an object table for a new asset
type, it creates several additional columns by default. For information about the
default columns in basic asset tables, see “Default Columns in the Basic Asset
Type Database Table” on page 203.
Content Server 7.0 Developer’s Guide

Chapter 12. The Content Server Database

Types of Database Tables
227
Tree Tables
Tree tables store information about the hierarchical relationships between object tables. In
other words, object tables can be represented in hierarchies, but the hierarchy itself is
stored in a tree table—the hierarchy is the tree.

For example, CS-Direct adds the following tree tables to the Content Server database:

• AssetRelationTree, which stores information about associations between assets.
These associations create parent-child relationships. (For information about asset
associations, see “The Flex Asset Model” on page 207.)

• SitePlanTree, which stores information about parent-child relationships between
page assets and the assets that are referred to from those assets. This information is
presented graphically on the Site Plan tab that is present in the Content Server
interface when CS-Direct is installed.

Each row in a tree table is a node in that tree. Each node in a tree table points to two
places:

• To an object in an object table, that is, to the object that it represents

• To its parent node in that tree table, unless it is a top-level node and has no parent

In other words, the object itself is stored in an object table. That object’s relationships to
other objects in the database (as described by the tree) are stored in the tree table as a node
on a tree.

Note that children nodes point to parent nodes but parents do not point to children.

When you create a tree table, it has the following columns by default. You cannot add to or
modify these columns:

Column Description

nid The ID of the node. This is the primary key.

nparentid The ID of the node’s parent node.

nrank A number that ranks peer or sibling nodes. For example, the
AssetRelationTree table uses this column to determine the order of
the assets that are in collections.

otype The object type of the node. For example, in the SitePlanTree table
(a CS-Direct table), otype is either the asset type “page” or the name of
a site (“publication”). In the AssetRelationTree table (another CS-
Direct table), otype is an asset type and is the name of the object table
for assets of that type.

oid The ID of the object that the node refers to.

oversion Reserved for future use by FatWire.

ncode Holds a string that has meaning in the context of what the table is being
used for. For example, in the SitePlanTree, ncode is set to “placed”
or “unplaced” based on whether the page asset that the node refers to
has been placed or not. In the AssetRelationTree, ncode holds the
name of a named association.
Content Server 7.0 Developer’s Guide

Chapter 12. The Content Server Database

Types of Database Tables
228
Content Tables
Content tables store data as flat data (rather than as objects) and that information cannot be
organized in a hierarchy. You use content tables for simple lookup tables. For example,
these are only a few of the content tables that CS-Direct adds to the Content Server
database:

• Source, which holds strings that are used to identify the source of an article or image
asset

• Category, which holds codes that are used to organize assets in several ways

• StatusCode, which holds the codes that represent the status of an asset

All three of these tables are lookup tables that the CS-Direct product uses to look up
values for various columns in the asset type tables (object tables).

In another example, CS-Direct also adds a content table called MimeType. This table
holds mimetype codes that are displayed in the Mimetype fields of the Burlington
Financial sample site asset types named stylesheet and imagefile. The Mimetype fields
for these asset types query the MimeType table for mimetype codes based on the keyword
column in that table.

Setting the Primary Key for a Content Table
When you create a content table, an ID column is not created for you and the primary key
is not required to be ID. This is another major difference between content tables and object
tables.

The cc.contentkey property in the futuretense.ini file specifies the name of the
default primary key for all content tables. When you create a new content table, you are
responsible for defining a column with the name specified by the cc.contentkey
property.

However, you can override the identity of the primary key for a specific content table by
adding and setting a custom property in the futuretense.ini file. This property must
use the following format:

cc.tablenameKey

For example, if you create a content table named Books and you want to override the
default primary key so that it uses the ISBN column instead, you would add a property
named cc.BooksKey and set it to ISBN.

Foreign Tables
A foreign table is one that Content Server does not completely manage. For example,
perhaps your site pages perform queries against a table that is populated by an ERP system
and Content Server displays that information to your site visitors.

Content Server can query foreign tables and cache the resultsets just as it does for its own
object and content tables. However, you must first identify that foreign table to Content
Server by adding a row for it in the SystemInfo table. This is the only time you should
ever modify information in the SystemInfo table.

Additionally, you must be sure to flush the Content Server resultset cache with a
CatalogManager flushcatalog tag whenever the external system updates the tables that
you query. Otherwise, the resultsets cached against those tables might not be up-to-date.

For information about resultset caching, see Chapter 14, “Resultset Caching and Queries.”
Content Server 7.0 Developer’s Guide

Chapter 12. The Content Server Database

Types of Database Tables
229
System Tables
System tables are core, Content Server tables whose schema is fixed. They are
implemented in Content Server by their own classes and they do not follow the rules (for
caching and so on) that the other tables follow.

You can add rows to some of the system tables (either using the Content Server
Management Tools forms, found on the Admin tab of the Content Server UI, or the
Content Server Explorer tool), but you cannot add or modify the columns in these tables in
any way. You also cannot add system tables to the database.

The following table lists and defines the Content Server system tables:

Table Description

ElementCatalog Lists all the XML or JSP elements used in your system. An
element is a named piece of code. For more information
about the ElementCatalog table, see Chapter 21, “Creating
Template, CSElement, and SiteEntry Assets.”

SiteCatalog Lists a page reference for each page or pagelet served by
Content Server. For more information about the
SiteCatalog table, see Chapter 21, “Creating Template,
CSElement, and SiteEntry Assets.”

SystemACL Has a row for each of the access control lists (ACLs) that
were created for your Content Server system. ACLs are sets
of permissions to database tables.

For information about creating ACLs, see the Content Server
Administrator’s Guide.

For information about using ACLs to implement user
management for your online site, Chapter 27, “User
Management on the Delivery System.”

SystemEvents Has a row for each event being managed by Content Server.
An event represents an action that takes place on a certain
schedule.

Content Server inserts a row in this table when you set an
event by using either the APPEVENT or EMAILEVENT tags.

SystemInfo Lists all the tables that are in the Content Server database and
any foreign tables that Content Server needs to reference.

SystemItemCache Holds information about specific items on pages that are
cached (assets, for example): the identity of the item, the
page it is associated with, and the time it was cached.

SystemPageCache Holds information about pages that are cached: the folder that
it is cached to, the query used to generate the file name, the
time it was cached, and the time that it should expire.

SystemSeedAccess Registers Java classes that are external to Content Server but
that Content Server has access to (includes access control).
Content Server 7.0 Developer’s Guide

Chapter 12. The Content Server Database

Types of Database Tables
230
Identifying a Table’s Type
To determine the table type of any table in the Content Server database, examine the
SystemInfo table, the system table that lists all the tables in the database.

To determine a table type

1. Open the Content Server Explorer and log in to the Content Server database.

2. Double-click on the SystemInfo table.

3. In the list of tables, examine the systable column. The value in this column identifies
the type of table represented in the row:

SystemSQL Holds SQL queries that you can reuse in as many pages or
pagelets as necessary. You can store SQL queries in this table
and then use the ics.CallSQL method, CALLSQL XML tag,
the ics:callsql JSP tag to invoke them. Then, if you need
to modify the SQL statement, you only have to modify it
once.

SystemUserAttr Stores attribute information about the users such as their e-
mail addresses. Note that if you are using LDAP, this table is
not used.

SystemUsers Lists all the users who are allowed access to pages, functions,
and tables. Note that if you are using LDAP, this table is not
used.

Value in systable column Definition

yes system table

no content table

obj object table

tree tree table

fgn foreign table

Note

If you do not have the appropriate ACLs assigned to your user name, you
cannot open and examine the SystemInfo table.

Table Description
Content Server 7.0 Developer’s Guide

Chapter 12. The Content Server Database

Types of Columns (Fields)
231
Types of Columns (Fields)
When you create new tables for the Content Server database, whether they hold assets or
not, you can specify three general categories of field (column) types for the columns in
those tables:

• Generic field types

• Database-specific field types

• The Content Server URL field

Generic Field Types
Generic field types refers to field types that work in any DBMS that Content Server
supports. They are mapped to be compliant with JDBC standards. Therefore, if your
Content Server system changes to a different DBMS, your database is still valid.

When you use generic, JDBC-compliant field types, you can use the CatalogManager API
(CATALOGMANAGER XML or JSP tags, or the ics.CatalogManager Java method) to
modify and maintain the data in your tables.

The following table contains a complete list of the Content Server generic field types and
the database properties (from the futuretense.ini file) that define their data types.
Refer to this list whenever you create a new table with the Content Server Management
Tools forms, found on the Admin tree in the Content Server user interface, or the
CatalogManager API:

Field Type Description Property

CHAR(n) A short string of exactly n characters. cc.char

VARCHAR(n) A short string of up to n characters.
For example, VARCHAR(32) means
that this column can hold a string of up
to 32 characters.

cc.varchar

and

cc.maxvarcharsize

(The maximum value that
you can set for
cc.varchar depends on
the value of the
cc.maxvarcharsize
property.)

DATETIME A date/time combination. cc.datetime

TEXT A LONGVARCHAR, a variable-length
string of up to 2,147,483,647

cc.bigtext

IMAGE One binary large object (blob). cc.blob

SMALLINT A 16-bit integer, that is, an integer
from -32,768 to +32,767.

cc.smallint

INTEGER A 32-bit integer, that is, an integer
from
-2,147,483,648 to +2,147,483,647.

cc.integer
Content Server 7.0 Developer’s Guide

Chapter 12. The Content Server Database

Types of Columns (Fields)
232
In addition to defining the column type, you must specify which of the following column
constraints applies to the column:

When you use AssetMaker to create an object table for a new asset type (CS-Direct) or
when you create new flex attributes (CS-Direct Advantage), the data types for those items
are different than the ones listed here.

For more information about the data types for columns for basic asset types, see “Storage
Types for the Columns” on page 285. For information about the data types for flex
attributes, see “Data Types for Attributes” on page 210.

Database-Specific Field Types
You can use database-specific field (column) types in your tables. However, if you use
field types that are specific to one kind of DBMS (that is, types that have not been mapped
to a JDBC standard), note the following:

• You may not be able to use the CatalogManager API on those tables.

• If you ever change your DBMS you must also modify your tables.

For a complete list of field types specific to the DBMS that you are using, consult your
DBMS documentation.

BIGINT A 64-bit integer, that is, integers
having up to 19 digits.

cc.bigint

NUMERIC(L,P) A floating-point (real) number, having
a total number of L significant digits of
which up to P significant digits are
fractional. For example,
NUMERIC(5,2) could represent a
number such as 806.35 but could not
accurately represent a number such as
25693.2283

cc.numeric

DOUBLE A double precision type. cc.double

Constraint Description

NULL It can hold a null value, that is, it can be left empty.

NOT NULL It cannot hold a null value, that is, it cannot be left
empty

UNIQUE NOT NULL It must hold a value that is guaranteed to be unique in
this table.

PRIMARY KEY NOT NULL Marks the primary key column in a content table. You
cannot set this column constraint for an object table.

Field Type Description Property
Content Server 7.0 Developer’s Guide

Chapter 12. The Content Server Database

Types of Columns (Fields)
233
Indirect Data Storage with the Content Server URL Field
Object and content tables in the Content Server database have a unique characteristic:
columns can store their data indirectly, which means that you can store large bits of data
externally to the DBMS but within the data repository.

To create such a column, you must use a column name that begins with the letters url.
When you use the letters url as the first three letters of a column name, Content Server
treats that column as an indirect data column.

Why use a URL field? For the following reasons:

• When the DBMS you are using does not support fields that are large enough to
accommodate the size of the data that you want to store there

• If the DBMS you are using does not support enough fields in an individual table to
contain the data that you want to store

• Because the performance of selecting data degrades with large field sizes

The Default Storage Directory (defdir)
Any table with a URL column must have a default storage directory specified for it. This
directory is where the values entered into the column are actually stored.

The phrase “default storage directory” is shortened to the word defdir in several places in
the product. For example, the defdir column in the SystemInfo table holds the name of
the default storage directory for tables with URL columns; one of the forms for the
AssetMaker utility presents a defdir field; and so on.

The value entered into a URL field is actually a relative path to a file. Why a relative path?
Because the value in a URL field is appended to the value of the table’s defdir setting.

The way that you set the defdir value for the tables that you create depends on the
applications you have and what you are doing:

• If you create a new Content Server table with the Content Server Management Tools
forms, found on the Admin tree in the Content Server user interface, and your table
has a URL field, you enter the value for defdir in the File Storage Directory field in
the “Add Catalog” (table) form.

• If you create a new Content Server table with the CatalogManager API, you use the
uploadDir argument to set the value of defdir.

• If you create a new basic asset type, you specify the value of the defdir in the defdir
field on the AssetMaker form. (Note that all tables that hold basic assets have a URL
column and must have a defdir value set.)

• If you create a new flex asset type, you do not specify the value of the defdir for the
URL column in the flex asset’s _Mungo table. This value is obtained from a property
that was set when your CS-Direct Advantage application was installed. Never change
the value of that property.

Caution

After a table with a URL column is created, do not attempt to change or modify
the defdir setting for the table in any way. If you do, you will break the link
between the storage directory and the URL column, which means that your data
can no longer be retrieved.
Content Server 7.0 Developer’s Guide

Chapter 12. The Content Server Database

Creating Database Tables
234
For information about creating URL fields, see the following procedures and examples:

- “Creating Database Tables” on page 234
- The upload field examples for basic asset types, starting with “Upload Example 1:

A Standard Upload Field” on page 298
- The procedure for creating flex attributes of type blob in the section “Creating

Flex Attributes of Type Blob (Upload Field)” on page 331.

Creating Database Tables
This section describes how to create object, tree, and content tables and how to register
foreign tables (that is, identify them to Content Server). You cannot create or modify
system tables.

Creating Object Tables
There are three ways to create object tables:

• Create tables that hold basic asset types. You must use AssetMaker, a CS-Direct utility
located on the Admin tab. AssetMaker creates the object table for the asset type as
well as the CS-Direct forms that you use to create assets of that type. For more
information, see Chapter 15, “Designing Basic Asset Types.”

• Create tables that hold flex asset types. You must use Flex Family Maker, a CS-Direct
Advantage utility located on the Admin tab. For more information, see Chapter 16,
“Designing Flex Asset Types.”

• Create an object table that does not hold assets. Use the Content Server Management
Tools, found on the Admin tree in the Content Server user interface, (or Content
Server Explorer).

To create an object table that does not hold assets

1. Open your browser and enter this address:

http://your_server/Xcelerate/LoginPage.html

2. Enter your login name and password and click Login.

The Content Server interface appears.

3. Select the Admin tab and then select Content Server Management Tools >
Content Catalog (table).
Content Server 7.0 Developer’s Guide

Chapter 12. The Content Server Database

Creating Database Tables
235
4. In the “ContentCatalogManagement” form, select Add Catalog (table) and click OK.

The “Add Catalog” (table) form appears.

5. Click in the Catalog Name (table name) field and enter a name. Do not use the name
of a table that already exists. You can enter up to 64 alphanumeric characters,
including the underscore (_) character but not including spaces.

6. Click in the Catalog Type (table type) field and select Object Catalog.

7. If your table will have a URL column (an upload column), click in the File Storage
Directory field (that is, the defdir) and enter the path to the file directory that will
store the data from the URL column. If the directory does not exist yet, Content Server
will create it for you.

8. Click in the Access Privileges field to select which ACLs (access control lists) a user
must have in order to access this table. For information about ACLs, see the Content
Server Administrator’s Guide.

9. Click in the Field Name column and enter the name of the field. Remember that to
create a URL column that stores data as a file located in an external directory, you
must start the field name with the letters url. If you are creating a URL column, be
sure that you have specified the file storage directory (defdir) for the data stored in this
field (see step 7 of this procedure).
Content Server 7.0 Developer’s Guide

Chapter 12. The Content Server Database

Creating Database Tables
236
10. Click in the Field Type column and specify both the data type and column constraint
for the column. Include a space between the data type and the column constraint.

For example: VARCHAR(32) NULL or INTEGER NOT NULL.

For a list of the valid data types and the column constraints, see “Generic Field Types”
on page 231.

11. Repeat steps 9 and 10 for each column in your new table.

12. Click the Add button.

Content Server adds the table to the database.

To verify that your table has been added, open Content Server Explorer and examine the
SystemInfo table. Your new table should be included in the list with its systable
column set to obj. If you specified a file storage directory, it is listed in the defdir
column.

Managing Data in Object Tables
There are several ways to modify and manage the data in object tables.

To create and modify assets, you use CS-Direct, CS-Direct Advantage, and Engage
applications. To extract assets from the database and then display them to the visitors of
your delivery system, you use the CS-Direct, CS-Direct Advantage, and Engage XML and
JSP tags.

You can enter data into object tables that do not hold assets in one of the following ways:

• Programmatically, by coding forms with the ics.CatalogManager Java method or
the CATALOGMANAGER XML and JSP tags, the OBJECT XML and JSP tags, and the
Content Server SQL methods and tags, that prompt users for information and then to
write that information to the database

• Manually by using either the Content Server Explorer tool or a form in the Content
Server Management Tools forms to add rows to the table.

The following chapter, Chapter 13, “Managing Data in Non-Asset Tables,” presents
information about the CatalogManager API and examples of adding rows to tables that do
not hold assets.

Creating Tree Tables
If you are using CS-Direct or any of the other CS modules or products, it is unlikely that
you would need to create a tree table.

Tree tables are managed by the TreeManager servlet. To create a tree table (catalog), you
use the ICS.TreeManager Java method or the TREEMANAGER XML or JSP tags. You
cannot create a tree table (catalog) with the Content Server Management Tools.

For example:

<TREEMANAGER>
<ARGUMENT NAME="ftcmd" VALUE="createtree"/>
<ARGUMENT NAME="treename" VALUE="ExampleTree"/>

</TREEMANAGER>

For a list of the columns that are created for tree tables, see “Tree Tables” on page 227. For
information about the TreeManager methods and tags, see the Content Server Tag
Reference.
Content Server 7.0 Developer’s Guide

Chapter 12. The Content Server Database

Creating Database Tables
237
Managing Data in Tree Tables
The CS-Direct application and the other Content Server modules and products manage all
the data in their tree tables. You should never attempt to manually modify information in
any of the CS-Direct tree tables.

If you have any tree tables that you created to manage relationships between your own
object tables (that is, object tables that do not store assets), you use the
ICS.TreeManager Java method or the TREEMANAGER XML or JSP tags. These tags and
methods use an FTValList parameter, which describes the tree operation to be
performed.

The following chapter, Chapter 13, “Managing Data in Non-Asset Tables,” presents
information about the CatalogManager API and examples of adding rows to tables that do
not hold assets.

Creating Content Tables

To create a content table, use the Content Server Management Tools

1. If you are using any of the Content Server applications, open your browser and enter
this address:

http://your_server/Xcelerate/LoginPage.html

Note that your_server is the name of the web server that you are using with Content
Server.

2. Enter your login name and password and click Login.

The Content Server user interface appears.

3. Select the Admin tab and then select Content Server Management Tools > Content
Catalog (table).
Content Server 7.0 Developer’s Guide

Chapter 12. The Content Server Database

Creating Database Tables
238
4. In the ContentCatalogManagement window, select Add Catalog (table) and click
OK.

The Add Catalog (table) window appears.

5. Click in the Catalog Name (table name) field and enter a name. Do not use the name
of a table that already exists. You can enter up to 64 alphanumeric characters,
including the underscore (_) character but not including spaces.

6. Click in the Catalog Type (table type) field and select Content Catalog.

7. If your table will have a URL column, click in the File Storage Directory field and
enter the path to the file directory that will store the data from the URL column. If the
directory does not exist yet, Content Server will create it for you.

8. Click in the Access Privileges field to select which ACLs (access control lists) a user
must have in order to access this table. For information about ACLs, see the Content
Server Administrator’s Guide.

9. Click in the Field Name field and enter the name of the field. Remember that to create
a URL column that stores data as a file located in an external directory, you must start
the field name with the letters url. If you are creating a URL column, be sure that you
have specified the file storage directory (defdir) for the data stored in this field (see
step 7 of this procedure).
Content Server 7.0 Developer’s Guide

Chapter 12. The Content Server Database

Creating Database Tables
239
10. Click in the Field Type column and specify both the data type and column constraint
for the column. Include a space between the data type and the column constraint.

For example: VARCHAR(32) NULL or INTEGER NOT NULL.

Remember that you must specify a primary key column and that it must exactly match
either the setting for the cc.contentkey property or a custom property specified for
this table in the futuretense.ini file.

For example: INTEGER PRIMARY KEY NOT NULL

11. Repeat steps 9 and 10 for each column in your new table.

12. Click the Add button.

Content Server adds the table to the database.

To verify that your table has been added, open the Content Server Explorer tool and
examine the SystemInfo table. Your new table should be included in the list with the
value in its systable column set to no. If you specified a file storage directory, it is listed
in the defdir column.

When you add non-asset tables to facilitate some function of your site, you then need to
either customize your asset forms in CS-Direct or create your own forms to enter and
manipulate that data.

Managing Data in Content Tables
There are several ways to modify and manage the data in content tables.

Most of the CS-Direct content tables have a CS-Direct form available from the Admin tab
that you can use to edit or add data. For example, Source and Category. (MimeType,
however, does not.)

You can enter data into your custom content tables in one of the following ways:

• If the table was created such that users or visitors supply data that is written into the
table, you code forms with the ics.CatalogManager Java method or the
CATALOGMANAGER XML and JSP tags along with the Content Server SQL methods
and tags—to prompt users for information and to then write it to the database
programmatically.

• If the table is a simple lookup table that facilitates some function on your site, you
enter data into it manually by using either the Content Server Explorer utility or the
Content Server Management Tools window to add rows to the table.

Chapter 13, “Managing Data in Non-Asset Tables,” presents information about the
CatalogManager API and examples of adding rows to tables that do not hold assets.

Registering a Foreign Table
Registering a foreign table means identifying the table to Content Server by adding a row
for the table to the SystemInfo table. Note that this is the only condition in which you
should ever add a row to the SystemInfo table or change information held in the
SystemInfo table in any way.

To register a foreign table

1. Open the Content Server Explorer and log in to the Content Server database.

2. Double-click on the SystemInfo table.
Content Server 7.0 Developer’s Guide

Chapter 12. The Content Server Database

How Information Is Added to the System Tables
240
3. Right-click the mouse on the header for the tblname column and then select New
from the pop-up menu.

A new row appears.

4. In the new row, click in the tblname column and enter the name of the table.

5. Click in the defdir column and enter the path to the table.

6. Click in the systable column and enter fgn.

7. Click in the acl column and enter the names of the ACLs that have access to the table.

8. Select File > Save All.

Managing Data in a Foreign Table
You can use the ics.CatalogManager Java method or the CATALOGMANAGER XML and
JSP tags and the Content Server SQL methods and tags to interact with a foreign table.
When you use these methods or tags to update data in the foreign table, Content Server
can flush its resultset cache as needed.

If you use a method external to Content Server to update a foreign table, you must be sure
to also use the CATALOGMANGER command flushcatalog to instruct Content Server to
flush the resultset cache for that table.

How Information Is Added to the System Tables
You cannot create system tables and with very few exceptions, you should always use the
Content Server Management Tools to add rows to the system tables that you are allowed to
add rows to. The way that information is added to each system table varies, as described in
the following table:

Table Method of Adding Information

SiteCatalog There are several ways that page entries are added to this table:

• When you create a Template asset, CS-Direct automatically
creates a page entry for it in the SiteCatalog table.

• When you create a SiteEntry asset, CS-Direct automatically
creates a page entry for it in the SiteCatalog table.

• You can use the Content Server Explorer tool or the “Site”
form in the Content Server Management Tools interface.

Note that if you want to set or modify page cache settings for
page entries, it is easier to use forms in the Content Server
interface than it is to use Content Server Explorer.

See Section 4, “Site Development,” for information about
designing pages.
Content Server 7.0 Developer’s Guide

Chapter 12. The Content Server Database

Property Files and Remote Databases
241
Property Files and Remote Databases
There are several properties in the futuretense.ini file that control the connection to
the Content Server database. These properties specify the configuration of the database
and establish a privileged and non-privileged user connection between the database and
the application server.

All of the database properties were configured for your system when your system was
installed. By default, all commands operate on the Content Server database identified in
the futuretense.ini file. The location of this file depends on which application server
your system is using:

• With the Sun ONE Application Server, futuretense.ini is located in the /ias/
APPS directory.

ElementCatalog There are several ways that elements are added to this table:

• When you create a Template asset, CS-Direct automatically
creates an entry for it in the ElementCatalog table.

• When you create a CSElement asset, CS-Direct
automatically creates an entry for it in the ElementCatalog
table.

• You can use the Content Server Explorer tool to add non-
asset elements.

For information about coding elements and pages, see
Chapter 24, “Coding Elements for Templates and
CSElements.”

SystemACL The “ACL” form in the Content Server Management Tools
node.

For more information, see the Content Server Administrator’s
Guide.

SystemEvents Content Server adds a row to this table for each event that is
designated when an APPEVENT tag, EMAILEVENT tag, or Java
API equivalent is invoked from an element.

SystemInfo Do not add or modify information to this table.

The only exception to this rule is if you need to identify a
foreign table to Content Server.

SystemSQL The Content Server Explorer tool.

For information about the various kinds of queries that are
available, see Chapter 14, “Resultset Caching and Queries.”

SystemUsers The “User” form in the Content Server Management Tools
node.

SystemUserAttr The “User” form in the Content Server Management Tools
node.

Table Method of Adding Information
Content Server 7.0 Developer’s Guide

Chapter 12. The Content Server Database

Property Files and Remote Databases
242
• With any other application server, futuretense.ini is located in the
FutureTense directory.

Property Files for Remote Databases
Content Server can also access remote databases. If you want to access and work with data
that is kept in a remote database, you must create or identify a property file for that
database.

Any property file for a remote database must be located in the same directory as the
Content Server futuretense.ini file.

Additionally, it must include all of the database properties that are listed in the Content
Server Property Files Reference.

Accessing the Property File for a Remote Database
To access a remote database from a Content Server page, use the ics.LoadProperty
Java method or the LOADPROPERTY XML tag to specify the property file that identifies
that database before the statement of the operation that you want to perform in that
database.

For example:

<LOADPROPERTY FILE=“example.ini”/>

After completing the operation on that remote database, be sure to re-establish the
connection with the primary Content Server database by closing the connection to the
remote database with the ics.RestoreProperty Java method or the
RESTOREPROPERTY XML tag.

For example:

<RESTOREPROPERTY CLOSE=“true”/>
Content Server 7.0 Developer’s Guide

243
Chapter 13

Managing Data in Non-Asset Tables
This chapter describes how to interact with Content Server database tables that do not hold
assets.

There are two ways to work with the data in your custom, non-asset tables:

• Programmatically, using the tags and methods for the CatalogManager API to code
forms for data entry and management

• Manually, by using the Content Server Explorer tool or the “Content” form in the
Content Server Management Tools to manually add rows and data to those rows.

This chapter contains the following sections:

• Methods and Tags

• Coding Data Entry Forms

• Managing the Data Manually

To work with assets, you must log in to the Content Server interface and use the asset
forms provided by the CS-Direct, CS-Direct Advantage, and Engage applications.

To add large numbers of assets programmatically, use the XMLPost utility, as described in
Chapter 18, “Importing Assets of Any Type” and Chapter 19, “Importing Flex Assets.”
Content Server 7.0 Developer’s Guide

Chapter 13. Managing Data in Non-Asset Tables

Methods and Tags
244
Methods and Tags
This section provides an overview of the tags and methods that you use to program how
you manage data in non-asset tables and how you interact with those tables in general.

Writing and Retrieving Data
CatalogManager is the Content Server servlet that manages content and object tables in
the database and the TreeManager servlet manages tree tables in the database.

• To access the CatalogManager servlet, you can use the ics.CatalogManager Java
method, the CATALOGMANAGER XML tag, or the ics:catalogmanager JSP tag.

• To access the TreeManager servlet, you can use the ics.TreeManager Java method,
the TREEMANAGER XML tag, or the ics:treemanager JSP tag.

These methods and tags take name/value pairs from arguments that specify the operation
to perform and the table to perform that operation on.

CatalogManager
The ics.CatalogManager java method, the CATALOGMANAGER XML tag, and the
ics:catalogmanager JSP tag support a number of attributes that operate on object and
content tables. The key attribute is ftcmd. By setting ftcmd to addrow, for example, you
tell CatalogManager to add one row to the catalog.

CatalogManager security, when enabled, prevents users with the DefaultReader ACL
from accessing CatalogManager. You enable CatalogManager security by setting the
secure.CatalogManager property, found in the futuretense.ini file, to true.
Note that your session will be dropped if you attempt to log out of CatalogManager when
CatalogManager security is enabled.

These are the main CATALOGMANAGER XML tag’s attributes, passed as
argument name/value pairs, that modify the contents of a row or a particular field in a row:

argument
name=“ftcmd”
value=

Description

addrow Adds a single row to a table.

addrows Adds more than one row to a table.

deleterow Deletes a row from a table. You must specify the primary key
column for the row.

deleterows Deletes more than one row from a table. You must specify the
primary key for the rows.

replacerow Deletes the existing row in a table and replaces the row with the
specified information.

replacerows Replaces multiple rows in a table. If a value is not specified for a
column, the column value is cleared

updaterow Performs a query against a given table and displays records from a
table. The rows displayed match the criteria specified by the value of
the parameters.
Content Server 7.0 Developer’s Guide

Chapter 13. Managing Data in Non-Asset Tables

Methods and Tags
245
For more information and a complete list of the CatalogManager commands, see the
Content Server Tag Reference. For information about the ics.CatalogManager Java
method, see the Content Server Javadoc.

Tree Manager
Here are the main ics.TreeManager commands. Note that these operations manipulate
data in the tree table only—but do not affect the objects that the tree table nodes refer to.

updaterow2 Like updaterow, updates values in columns for a row in a table;
however, where you cannot clear columns with updaterow,
updaterow2 allows you to clear columns if there is no value for the
specified column (for example, if there is no related field in the
form).

updaterows Modifies field values for multiple rows in a table.

updaterows2 Like updaterows, modifies field values for multiple rows in a
table; however, where you cannot clear columns with updaterows,
updaterows2 allows you to clear columns if there is no value for
the specified column (for example, if there is no related field in the
form).

Name Description

addchild Given a parent node, add a child node.

addchildren Add multiple child nodes.

copychild Copy a node and its children to a different parent. All copied
nodes point to the same objects.

createtree Create a tree table.

delchild Delete a node and its child nodes.

delchildren Delete multiple nodes.

deletetree Delete a tree table.

findnode Find a node in a tree.

getchildren Get all child nodes.

getnode Get node and optionally object attributes.

getparent Get the nodes parent.

listtrees Get the list of all tree tables.

movechild Move node and its child nodes to a different parent.

nodepath Return parent; child path to a node.

setobject Associate a different object with the node.

argument
name=“ftcmd”
value=

Description
Content Server 7.0 Developer’s Guide

Chapter 13. Managing Data in Non-Asset Tables

Methods and Tags
246
For information about the ics.TreeManager method, see the Content Server Javadoc.

For information about the XML and JSP TREEMANAGER tags, see the Content Server Tag
Reference.

Querying for Data
There are three methods, with XML and JSP tag counterparts, to help your code query for
and select content:

To use ics.CallSQL (or the tags), you code SQL statements and then paste them into the
SystemSQL table.

By storing the actual queries in the SystemSQL table and calling them from the individual
pages (like you call a pagename or an element), you keep them out of your code, which
makes it easier to maintain the SQL used by your site. If you want to change the SQL, you
do not have to fix it in every place that you use it —you can just edit it in the SystemSQL
table and every element that calls it now calls the edited version.

The ics.CallSQL and ics.SQL methods can execute any legal SQL commands. If a
SQL statement does not return a usable list, Content Server will generate an error. If you
choose to use SQL to update or insert data, you must include code that explicitly flushes
the resultsets cached against the appropriate tables using the ics.FlushCatalog
method.

Lists and Listing Data
A number of ICS methods create lists. The SelectTo method, for example, returns the
results of a simple SQL query in a list whose columns reflect the items in the WHAT
clause and whose rows reflect matches against the table.

The IList interface can be used to access a list from Java. The lists are available by name
using XML or JSP, and values can be iterated using the LOOP tag.

validatenode Verify that a node is in a tree.

verifypath Verify that a given path exists in a tree.

Method XML tag JSP tag Description

ics.SelectTo SELECTTO ics:selectto Performs a simple select against a
single table.

ics.SQL EXECSQL ics:sql Executes an inline SQL statement
(embedded in the code).

ics.CallSQL CALLSQL ics:callsql Executes a SQL statement that is
stored as a row in the SystemSQL
table.

Name Description
Content Server 7.0 Developer’s Guide

Chapter 13. Managing Data in Non-Asset Tables

Methods and Tags
247
The lists created by Content Server point to underlying resultsets created from querying
the database. Although the lists do not persist across requests, the resultsets do because if
are cached.

You can create your own list for use in XML or JSP by implementing a class based on the
IList interface. Then your application or page can transform data prior to returning an item
in a list or to create a single list from many lists.

The following methods manage lists:

For an example implementation of an IList, see SampleIList.java in the Samples
folder on your Content Server system.

Note

Be sure to configure resultset caching appropriately. If the resultset of a query is
cached, the list points to a copy of the resultset. If the resultset is not cached, the
list points directly at the resultset which can cause database connection resource
difficulties.

Method Description

ics.GetList Returns an IList, given the name of the list.

ics.CopyList Copies a list.

ics.RenameList Renames an existing list.

ics.RegisterList Registers a list by name with Content Server so that you can
reference the list from an XML or JSP element or by using the
GetList method.
Content Server 7.0 Developer’s Guide

Chapter 13. Managing Data in Non-Asset Tables

Coding Data Entry Forms
248
Coding Data Entry Forms
This section provides code samples that illustrate how to code forms that accept
information entered by a user or visitor and to then write that information to the database
using the Content Server methods and tags.

The examples in this section describe adding a new row, deleting a row, and querying for
and then editing an existing row. Each example shows a version for XML, JSP, and Java.

Adding a Row
A simple algorithm for adding a row is as follows:

1. Display a form requesting information for each of the fields in a row.

2. Write that form data to the table.

The following example adds a row to a fictitious table named EmployeeInfo. This table
has the following columns:

This example presents code from the following elements:

• addrowFORM, an XML element that displays a form that requests an employee ID
number, phone number, and name.

• addrowXML, addrowJSP, and addrowJAVA, three versions of an element that writes
the information entered by the employee to the EmployeeInfo table

The addrowFORM Element
The addrowFORM element displays a form that asks the user to enter information. It looks
like this:

This is the code that creates the form:

<?xml version="1.0" ?>
<!DOCTYPE FTCS SYSTEM "futuretense_cs.dtd">
<FTCS Version="1.1">
<!-- Documentation/CatalogManager/addrowFORM
-->

Field Data type

id VARCHAR(6)

phone VARCHAR(16)

name VARCHAR(32)
Content Server 7.0 Developer’s Guide

Chapter 13. Managing Data in Non-Asset Tables

Coding Data Entry Forms
249
<form ACTION="ContentServer" method="post"
REPLACEALL="CS.Property.ft.cgipath">
<input type="hidden" name="pagename" value="Documentation/
CatalogManager/addrow"/>

<table>
<tr>

<td>Employee name:</td>
<td><input type="text" value="" name="EmployeeName"

size="22" maxlength="32"/></td>
</tr>
<tr>

<td>Employee id number:</td>
<td><input type="text" value="" name="EmployeeID" size="6"
maxlength="6"/></td>

</tr>
<tr>

<td>Phone number:</td>
<td><input type="text" value="" name="EmployeePhone" size="12"
maxlength="16"/></td>

</tr>
<tr>

<td colspan="2"><input type="submit" name="submit"
value="Submit"/></td>

</tr>
</table>

</form>
</FTCS>

Notice that the maxlength modifiers in <INPUT> limit the length of each input to the
maximum length that was defined in the schema.

The user fills in the form and clicks the Submit button. The information gathered in the
form and the pagename of the addrow page (see the first input type statement in the
preceding code sample) is sent to the browser. The browser sends the pagename to
Content Server. Content Server looks it up in the SiteCatalog table and then invokes
that page entry’s root element.

Root Element for the addrow Page
The root element of the addrow page is responsible for adding the information passed
from the addrowFORM element to the database — that is, for adding a row to the
EmployeeInfo table and populating that row with the information passed from the
addrowFORM element.

There can only be one root element for a Content Server page (that is, an entry in the
SiteCatalog table). This section shows three versions of the root element for the
addrow page:

• addrowXML.xml

• addrowJSP.jsp

• addrowJAVA.jsp
Content Server 7.0 Developer’s Guide

Chapter 13. Managing Data in Non-Asset Tables

Coding Data Entry Forms
250
addrowXML
This is the code in the XML version of the root element:

<?xml version="1.0" ?>
<!DOCTYPE FTCS SYSTEM "futuretense_cs.dtd">
<FTCS Version="1.1">
<!-- Documentation/CatalogManager/addrowXML
-->

<SETVAR NAME="errno" VALUE="0"/>
<CATALOGMANAGER>

<ARGUMENT NAME="ftcmd" VALUE="addrow"/>
<ARGUMENT NAME="tablename" VALUE="EmployeeInfo"/>
<ARGUMENT NAME="id" VALUE="Variables.EmployeeID"/>
<ARGUMENT NAME="phone" VALUE="Variables.EmployeePhone"/>
<ARGUMENT NAME="name" VALUE="Variables.EmployeeName"/>

</CATALOGMANAGER>
errno=<CSVAR NAME="Variables.errno"/>

</FTCS>

addrowJSP
This is the code in the JSP version of the root element:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld" %>
<%@ taglib prefix="ics" uri="futuretense_cs/ics.tld" %>
<%//
// Documentation/CatalogManager/addrowJSP
//%>
<%@ page import="COM.FutureTense.Interfaces.*" %>
<%@ page import="COM.FutureTense.Util.ftMessage"%>
<%@ page import="COM.FutureTense.Util.ftErrors" %>
<cs:ftcs>

<ics:setvar name="errno" value="0"/>
<ics:catalogmanager>

<ics:argument name="ftcmd" value="addrow"/>
<ics:argument name="tablename" value="EmployeeInfo"/>
<ics:argument name="id"

value=’<%=ics.GetVar("EmployeeID")%>’/>
<ics:argument name="phone"

value=’<%=ics.GetVar("EmployeePhone")%>’/>
<ics:argument name="name"

value=’<%=ics.GetVar("EmployeeName")%>’/>
</ics:catalogmanager>

Note

The example code can use the CATALOGMANAGER tag because the fictitious table,
EmployeeInfo, has Content Server generic field types. addrowXML might not
work if EmployeeInfo has database-specific field types. For more information,
see “Generic Field Types” on page 231
Content Server 7.0 Developer’s Guide

Chapter 13. Managing Data in Non-Asset Tables

Coding Data Entry Forms
251
errno=<ics:getvar name="errno"/>

</cs:ftcs>

addrowJAVA
This is the code in the Java version of the root element:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld" %>
<%//
// Documentation/CatalogManager/addrowJAVA
//%>
<%@ page import="COM.FutureTense.Interfaces.*" %>
<%@ page import="COM.FutureTense.Util.ftMessage"%>
<%@ page import="COM.FutureTense.Util.ftErrors" %>
<cs:ftcs>

<!-- user code here -->
<%
ics.SetVar("errno","0");
FTValList vl = new FTValList();
vl.put("ftcmd","addrow");
vl.put("tablename","EmployeeInfo");
vl.put("id",ics.GetVar("EmployeeID"));
vl.put("phone",ics.GetVar("EmployeePhone"));
vl.put("name",ics.GetVar("EmployeeName"));
ics.CatalogManager(vl);
%>
errno=<%=ics.GetVar("errno")%>

</cs:ftcs>

Deleting a Row
The following example deletes a row from the fictitious EmployeeInfo table described
in the “Adding a Row” on page 248 is section.

This section presents code from the following elements:

• deleterowFORM, an XML element that displays a form that requests an employee
name to delete from the EmployeeInfo table

• deleterowXML, deleterowJSP, and deleterowJAVA, elements that delete a row
from the EmployeeInfo table based on the information sent to it from the
deleterowFORM element

The deleterowFORM Element
The deleterowFORM element displays a form that asks the user to enter an employee
name. This is the code that creates the form:

<?xml version="1.0" ?>
<!DOCTYPE FTCS SYSTEM "futuretense_cs.dtd">
<FTCS Version="1.1">
<!-- Documentation/CatalogManager/deleterowFORM
-->
Content Server 7.0 Developer’s Guide

Chapter 13. Managing Data in Non-Asset Tables

Coding Data Entry Forms
252
<form ACTION="ContentServer" method="post"
REPLACEALL="CS.Property.ft.cgipath">
<input type="hidden" name="pagename" value="Documentation/
CatalogManager/deleterow"/>

<table>
<tr>

<td>Employee name:</td>
<td><input type="text" value="Barton Fooman"

name="EmployeeName" size="22" maxlength="32"/></td>
</tr>
<tr>

<td colspan="2"><input type="submit" name="submit"
value="submit"/></td>

</tr>
</table>
</form>
</FTCS>

The user enters an employee name and clicks the Submit button. The employee name and
the pagename for the deleterow page (see the first input type statement in the
preceding code sample) are sent to the browser.

The browser sends the pagename to Content Server. Content Server looks it up in the
SiteCatalog table and then invokes that page entry’s root element.

Root Element for the deleterow Page
The root element of the deleterow page is responsible for deleting a row from the
EmployeeInfo table, based on the employee name that is sent to it from the
deleterowFORM element.

There can only be one root element for a Content Server page (that is, an entry in the
SiteCatalog table). This section shows three versions of the root element for the
deleterow page:

• deleterowXML.xml

• deleterowJSP.jsp

• deleterowJAVA.jsp

deleterowXML
This is the code in the XML version of the element:

<?xml version="1.0" ?>
<!DOCTYPE FTCS SYSTEM "futuretense_cs.dtd">
<FTCS Version="1.1">
<!-- Documentation/CatalogManager/deleterowXML
-->
<SETVAR NAME="errno" VALUE="0"/>

<CATALOGMANAGER>
<ARGUMENT NAME="ftcmd" VALUE="deleterow"/>
<ARGUMENT NAME="tablename" VALUE="EmployeeInfo"/>
<ARGUMENT NAME="tablekey" VALUE="name"/>
<ARGUMENT NAME="tablekeyvalue" VALUE="Variables.EmployeeName"/>
Content Server 7.0 Developer’s Guide

Chapter 13. Managing Data in Non-Asset Tables

Coding Data Entry Forms
253
</CATALOGMANAGER>

errno=<CSVAR NAME="Variables.errno"/>

</FTCS>

deleterowJSP
This is the code in the JSP version of the element:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld" %>
<%@ taglib prefix="ics" uri="futuretense_cs/ics.tld" %>
<%//
// Documentation/CatalogManager/deleterowJSP
//%>
<%@ page import="COM.FutureTense.Interfaces.*" %>
<%@ page import="COM.FutureTense.Util.ftMessage"%>
<%@ page import="COM.FutureTense.Util.ftErrors" %>
<cs:ftcs>

<!-- user code here -->
<!-- user code here -->
<ics:setvar name="errno" value="0"/>
<ics:catalogmanager>

<ics:argument name="ftcmd" value="deleterow"/>
<ics:argument name="tablename" value="EmployeeInfo"/>
<ics:argument name="name"

value=’<%=ics.GetVar("EmployeeName")%>’/>
</ics:catalogmanager>

errno=<ics:getvar name="errno"/>

</cs:ftcs>

deleterowJAVA
This is the code in the Java version of the element:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld" %>
<%//
// Documentation/CatalogManager/deleterowJAVA
//%>
<%@ page import="COM.FutureTense.Interfaces.*" %>
<%@ page import="COM.FutureTense.Util.ftMessage"%>
<%@ page import="COM.FutureTense.Util.ftErrors" %>
<cs:ftcs>

<%
ics.SetVar("errno","0");
FTValList vl = new FTValList();
vl.put("ftcmd","deleterow");
vl.put("tablename","EmployeeInfo");
vl.put("name",ics.GetVar("EmployeeName"));
ics.CatalogManager(vl);
%>
errno=<%=ics.GetVar("errno")%>

Content Server 7.0 Developer’s Guide

Chapter 13. Managing Data in Non-Asset Tables

Coding Data Entry Forms
254
</cs:ftcs>

Querying a Table
The following sample elements query the fictitious EmployeeInfo table for an
employee’s name, extract the employee name and displays it in a browser, prompts the
user to edit the information, and then writes the edited information to the database.

This section presents code from the following elements:

• SelectNameForm, an XML element that displays a form that requests an employee’s
name.

• Three versions of the QueryEditRowForm element (XML, JSP, and Java), an
element that locates the employee name and loads the information about that
employee into a form that the employee can use to edit his or her information

• Three versions of the QueryEditRow element (XML, JSP, and Java), an element that
writes the newly edited information to the database.

The SelectNameForm Element
The SelectNameForm element displays a simple form that requests the name of the
employee who is altering his employee information. This is the code:

<?xml version="1.0" ?>
<!DOCTYPE FTCS SYSTEM "futuretense_cs.dtd">
<FTCS Version="1.1">
<!-- Documentation/CatalogManager/SelectNameForm
-->

<form ACTION="ContentServer" method="post">
<input type="hidden" name="pagename" value="Documentation/
CatalogManager/QueryEditRowForm"/>
<TABLE>
<TR>

<TD>Employee name: </TD>
<TD><INPUT type="text" value="" name="EmployeeName" size="22"
maxlength="32"/></TD>

</TR>
<TR>

<TD COLSPAN="100%" ALIGN="CENTER">
<input type="submit" name="doit" value="Submit"/></TD>

</TR>
</TABLE>
</form>
</FTCS>

When the employee clicks the Submit button, the information gathered in the Employee
Name field and the name of the QueryEditRowForm page (see the first input type
statement in the preceding code sample) is sent to the browser.

The browser sends the pagename to Content Server. Content Server looks up the
pagename in the SiteCatalog table, and then invokes that page entry’s root element,
QueryEditRowForm.
Content Server 7.0 Developer’s Guide

Chapter 13. Managing Data in Non-Asset Tables

Coding Data Entry Forms
255
The Root Element for the QueryEditRowForm Page
The root element for the QueryEditRowForm page locates the row in the
EmployeeInfo table that matches the string entered in the Employee Name field and
then loads the data from that row into a new form. The employee can edit her name and
phone number but cannot edit her id. The form looks like this:

There can only be one root element for a Content Server page (that is, an entry in the
SiteCatalog table). This section shows three versions of the root element for the
QueryEditRowForm page:

• QueryEditRowFormXML.xml

• QueryEditRowFormJSP.jsp

• QueryEditRowFormJAVA.jsp

QueryEditRowFormXML
This is the code in the XML version of the element:

<?xml version="1.0" ?>
<!DOCTYPE FTCS SYSTEM "futuretense_cs.dtd">
<FTCS Version="1.1">
<!-- Documentation/CatalogManager/QueryEditRowFormXML
-->

<SETVAR NAME="errno" VALUE="0"/>
<SETVAR NAME="name" VALUE="Variables.EmployeeName"/>
<SELECTTO FROM="EmployeeInfo"

WHERE="name"
WHAT="*"
LIST="MatchingEmployees"/>

<IF COND="Variables.errno=0">
<THEN>

<form ACTION="ContentServer" method="post">
<input type="hidden" name="pagename" value="Documentation/
CatalogManager/QueryEditRow"/>
<input type="hidden" name="MatchingID"
value="MatchingEmployees.id" REPLACEALL="MatchingEmployees.id"/
>
<TABLE>
<TR>

<TD COLSPAN="100%" ALIGN="CENTER">
<H3>Change Employee Information</H3>
</TD>
Content Server 7.0 Developer’s Guide

Chapter 13. Managing Data in Non-Asset Tables

Coding Data Entry Forms
256
</TR>
<TR>

<TD>Employee id number: </TD>
<TD><CSVAR NAME="MatchingEmployees.id"/></TD>

</TR>
<TR>
<TD>Employee name: </TD>
<TD><INPUT type="text" value="MatchingEmployees.name"

name="NewEmployeeName" size="22" maxlength="32"
REPLACEALL="MatchingEmployees.name"/></TD>
</TR>
<TR>

<TD>Phone number: </TD>
<TD><INPUT type="text" value="MatchingEmployees.phone"

name="NewEmployeePhone" size="12" maxlength="16"
REPLACEALL="MatchingEmployees.phone"/></TD>
</TR>
<TR>

<TD colspan="100%" align="center">
<input type="submit" name="doit" value="Change"/></TD>

</TR>
</TABLE>
</form>

</THEN>
<ELSE>

<P>Could not find this employee.</P>
<CALLELEMENT NAME="Documentation/CatalogManager/
SelectNameFormXML"/>

</ELSE>
</IF>
</FTCS>

When the employee clicks the Change button, the information gathered from the two
fields and the name of the QueryEditRow page is sent to the browser.

The browser sends the pagename and the field information to Content Server. Content
Server looks up the pagename in the SiteCatalog table, and then invokes that page
entry’s root element.

QueryEditRowFormJSP
This is the code in the JSP version of the element:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld" %>
<%@ taglib prefix="ics" uri="futuretense_cs/ics.tld" %>
<%//
// Documentation/CatalogManager/QueryEditRowFormJSP
//%>
<%@ page import="COM.FutureTense.Interfaces.*" %>
<%@ page import="COM.FutureTense.Util.ftMessage"%>
<%@ page import="COM.FutureTense.Util.ftErrors" %>
<cs:ftcs>

<ics:setvar name="errno" value="0"/>
<ics:setvar name="name" value=’<%=ics.GetVar("EmployeeName")%>’/>
Content Server 7.0 Developer’s Guide

Chapter 13. Managing Data in Non-Asset Tables

Coding Data Entry Forms
257
<ics:selectto table="EmployeeInfo"
where="name"
what="*"
listname="MatchingEmployees"/>

<ics:if condition=’<%=ics.GetVar("errno").equals("0")%>’>
<ics:then>

<form action="ContentServer" method="post">
<input type="hidden" name="pagename" value="Documentation/
CatalogManager/QueryEditRow"/>
<input type="hidden" name="MatchingID" value="<ics:listget
listname=’MatchingEmployees’ fieldname=’id’/>"/>

<TABLE>
<TR>

<TD COLSPAN="100%" ALIGN="CENTER">
<H3>Change Employee Information</H3>

</TD>
</TR>
<TR>

<TD>Employee id number: </TD>
<TD><ics:listget listname=’MatchingEmployees
fieldname=’id’/></TD>

</TR>
<TR>

<TD>Employee name: </TD>
<TD><INPUT type="text" value="<ics:listget

listname=’MatchingEmployees’ fieldname=’name’/>"
name="NewEmployeeName" size="22" maxlength="32"/></TD>

</TR>
<TR>

<TD>Phone number: </TD>
<TD><INPUT type="text" value="<ics:listget

listname=’MatchingEmployees’ fieldname=’phone’/>"
name="NewEmployeePhone" size="12"

maxlength="16"/>
</TD>

</TR>
<TR>

<TD colspan="100%" align="center">
<input type="submit" name="doit" value="Change"/></TD>

</TR>
</TABLE>
</form>

</ics:then>
<ics:else>

<P>Could not find this employee.</P>
<ics:callelement element="Documentation/CatalogManager/

SelectNameForm"/>
</ics:else>
</ics:if>

</cs:ftcs>
Content Server 7.0 Developer’s Guide

Chapter 13. Managing Data in Non-Asset Tables

Coding Data Entry Forms
258
When the employee clicks the Change button, the information gathered from the two
fields and the name of the QueryEditRow page is sent to the browser.

The browser sends the pagename and the field information to Content Server. Content
Server looks up the pagename in the SiteCatalog table, and then invokes that page
entry’s root element.

QueryEditRowFormJAVA
This is the code in the Java version of the element:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld" %>
<%//
// Documentation/CatalogManager/QueryEditRowFormJAVA
<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld" %>
<%//
// Documentation/CatalogManager/QueryEditRowFormJAVA
//%>
<%@ page import="COM.FutureTense.Interfaces.*" %>
<%@ page import="COM.FutureTense.Util.ftMessage"%>
<%@ page import="COM.FutureTense.Util.ftErrors" %>
<cs:ftcs>

<!-- user code here -->
<%
ics.SetVar("errno","0");
ics.SetVar("name",ics.GetVar("EmployeeName"));
StringBuffer errstr = new StringBuffer();
IList matchingEmployees = ics.SelectTo("EmployeeInfo",// tablename

*", // what
"name", // where
"name", // orderby
1, // limit
null, // ics list name
true, // cache?
errstr); // error StringBuffer

if ("0".equals(ics.GetVar("errno")) && matchingEmployees!=null &&
matchingEmployees.hasData())
{

%>
<form action="ContentServer" method="post">
<input type="hidden" name="pagename"

value="Documentation/CatalogManager/QueryEditRow"/>
<%
String id = matchingEmployees.getValue("id");
String name = matchingEmployees.getValue("name");
String phone = matchingEmployees.getValue("phone");
%>
<input type="hidden" name="MatchingID" value="<%=id%>"/>
<TABLE>
<TR>

<TD COLSPAN="100%" ALIGN="CENTER">
<H3>Change Employee Information</H3>
Content Server 7.0 Developer’s Guide

Chapter 13. Managing Data in Non-Asset Tables

Coding Data Entry Forms
259
</TD>
</TR>
<TR>

<TD>Employee id number: </TD>
<TD><%=id%></TD>

</TR>
<TR>

<TD>Employee name: </TD>
<TD><INPUT type="text" value="<%=name%>"

name="NewEmployeeName" size="22" maxlength="32"/></TD>
</TR>
<TR>

<TD>Phone number: </TD>
<TD><INPUT type="text" value="<%=phone%>"

name="NewEmployeePhone" size="12" maxlength="16"/></TD>
</TR>
<TR>

<TD colspan="100%" align="center">
<input type="submit" name="doit" value="Change"/></TD>

</TR>
</TABLE>
</form>

<%
}
else
{

%> <P>Could not find this employee.</P>
<%

ics.CallElement("Documentation/CatalogManager/
SelectNameForm",null);

}
%>
</cs:ftcs>

When the employee clicks the Change button, the information gathered from the two
fields and the name of the QueryEditRow page is sent to the browser.

The browser sends the pagename and the field information to Content Server. Content
Server looks up the pagename in the SiteCatalog table, and then invokes that page
entry’s root element.

The Root Element for the QueryEditRow Page
The root element for the QueryEditRow page writes the information that the employee
entered into the Employee Name and Phone number fields and updates the row in the
database.

There can only be one root element for a Content Server page (that is, an entry in the
SiteCatalog table). This section shows three versions of the root element for the
QueryEditRow page:

• QueryEditRowXML.xml

• QueryEditRowJSP.jsp

• QueryEditRowJAVA.jsp
Content Server 7.0 Developer’s Guide

Chapter 13. Managing Data in Non-Asset Tables

Coding Data Entry Forms
260
QueryEditRowXML
This is the code in the XML version of the element:

<?xml version="1.0" ?>
<!DOCTYPE FTCS SYSTEM "futuretense_cs.dtd">
<FTCS Version="1.1">
<!-- Documentation/CatalogManager/QueryEditRowXML
-->

<SETVAR NAME="errno" VALUE="0"/>

<CATALOGMANAGER>
<ARGUMENT NAME="ftcmd" VALUE="updaterow"/>
<ARGUMENT NAME="tablename" VALUE="EmployeeInfo"/>
<ARGUMENT NAME="id" VALUE="Variables.MatchingID"/>
<ARGUMENT NAME="name" VALUE="Variables.NewEmployeeName"/>
<ARGUMENT NAME="phone" VALUE="Variables.NewEmployeePhone"/>

</CATALOGMANAGER>

<IF COND="Variables.errno=0">
<THEN>

<P>Successfully updated the database.</P>
</THEN>
<ELSE>

<P>Failed to update the information in the database.</P>
</ELSE>
</IF>
</FTCS>

QueryEditRowJSP
This is the code in the JSP version of the element:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld" %>
<%@ taglib prefix="ics" uri="futuretense_cs/ics.tld" %>
<%//
// Documentation/CatalogManager/QueryEditRowJSP
//%>
<%@ page import="COM.FutureTense.Interfaces.*" %>
<%@ page import="COM.FutureTense.Util.ftMessage"%>
<%@ page import="COM.FutureTense.Util.ftErrors" %>
<cs:ftcs>

<ics:setvar name="errno" value="0"/>

<ics:catalogmanager>
<ics:argument name="ftcmd" value="updaterow"/>
<ics:argument name="tablename" value="EmployeeInfo"/>
<ics:argument name="id"

value="<%=ics.GetVar("MatchingID")%>"/>
<ics:argument name="name"
value=’<%=ics.GetVar("NewEmployeeName")%>’/>
<ics:argument name="phone"
value=’<%=ics.GetVar("NewEmployeePhone")%>’/>
Content Server 7.0 Developer’s Guide

Chapter 13. Managing Data in Non-Asset Tables

Coding Data Entry Forms
261
</ics:catalogmanager>

<ics:if condition=’<%=ics.GetVar("errno").equals("0")%>’>
<ics:then>

<P>Successfully updated the database.</P>
</ics:then>
<ics:else>

<p>failed to update the information in the database.
errno=<ics:getvar name=’errno’/></p>

</ics:else>
</ics:if>

</cs:ftcs>

QueryEditRowJAVA
This is the code in the Java version of the element:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld" %>
<%//
// Documentation/CatalogManager/QueryEditRowJAVA
//%>
<%@ page import="COM.FutureTense.Interfaces.*" %>
<%@ page import="COM.FutureTense.Util.ftMessage"%>
<%@ page import="COM.FutureTense.Util.ftErrors" %>
<cs:ftcs>

<!-- user code here -->
<%
ics.SetVar("errno","0");

FTValList args = new FTValList();
args.put("ftcmd","updaterow");
args.put("tablename","EmployeeInfo");
args.put("id",ics.GetVar("MatchingID"));
args.put("name",ics.GetVar("NewEmployeeName"));
args.put("phone",ics.GetVar("NewEmployeePhone"));

ics.CatalogManager(args);

if("0".equals(ics.GetVar("errno")))
{

%><P>Successfully updated the database.</P><%
}
else
{

%><p>failed to update the information in the database.
errno=<ics:getvar name=’errno’/></p><%

}
%>
</cs:ftcs>
Content Server 7.0 Developer’s Guide

Chapter 13. Managing Data in Non-Asset Tables

Coding Data Entry Forms
262
Querying a Table with an Embedded SQL Statement
The following example shows another method of searching for a name in a table. This
example also searches the fictitious EmployeeInfo table, returning the rows that match
the string supplied by a user, but this time the code uses a SQL query rather than a
SELECTTO statement.

This section presents code from the following elements:

• QueryInlineSQLForm, an XML element that displays a form that requests a movie
title

• Three versions of the QueryInlineSQL element (XML, JSP, and Java), an element
that searches the EmployeeInfo table for names that contain the string entered by the
user in the preceding form

QueryInlineSQLForm
The QueryInlineSQL element displays a simple form that requests the name to use to
search the EmployeeInfo table for. This is the code:

<?xml version="1.0" ?>
<!DOCTYPE FTCS SYSTEM "futuretense_cs.dtd">
<FTCS Version="1.1">
<!-- Documentation/CatalogManager/QueryInlineSQLForm
-->
<form ACTION="ContentServer" method="post">
<input type="hidden" name="pagename" value="Documentation/
CatalogManager/QueryInlineSQL"/>

<table>
<tr>

<td>Employee Name:</td>
<td><input type="text" value="Foo,Bar"

name="EmployeeName" size="22" maxlength="32"/></td>
</tr>
<tr>

<td colspan="2"><input type="submit" name="submit"
value="submit"/></td>

</tr>
</table>

</form>
</FTCS>

When the user clicks the Submit button, the information gathered in the Employee Name
field and the name of the QueryInlineSQL page is sent to the browser.

The browser sends the pagename of the QueryInlineSQL page to Content Server.
Content Server looks up the pagename in the SiteCatalog table, and then invokes that
page entry’s root element.

The Root Element for the QueryInlineSQL Page
The root element for the QueryInlineSQL page executes an inline SQL statement that
searches the EmployeeInfo table for entries that match the string sent to it from the
QueryInlineSQLForm element.
Content Server 7.0 Developer’s Guide

Chapter 13. Managing Data in Non-Asset Tables

Coding Data Entry Forms
263
There can only be one root element for a Content Server page (that is, an entry in the
SiteCatalog table). This section shows three versions of the root element for the
QueryInlineSQL page:

• QueryInlineSQLXML.xml,which uses the EXECSQL XML tag to create the SQL
query

• QueryInlineSQLJSP.jsp,which uses the ics:sql JSP tag to create the SQL
query

• QueryInlineSQLJAVA.jsp,which uses the ics.CallSQL Java method to create
the SQL query

QueryInlineSQLXML
This is the code in the XML version of the element:

<!DOCTYPE FTCS SYSTEM "futuretense_cs.dtd">
<FTCS Version="1.1">
<!-- Documentation/CatalogManager/QueryInlineSQLXML
-->

<SETVAR NAME="tablename" VALUE="EmployeeInfo"/>

<SQLEXP OUTSTR="MySQLExpression"
TYPE="OR"
VERB="LIKE"
STR="Variables.EmployeeName"
COLNAME="name"/>

<EXECSQL
SQL="SELECT id,name,phone FROM Variables.tablename WHERE

Variables.MySQLExpression"
LIST="ReturnedList"
LIMIT="5"/>

<table border="1" bgcolor="99ccff">
<tr>

<th>id</th>
<th>name</th>
<th>phone</th>

</tr>

<LOOP LIST="ReturnedList">
<tr>

<td><CSVAR NAME="ReturnedList.id"/></td>
<td><CSVAR NAME="ReturnedList.name"/></td>
<td><CSVAR NAME="ReturnedList.phone"/></td>

</tr>
</LOOP>
</table>

</FTCS>

Notice that the SQL statement is not actually embedded in the EXECSQL tag. Instead, a
preceding SQLEXP tag creates a SQL expression which is passed as an argument to the
Content Server 7.0 Developer’s Guide

Chapter 13. Managing Data in Non-Asset Tables

Coding Data Entry Forms
264
EXECSQL call. The EXECSQL tag performs the search and returns the results to the list
variable named ReturnedList.

Also notice that the first line of code in the body of the element creates a variable named
tablename and sets the value to EmployeeInfo, the name of the table that is being
queried. This enables CatalogManager to cache the resultset against the correct table.

QueryInlineSQLJSP
This is the code in the JSP version of the element:

<?xml version="1.0" ?>
<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld" %>
<%@ taglib prefix="ics" uri="futuretense_cs/ics.tld" %>
<%//
// Documentation/CatalogManager/QueryInlineSQLJSP
//%>
<%@ page import="COM.FutureTense.Interfaces.*" %>
<%@ page import="COM.FutureTense.Util.ftMessage"%>
<%@ page import="COM.FutureTense.Util.ftErrors" %>
<cs:ftcs>

<!-- user code here -->
<ics:setvar name="tablename" value="EmployeeInfo"/>

<%
// no ics:sqlexp tag, must do in java
String sqlexp =
ics.SQLExp("EmployeeInfo","OR","LIKE",ics.GetVar("EmployeeName"),"
name");
String sql = "SELECT id,name,phone FROM
"+ics.GetVar("tablename")+" WHERE "+sqlexp;
%>
<ics:sqltable=’<%=ics.GetVar("tablename")%>’

sql=’<%=sql%>’
listname="ReturnedList"
limit="5"/>

<table border="1" bgcolor="99ccff">
<tr>

<th>id</th>
<th>name</th>

<th>phone</th>
</tr>

<ics:listloop listname="ReturnedList">
<tr>
<td><ics:listget listname="ReturnedList" fieldname="id"/></td>
<td><ics:listget listname="ReturnedList" fieldname="name"/></
td>
<td><ics:listget listname="ReturnedList" fieldname="phone"/></
td>
</tr>

</ics:listloop>
Content Server 7.0 Developer’s Guide

Chapter 13. Managing Data in Non-Asset Tables

Coding Data Entry Forms
265
</table>

</cs:ftcs>

Notice that the SQL statement is not actually embedded in the ics:sql tag. Instead, a
preceding Java expression creates a SQL expression that is passed as an argument to the
ics:sqlcall. (The code example uses Java because there is no JSP equivalent of the
SQLEXP tag.) The ics:sql tag performs the search and returns the results to the list
variable named ReturnedList.

Also notice that the first line of code in the body of the element creates a variable named
tablename and sets the value to EmployeeInfo, the name of the table that is being
queried. This enables CatalogManager to cache the resultset against the correct table.

QueryInlineSQLJava
This is the code in the Java version of the element:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld" %>
<%//
// Documentation/CatalogManager/QueryInlineSQLJAVA
//%>
<%@ page import="COM.FutureTense.Interfaces.*" %>
<%@ page import="COM.FutureTense.Util.ftMessage"%>
<%@ page import="COM.FutureTense.Util.ftErrors" %>
<cs:ftcs>

<%

ics.SetVar("tablename","EmployeeInfo");

String sqlexp = ics.SQLExp(ics.GetVar("tablename"),"OR","LIKE",
ics.GetVar("EmployeeName"),"name");
String sql = "SELECT id,name,phone FROM
"+ics.GetVar("tablename")+" WHERE "+sqlexp;
StringBuffer errstr = new StringBuffer();

IList list =
ics.SQL(ics.GetVar("tablename"),sql,null,5,true,errstr);

%>

<table border="1" bgcolor="99ccff">
<tr>

<th>id</th>
<th>name</th>
<th>phone</th>

</tr>

<%

while (true)
{
%>
Content Server 7.0 Developer’s Guide

Chapter 13. Managing Data in Non-Asset Tables

Managing the Data Manually
266
<tr>
<td><%=list.getValue("id")%></td>
<td><%=list.getValue("name")%></td>
<td><%=list.getValue("phone")%></td>

</tr>
<%

if (list.currentRow() == list.numRows())
break;

list.moveTo(list.currentRow()+1);
}
%>

</table>
</cs:ftcs>

Notice that the SQL statement is not actually embedded in the ics.SQL statement.
Instead, a preceding ics.SQLExp statement creates a SQL expression which is passed as an
argument to the EXECSQL call. The ics.SQL statement performs the search and returns
the results to the list variable named ReturnedList.

Also notice that this code also creates a variable named tablename and sets the value to
EmployeeInfo (the name of the table that is being queried), before the code for the
query. This enables CatalogManager to cache the resultset against the correct table.

Managing the Data Manually
You can add data to a table manually with either the Content Server Explorer tool or the
forms in the Content Server Management Tools.

Content Server Explorer is the right choice in the following situations:

• If you are creating a page entry for a new page in the SiteCatalog table.

• If you are creating a row for an element in the ElementCatalog table and are coding
that element with the editor in Content Server Explorer.

• If you need to add a small amount of data to a table that you have created to support
some function of your site. That is, to add a small amount of data to a table that does
not hold assets. (For example, to add rows to the MimeType table.)

Content Server Explorer has online help that you can use if you need information about
adding, editing, or deleting rows. Additionally, Chapter 4, “Programming with Content
Server,” in this guide describes how to add page entries to the SiteCatalog table and
elements to the ElementCatalog table.

The Content Server Management Tools are the right choice in the following situations:

• To add users or ACLs to the system.

• When you want to modify the cache settings for a page entry in the SiteCatalog
table. Typically it is easier to complete this task in the “ContentManagement” form
than it is to enter the information directly into the column using Content Server
Explorer.

The Content Server Management Tools are documented in the Content Server
Administrator’s Guide.
Content Server 7.0 Developer’s Guide

Chapter 13. Managing Data in Non-Asset Tables

Deleting Non-Asset Tables
267
Deleting Non-Asset Tables
Note that if you delete a non-asset table that is being revision tracked from the database,
the tracking table will not be removed. To prevent this, be sure that you disable revision
tracking for the table before deleting it.
Content Server 7.0 Developer’s Guide

Chapter 13. Managing Data in Non-Asset Tables

Deleting Non-Asset Tables
268
Content Server 7.0 Developer’s Guide

269
Chapter 14

Resultset Caching and Queries
The CatalogManager servlet (and its API) maintains the resultset cache on your Content
Server systems. This chapter describes how to enable resultset caching and how to create
queries that allow CatalogManager to accurately cache resultsets and to then flush those
resultsets from the cache.

You or your system administrators set up resultset caching on all three systems
(development, management, and delivery).

This chapter contains the following sections:

• Overview

• How Content Server Identifies a Resultset

• Specifying the Table Name

• Flushing the Resultset Cache

• Enabling Resultset Caching

• Summary
Content Server 7.0 Developer’s Guide

Chapter 14. Resultset Caching and Queries

Overview
270
Overview
Whenever the database is queried, the Content Server serves a resultset—either a cached
resultset or an uncached resultset. Resultset caching reduces the load on your database and
improves the response time for queries.

The futuretense.ini file provides global properties that set the size and timeout
periods for all resultsets. You can add table-specific properties to the futuretense.ini
file that override the default settings on a table-by-table basis. These custom properties
enable you to fine-tune your systems for peak performance.

Database Queries
There are several ways to query the Content Server database for information. For
example:

• With the ics.SelectTo Java method, SELECTTO XML tag, or ics:selectto JSP
tag

• With the selectrow command of the ics.CatalogManager Java method, the
CATALOGMANAGER XML tag, and the ics:catalogmanager JSP tag

• With the ics.SQL Java method, EXECSQL XML tag, or ics:sql JSP tag

• With the ics.CallSQL Java method, CALLSQL XML tag, or ics:callsql JSP tag

• Through the “Search” forms in the Content Server interface

• With a query asset

• With a SEARCHSTATE XML or JSP tag (flex assets only)

How Resultset Caching Works
When the database is queried, the resultset from the query is cached if resultset caching is
enabled. Then, if someone runs the same query and the data in the table has not changed
since the last time the query was run, Content Server serves the information from the
resultset cache rather than querying the database again.

Serving a resultset from the cache is always faster than performing another database
lookup.

The resultset cache is a hash table held in Java memory. The resultsets in this hash table
are organized by the name of the table that was associated with the query that generated
the resultset. In other words, resultsets are cached against a table name.

Each time a table is updated (from either the Content Server interface or through a
CatalogManager command in your custom elements), all the resultsets in the cache for
that table are flushed. Resultsets are cached in the context of a single Java VM. Although
Java VMs do not share resultsets, Content Server sends a signal to all the Java VMs in a
cluster to flush the resultsets when they become invalid, as long as the synchronization
feature has been enabled on all servers in the cluster (the ft.synch property in the
futuretense.ini file).
Content Server 7.0 Developer’s Guide

Chapter 14. Resultset Caching and Queries

How Content Server Identifies a Resultset
271
Reducing the Load on the Database
Resultset caching reduces the load on your database in two ways:

• Serving a cached resultset does not open a database connection. Content Server
attempts to obtain a resultset from the cache before it contacts the database. If the
correct resultset exists, no contact is made with the database.

• When resultset caching is enabled but the appropriate resultset is not cached, Content
Server obtains the resultset, stores it in the cache as an object, and then releases the
database connection.

When resultset caching is not enabled, Content Server cannot close the database
connection until either the online page is completely rendered or the uncached
resultset is explicitly flushed from the scope with a flush tag. When this occurs, your
available database connections can be quickly used up (even on a relatively simple
page).

As a general rule, resultset caching should be enabled for all of your database tables.
Although there are times when you might need to limit either the number of resultsets that
are cached or the length of time that they are cached for, it is rarely a good idea to disable
resultset caching altogether.

How Content Server Identifies a Resultset
The resultset cache is a hash table and the key that identifies an individual resultset for a
given table name is the combination of the values of two database connection properties
plus the text string of the query itself.

For example, the hash name used to identify a resultset from a table in the Content Server
database is created as follows:

The value of the cs.dsn property from the futuretense.ini file + the value of the
cs.privuser property from the futuretense.ini file + the actual query string.

If you query a remote database (remember that you must first use the
ics.LoadProperty method or the LOADPROPERTY tag to specify the property file that
identifies that remote database before the statement of the query), the hash name is created
with the cs.dns and cs.privuser properties from the property file used to identify that
database.

This means that if you run queries against a remote database and any of the table names
are the same as a table name in the Content Server database, the hash names of the
resultsets for those queries will be different even though they will be listed under the same
table name in the cache (that is, the hash map is the same). This means that Content Server
can flush the correct resultset when a table is updated.

If you do not load the property file for another database before running the query, Content
Server assumes that it is connecting to the Content Server database.

Note

Never disable resultset caching on the ElementCatalog table. If you do, the
performance of your system will suffer greatly, especially if you are using JSP in
any of your elements.
Content Server 7.0 Developer’s Guide

Chapter 14. Resultset Caching and Queries

Specifying the Table Name
272
Specifying the Table Name
There must always be a table name associated with a query so that the resultset can be
cached against that table. Then, whenever that table is updated through the Content Server
interface or your own custom elements, CatalogManager flushes all the resultsets
associated with that table.

The way that the table name is specified for a resultset depends on the type of query you
are running. The following sections describe the most commonly used methods for
querying the database and how you specify the table name for such a query.

SELECTTO
When you use the ics.SelectTo Java method, SELECTTO XML tag, or ics:selectto JSP tag, you
must specify the name of the table with a FROM parameter (clause). For example:

<SELECTTO FROM="EmployeeInfo"
 WHERE="name"
 WHAT="*"
 LIST="MatchingEmployees"/>

In this case, EmployeeInfo is the name of the table that is being queried and is the name
of the table that the resultset is cached against. Whenever the EmployeeInfo table is
updated, CatalogManager flushes all the resultsets cached against it.

EXECSQL
EXECSQL allows you to execute an inline SQL statement. You specify the table or tables
that you want to cache the resultset against using the TABLE parameter. If you specify
multiple tables (by using a comma-separated list), the resultset will be cached against the
first table in the list. Note that this means the resultset will be cached based on the resultset
cache settings specified for the first table, including timeout and maximum size.

CatalogManager deletes outdated resultsets as the specified tables are updated.

For example, the following query caches the resultset against the article table:

<EXECSQL SQL="SELECT article.headline, images.imagefile FROM
article,images WHERE article.id=’FTX1EE17FWB’ AND
images.id=’FTK9384FWW’" LIST="sqlresult" TABLE="article,images"/>

CALLSQL
When you use the ics.CallSQL Java method, CALLSQL XML tag, or ics:callsql JSP
tag to invoke a SQL query that is stored in the SystemSQL table, the table name is set by
the query’s entry (row) in the SystemSQL table.

The SystemSQL table has a deftable column that identifies the table name that the
resultset from the query should be cached against. You can specify multiple tables by
putting a comma-separated list of tables in the deftable column. The first table in the list
is the table that the query is cached against.

Each query stored in the table must have a value in the deftable column. If it does not,
CatalogManager cannot store the resultsets accurately, which means they cannot be
flushed when it is necessary. Note that the table name must identify an existing table. If
Content Server 7.0 Developer’s Guide

Chapter 14. Resultset Caching and Queries

Flushing the Resultset Cache
273
you enter the name of a table that does not exist yet or if you misspell the name of the
table, the resultset cannot be cached correctly.

Search Forms in the Content Server Interface
The “Search” forms that you use to look for assets in the Content Server interface search
by asset type. The resultsets from the search form queries are stored against the primary
storage table for assets of that type.

For example, for the Burlington Financial sample site asset named article, those resultsets
are cached against the Article table; for page assets, it is the Page table; and so on.

Query Asset
Query assets can return assets of one type only. When you create a query asset, you
specify what kind of asset the query asset returns in the Result of Query field: articles, or
imagefiles and so on.

When that query asset is used on a page in the online site, Content Server stores the
resultset against the table name of the primary storage table for the asset type that the
query asset returns: Article or Imagefile, and so on.

SEARCHSTATE
The CS-Direct Advantage SEARCHSTATE XML and JSP tags create a set of search
constraints that are applied to a list or set of flex assets (created with the ASSETSET tags).
A constraint can be either a filter (restriction) based on the value of an attribute or based
on another searchstate (called a nested searchstate).

You use the SEARCHSTATE and ASSETSET tags to extract and display flex assets or flex
parent assets (not definitions or flex attributes) on your online pages for your visitors.

Content Server caches the resultsets of searchstates against the _Mungo table for the flex
asset type. For example, if the searchstate returns the GE Lighting sample site flex asset
named product, the resultset is cached against the Products_Mungo table.

When you configure the delivery system, be sure to add resultset caching properties for all
of your _Mungo tables.

Flushing the Resultset Cache
In most cases, data is written to the database through the CatalogManager API, which
flushes the resultset cache when it is appropriate to do so. For example:

• If you use Content Server Explorer to add a row to a table (the SiteCatalog table or
the ElementCatalog table, for example), CatalogManager flushes all the resultsets
cached against that table.

• If you use a form in the Content Server interface to add or edit an asset, a source, a
category, a workflow process, a user, an ACL and so on, CatalogManager flushes the
resultsets cached against the tables that are written to.

• If you use CatalogManager commands in an element of your own to update a single
table, Catalog Manager automatically flushes the resultsets cached against that table.
Content Server 7.0 Developer’s Guide

Chapter 14. Resultset Caching and Queries

Enabling Resultset Caching
274
• If you use CatalogManager commands in an element of your own to update multiple
(joined) tables, Catalog Manager automatically flushes the resultsets cached against
the joined tables.

• If you use the CALLSQL tag to execute a SQL statement that is stored in the
SystemSQL table, Catalog Manager automatically updates the resultsets cached
against the table or tables specified in the deftable column.

Enabling Resultset Caching
The following table presents the three properties in the futuretense.ini file that
control the resultset cache for all tables that you have not added table-specific caching
properties for:

To change these properties, open the futuretense.ini file with the Property Editor
utility and modify them. For information about using the Property Editor utility, see
Chapter 8, “Content Server Tools and Utilities.”

property description

cc.cacheResults The default number of resultsets to cache in memory.
Note that this does not mean the number of records in a
resultset, but the number of resultsets.

Setting this value to -1 disables resultset caching for all
tables that do not have their own caching properties
configured.

cc.cacheResultsTimeout The default amount of time (number of minutes) to
keep a resultset cached in memory.

Setting this value to -1 means that there is no timeout
value for tables that do not have their own caching
properties configured.

cc.cacheResultsAbs How to calculate the expiration time.

If the value is set to true, the expiration time for a
resultset is absolute. If the timeout is set to 5 minutes,
then 5 minutes after it was cached, it is flushed.

If the value is set to false, the expiration time for a
resultset is based on its idle time. For example, if the
timeout is set to 5 minutes, it is flushed 5 minutes after
the last time it was requested rather than 5 minutes
since it was originally cached.
Content Server 7.0 Developer’s Guide

Chapter 14. Resultset Caching and Queries

Summary
275
Table-Specific Properties
CatalogManager not only uses the properties described in the preceding table, it also
checks the futuretense.ini file to see if there are any custom resultset caching
properties for specific tables.

You can create three resultset caching properties for each table in the Content Server
database. They work the same was as do the default properties defined in the table in the
preceding section. All system tables have these properties set for them.

The syntax for your custom properties is as follows:

cc.<tablename>Csz=<number of resultsets>
cc.<tablename>Timeout=<number of minutes>
cc.<tablename>Abs=<true or false>

These custom properties enable you to fine-tune your systems for peak performance.

Open the futuretense.ini file in the Property Editor utility and add table-specific
properties for each table that you want to control. (For information about using the
Property Editor utility, see Chapter 8, “Content Server Tools and Utilities.”)

Planning Your Resultset Caching Strategy
Before you configure resultset caching for your database, create a spreadsheet of all the
tables in your Content Server database, assemble a team of developers and database
administrators, and discuss what the settings should be for all of your systems—
development, management, testing, and delivery.

One strategy to use is to identify a large group of similar tables that you can use the default
properties for and then add table-specific properties for the exceptions.

To tune your delivery system for the best performance possible, however, it is likely that
you will create a custom properties for each table in the database on that system—at the
very least, 50-100 of them.

Summary
Resultset caching reduces the load on your database and improves the response time for
queries. Be sure to do the following:

• Set the default resultset caching properties in the futuretense.ini file to values
that make sense on each of your systems—development, management, testing, and
delivery.

• Add table-specific resultset caching properties to the futuretense.ini file to fine-
tune the performance of all of your systems—development, management, testing, and
delivery.

• Provide the correct table name for all of your queries so the resultsets are cached
correctly and can be flushed correctly.

Note

If you set the ft.cachedebug property to yes, debugging messages about the
resultset cache are written to the futuretense.txt log file.
Content Server 7.0 Developer’s Guide

Chapter 14. Resultset Caching and Queries

Summary
276
Content Server 7.0 Developer’s Guide

277
Chapter 15

Designing Basic Asset Types
As mentioned in Chapter 11, “Data Design: The Asset Models,” the data model for basic
asset types is one database table per asset type. Each asset of that type is stored in that
table.

You create new basic asset types with the AssetMaker utility. Typically you create them on
a development system and then, when they are ready, you migrate your work from the
development system to the management and delivery systems.

This chapter contains the following sections:

• The AssetMaker Utility

• Creating Basic Asset Types

• Deleting Basic Asset Types

• Images and eWebEditPro
Content Server 7.0 Developer’s Guide

Chapter 15. Designing Basic Asset Types

The AssetMaker Utility
278
The AssetMaker Utility
AssetMaker is the CS-Direct utility that you use to create new basic asset types.

Your first step is to define the basic asset type outside Content Server by coding an .xml
file called an asset descriptor file, using AssetMaker XML tags. The asset descriptor file
defines properties for the new asset type. The term property means both a column in a
database table and a field in a CS-Direct form.

Your next step is to upload the file to Content Server and use AssetMaker to create two
items: a database table for the new asset type, and the CS-Direct elements which generate
the forms that you and others will use when working with assets of the new type (creating,
editing, copying, and so on). Figure 4 on page 280 shows the relationship of a database
table to a form (a content-entry form, in this example) and how columns are interpreted as
fields when the form is rendered.

How AssetMaker Works
Using AssetMaker to create a new basic asset type involves four general steps:

1. Code the asset descriptor file.

This chapter describes asset descriptor files and coding them. The Content Server Tag
Reference includes a chapter that describes all of the AssetMaker tags.

2. Upload the file.

When you upload the asset descriptor file, AssetMaker creates a row in the
AssetType table and copies the asset descriptor file to that row.

3. Create the table.

When you click the Create Asset Table button, AssetMaker does the following:

- Parses the asset descriptor file.
- Creates the primary storage table for assets of that type. The name of the table

matches the name of the asset type identified in the asset descriptor file. The data
type of each column is defined by statements in the file as well.
In addition to the columns defined in the asset descriptor file, AssetMaker creates
default columns that CS-Direct needs to function correctly.

- Adds a row for the new table to the SystemInfo table.
All asset tables are object tables so the value in the systable column is set to
obj.
All asset tables have URL columns so the value in the defdir column is set to the
value that you specified either in the asset descriptor file or in the DefDir field in
the Create Asset Table form when you create the asset type.

- If you have checked the Add ‘General’ category checkbox, Asset Maker adds
one row to the Category table for the new asset type and names that category
General.

4. Register the elements.

When you register the elements, AssetMaker does the following:

- Creates a subdirectory in the ElementCatalog table under
OpenMarket/Xcelerate/AssetType directory for the new asset type.
Content Server 7.0 Developer’s Guide

Chapter 15. Designing Basic Asset Types

The AssetMaker Utility
279
- Copies elements from the AssetStubCatalog table to the new subdirectory in
the ElementCatalog table. These elements render CS-Direct forms for working
with assets of this type and provide the processing logic for the CS-Direct
functions.

- Creates SQL statements that implement searches on individual fields in the search
forms. These statements are placed in the SystemSQL table.

When you use CS-Direct to work on an asset of this type (create, edit, inspect, and so on),
AssetMaker parses the asset descriptor file, which is now located in the AssetType table,
and passes its values to CS-Direct so that the forms are specific to the asset type.
Statements in the asset descriptor file determine the input types of the fields, specify field
length restrictions, and determine whether the field is displayed on search and search
results forms.

Note that after you create an asset type, there are several configuration steps to complete
before you can use it; for example, enabling it on the sites that need to use it, creating Start
Menu shortcuts, and so on.

The flow chart in Figure 5 summarizes how AssetMaker works, and which database tables
are involved when a basic asset type is created.
Content Server 7.0 Developer’s Guide

Chapter 15. Designing Basic Asset Types

The AssetMaker Utility
280
Figure 4: Asset Types: Database Tables and CS-Direct Forms

Name Phone Email Ratings

John Doe 516-555-
5555

johndoe
@retail.com

Field names define the asset type

Database Table for Asset Type “Contact”

CS-Direct Content-Entry Form

Field values
define the asset

When rendering the content-entry form below, CS-Direct displays the names of
columns in the database table as field names in the form. Field names (specified
by developers) define the asset type; field values (entered by content providers)
define the asset.

johndoe@retail.com
Content Server 7.0 Developer’s Guide

Chapter 15. Designing Basic Asset Types

The AssetMaker Utility
281
Figure 5: How AssetMaker Works

1. Code asset
descriptor file

2. Upload asset
descriptor file

3. Create the
asset storage
table

User Action AssetMaker’s
Response

Asset
descriptor file

AssetMaker enters the
asset descriptor file into
a row of the ..

AssetType
table

Database Tables
Created

to

4. Register the
elements

AssetMaker creates
a subdirectory in the
ElementCatalog
table, and ...

AssetStub
Catalog

Table

Subdirectory
of Element
Catalog

table

copies elements from

SystemSQL
table

for use in Search forms

If you
checked
the Add
’General’
Category
checkbox

Using the asset descriptor file,
AssetMaker creates the...

AssetMaker adds a row for the
new storage table to the...

Primary
storage table
for the asset

type

SystemInfo
table

AssetMaker adds a category
row named "General" to the...

Category
table

CS-Direct writes to:

AssetRelationTree table if the asset has unnamed parent-child relationships or named
associations with other assets

AssetPublication table, which specifies (by pubid) which CM sites give you access to the assets

SitePlanTree table, which stores information about the page’s hierarchical position in the site plan.

creates SQL
statements and
copies them to the ...
Content Server 7.0 Developer’s Guide

Chapter 15. Designing Basic Asset Types

The AssetMaker Utility
282
Asset Descriptor Files
Using the AssetMaker XML tags, you code asset descriptor files that define the asset types
you design for your systems.

What Is an Asset Descriptor File?
An asset descriptor file is a valid XML document in which developers use AssetMaker
tags to define a basic asset type. An asset descriptor file does the following two things:

• Describes the asset type in terms of data structure. It specifies the name of the
database table, the names of the columns, the columns’ data types, and the sizes of the
fields on the CS-Direct forms.

• Formats the HTML forms that are displayed by CS-Direct when users work with
assets of the given type. Formatting an HTML form means naming the fields on the
form, displaying the fields in required format (for example, check box, radio button,
or drop-down list), accounting for field specifications (such as the number of
characters that can be entered in to a text field), and so on.

AssetMaker uses the asset descriptor file to create a database table for the new asset type.
When content providers work with assets of the given type (create, edit, and so on),
AssetMaker parses the asset descriptor file, using the data in the file to customize the
forms that CS-Direct displays.

Format and Syntax
The basic format for every asset descriptor file is shown below. To the right of each
AssetMaker tag is a brief description of the tag.

<?xml version="1.0" ?>
<ASSET ...> Names the asset type (storage table)
<PROPERTIES> Starts the properties specification section

<PROPERTY ...> Specifies column and field name for the property
<STORAGE .../> Specifies data type for the column
<INPUTFORM .../> Specifies field format on New, Edit, Inspect forms
<SEARCHFORM .../> Specifies field format on Advanced Search form
<SEARCHRESULTS .../> Specifies which fields are shown in search results

</PROPERTY>

<PROPERTY ...>
<STORAGE .../>
<INPUTFORM .../>
<SEARCHFORM .../>
<SEARCHRESULTS .../>

</PROPERTY>

<PROPERTY ...>
...

Note

For reference, sample AssetMaker descriptor code is provided on the Content
Server installation medium, in the “Samples” folder. The same folder contains the
readme.txt file that describes the sample descriptor files.
Content Server 7.0 Developer’s Guide

Chapter 15. Designing Basic Asset Types

The AssetMaker Utility
283
...

</PROPERTIES> Ends the properties specification section
</ASSET> Ends the asset descriptor file

Shown next is the syntax of an asset descriptor file, indicating some of the parameters that
an AssetMaker tag can take:

<?xml version="1.0" ?>
<ASSET NAME="assetTypeName" DESCRIPTION=”"assetTypeName" ...>
<PROPERTIES>

<PROPERTY NAME="fieldName1" DESCRIPTION=“fieldName1”/>
<STORAGE TYPE=“VARCHAR” LENGTH=“36”/>
<INPUTFORM TYPE="TEXT" DESCRIPTION="fieldName1".../>
<SEARCHFORM TYPE="TEXT" DESCRIPTION="fieldName1".../>
<SEARCHRESULTS INCLUDE=“TRUE”/>

</PROPERTY>

<PROPERTY NAME="fieldName2" DESCRIPTION=“fieldName2”/>
<STORAGE TYPE=“INTEGER” LENGTH=“4”/>
<INPUTFORM TYPE="TEXT" DESCRIPTION="fieldName2".../>
<SEARCHFORM TYPE="TEXT" DESCRIPTION="fieldName2".../>
<SEARCHRESULTS INCLUDE=“TRUE”/>

</PROPERTY>

.

.

.

</PROPERTIES>
</ASSET>

An overview of the tags in the asset descriptor file is given in this guide. Detailed
information about the tags and their parameters, along with sample code, is given in the
Content Server Tag Reference.

Overview of the AssetMaker Tags
• An asset descriptor file begins with the standard XML version tag:

<?xml version="1.0" ?>

• The ASSET tag, which follows the XML version tag, names the asset type and
therefore its storage table in the Content Server database. The ASSET tag also sets
some of the behavior and display attributes of assets of that type; for example, the
ASSET tag determines what graphical notation designates that a field is required, and
whether an asset can be previewed.

The opening tag <ASSET> is always the first line of code and the closing tag
<\ASSET> is always the last line of code in the asset descriptor file. Note that there is
only one ASSET tag pair in each asset descriptor file because only one asset type per
asset descriptor file can be created.

• The PROPERTIES tag marks the section of the file that holds the property
descriptions. The opening tag <PROPERTIES> is always the second statement in the
Content Server 7.0 Developer’s Guide

Chapter 15. Designing Basic Asset Types

The AssetMaker Utility
284
asset descriptor file. The closing <\PROPERTIES> tag There is only one
PROPERTIES tag pair in each asset descriptor file.

Note that the PROPERTIES tag is required in every asset descriptor file, even if no
PROPERTY tags are needed.

• The PROPERTY tags, nested within the PROPERTIES tag pair, specify the columns and
fields for assets of this type. Each PROPERTY tag specifies the name of the column that
will hold the values entered for this property, and the name of the field on the form
that will be rendered for users to work with assets of this type.

• Nested inside each pair of PROPERTY tags are the following tags:

- STORAGE—specifies the data type of the column that is being established by this
property. Note that the data type in the STORAGE tag must map to one of the data
types that is defined by the properties on the “Database” tab of the
futuretense.ini file.

- INPUTFORM—specifies the name and format of the field on the “New,” “Edit,”
and “Inspect” forms. For example: Is the field a drop-down list or a check box or a
text field? The field’s input type must be compatible with the data type of the
database column, as specified by the STORAGE statement.

- SEARCHFORM—specifies the format of the field (property) when it appears on the
“Advanced Search” form. If the SEARCHFORM statement is omitted from the
PROPERTY section, the field being defined does not appear on the “Advanced
Search” form.
Note that if the value of the TYPE parameter is “Table” or “Date”, a drop-down
list will appear on the “Advanced Search” form for the asset type, but not on the
SimpleSearch form.

- SEARCHRESULTS—specifies which fields are displayed in the search results form
after a search is run. The field value is also displayed if the INCLUDE parameter is
set to “true”. (This tag is optional.)
If you are modifying a standard field, do not set SEARCHRESULTS to true for
name or description.

For detailed information about these tags and their parameters, see the “AssetMaker Tags”
chapter in the Content Server Tag Reference. That section also provides information about
dependencies and restrictions among the parameters STORAGE TYPE, INPUTFORM
TYPE, and SEARCHFORM TYPE.

Columns in the Asset Type’s Database Table
When AssetMaker creates the database table for the asset type, it creates columns for all
the properties defined by the pairs of PROPERTY tags in the asset descriptor file.

However, CS-Direct needs several default columns for its basic functionality and so
AssetMaker creates each of the default columns in the asset type’s storage table in addition
to the columns defined in the asset descriptor file for that asset type.

For a list of the default columns in each asset type’s table, see “Default Columns in the
Basic Asset Type Database Table” on page 203.

The Source Column: A Special Case
All of the asset type tables can also have a source column. CS-Direct provides a Source
table and a Source form on the Admin tab that you use to add the rows to the Source
Content Server 7.0 Developer’s Guide

Chapter 15. Designing Basic Asset Types

The AssetMaker Utility
285
table. You can use this feature to identify where an asset originated. The Burlington
Financial sample site, for example, uses Source to identify which wire feed service
provided an article asset.

However, unlike the columns listed in the preceding table, the source column is not
automatically created when AssetMaker creates the asset type table. To add the source
column to your table and have it displayed on your asset forms, you must include a
PROPERTY description for it in the asset descriptor file.

For an example, see “Example: Adding the Source Column and Field” on page 297.

Storage Types for the Columns
The STORAGE TYPE parameter specifies the data type of a column. The data types are
defined by the Content Server database properties located in the futuretense.ini file.

The following table presents the possible data types for your asset type’s table columns:

Input Types for the Fields
The INPUT TYPE parameter specifies how data can be entered in a field when it is
displayed in the CS-Direct forms. The following table lists all the input types. Note that
the input type for a field must be compatible with the data type of its column:

Type
(generic ODBC/JDBC data type) Property

CHAR cc.char

VARCHAR cc.varchar

SMALLINT cc.smallint

INTEGER cc.integer

BIGINT cc.bigint

DOUBLE cc.double

TIMESTAMP cc.datetime

BLOB cc.blob

LONGVARCHAR cc.bigtext

Input TYPE Description

TEXT A single line of text.

Corresponds to the HTML input type named TEXT.
Content Server 7.0 Developer’s Guide

Chapter 15. Designing Basic Asset Types

The AssetMaker Utility
286
TEXTAREA A text box, with scroll bars, that accepts multiple lines of text.

Corresponds to the HTML input type named TEXTAREA.

If you expect large amounts of text to be entered in the field, it is
a good idea to create a text box that displays the contents of a
URL column. To do so, you must specify a string for PROPERTY
NAME that begins with the letters “url” and set the STORAGE
TYPE to VARCHAR.

When a user clicks Save, the text entered into this kind of field is
stored in the file directory specified as the default storage
directory for this asset type. You can specify the default storage
directory (defdir) in either the asset descriptor file, or in the
AssetMaker form when you create the asset type.

Note that you can specify an unlimited size for a url field that is
edited via a TEXTAREA field by not specifying a value for the
MAXLENGTH parameter.

UPLOAD A field that takes a file name (a URL) and presents a Browse
button so that you can either enter the path to and name of a file
or browse to it and select it.

When you specify that a field is an upload field, set a string for
PROPERTY NAME that begins with the letters “url” and set
STORAGE TYPE (the property’s data type) to VARCHAR.

You can also use the BLOB storage type for an upload field; in this
case, the PROPERTY NAME string does not have to begin with
url.

When the user clicks Save, Content Server uploads the selected
file and stores it in the file directory specified as the default
storage directory for this asset type. You can specify the default
storage directory (defdir) in either the asset descriptor file, or in
the AssetMaker form when you upload the file.

Note: the size of a file that is selected in an upload field cannot
exceed 30 megabytes.

SELECT A field that presents a drop-down list of options that can be
selected.

You can either specify the options that are presented in the list or
you can specify a query so that the options are selected from the
database (or an external table) and presented dynamically.

Corresponds to the HTML input type SELECT.

CHECKBOX A check box field.

You can specify the names of the check box options or you can
specify a query so that the names are selected from the database
(or an external table) and presented dynamically. This input type
allows the user to select more than one option.

Corresponds to the HTML input type CHECKBOX.

Input TYPE Description
Content Server 7.0 Developer’s Guide

Chapter 15. Designing Basic Asset Types

The AssetMaker Utility
287
RADIO A radio button control.

You can either specify the names of the radio options or you can
specify a query so that the names are selected from the database
(or an external table) and presented dynamically. This input type
allows the user to select only one option.

Corresponds to the HTML input type RADIO.

EWEBEDITPRO A field whose contents you edit by using the eWebEditPro
HTML editor, a third-party tool from Ektron, Inc.

When you specify that a field is an eWebEditPro field, it’s best if
you make it a URL field. That is, set a string for PROPERTY NAME
that begins with the letters “url” and set STORAGE TYPE (the
property’s data type) to VARCHAR.

ELEMENT Calls an element that you create to display a field on the
ContentForm, ContentDetails, or SearchForm forms. The
custom element must be found at one of the following locations:

• For a field on the ContentForm form:
 OpenMarket/Xcelerate/AssetType/myAssetType/

ContentForm/fieldname

• For a field on the ContentDetails form:
 OpenMarket/Xcelerate/AssetType/myAssetType/

ContentDetails/fieldname

• For a field on the SearchForm form:
OpenMarket/Xcelerate/AssetType/myAssetType/
SearchForm/fieldname

Where myAssetType is the asset type that you are creating
the custom field for, and fieldname is the name of the
custom field.

An ELEMENT field can have any storage type, including BLOB.

Input TYPE Description
Content Server 7.0 Developer’s Guide

Chapter 15. Designing Basic Asset Types

The AssetMaker Utility
288
Datatypes for Standard Asset Fields
You can customize the appearance of CS-Direct’s standard asset fields, however, the
datatypes of these fields must not be changed.

System fields, which are identified in the following table, can be altered cosmetically, but
their behavior cannot change. For other fields, the length of the varchar can be changed,
but the datatype must remain the same. The following table lists the datatypes for standard
fields:

Elements and SQL Statements for the Asset Type
After you upload an asset descriptor file, you “register” the elements. When you register
elements, AssetMaker copies elements in the AssetStubElementCatalog table to a
directory in the ElementCatalog table for this asset type.

Additionally, AssetMaker copies several SQL statements that implement the CS-Direct
searches on the Simple Search and the Advanced Search forms for assets of this type.

If necessary, you can customize the SQL statements, the asset type-specific elements, or,
in some cases, the elements in the AssetStubElementCatalog table.

Field Datatype

ID(System Field) NOT NULL NUMBER(38)

NAME NOT NULL VARCHAR(64)

DESCRIPTION VARCHAR(128)

TEMPLATE(System Field) VARCHAR(64)

SUBTYPE VARCHAR(24)

FILENAME VARCHAR(64)

PATH VARCHAR(255)

STATUS(System Field) NOT NULL VARCHAR(2)

EXTERNALDOCTYPE (System
Field)

VARCHAR(64)

URLEXTERNALDOCXML(System
Field)

VARCHAR(255)

URLEXTERNALDOC(System
Field)

VARCHAR2(255)

CREATEDBY(System Field) NOT NULL VARCHAR(64)

UPDATEDBY(System Field) NOT NULL VARCHAR(64)

CREATEDDATE(System Field) NOT NULL DATE

UPDATEDDATE(System Field) NOT NULL DATE

STARTDATE DATE

ENDDATE DATE
Content Server 7.0 Developer’s Guide

Chapter 15. Designing Basic Asset Types

The AssetMaker Utility
289
For information about customizing your elements, see “Step 8: (Optional) Customize the
Asset Type Elements” on page 306.

The Elements
AssetMaker places the elements for your new asset type to the ElementCatalog table
according to the following naming convention:

OpenMarket/Xcelerate/AssetType/YourNewAssetType

For example, the elements for the sample asset type “ImageFile” are located here:

OpenMarket/Xcelerate/AssetType/ImageFile

The following table lists the elements that AssetMaker copies for each asset type:

Caution

Under no circumstances should you modify any of the other CS-Direct elements.

Element Description

ContentForm Renders the New and Edit forms for assets of this type.

When the function is invoked, AssetMaker uses the
INPUTFORM statements in the asset descriptor file to
format these forms.

ContentDetails Formats the Inspect form for assets of this type.

When the function is invoked, AssetMaker uses the
INPUTFORM statements in the asset descriptor file to
customize these forms.

SimpleSearch Renders the Simple Search form for assets of this type.

When the function is invoked, AssetMaker uses the
SEARCHFORM statements in the asset descriptor file to
format these forms.

SearchForm Formats the Advanced Search form for assets of this
type.

When the function is invoked, AssetMaker uses the
SEARCHFORM statements in the asset descriptor file to
format these forms.

AppendSelectDetails Builds the SQL queries on the individual fields in the
Advanced Search form.

When the Advanced Search form is rendered,
AssetMaker uses the SEARCHFORM statements in the
asset descriptor file to customize the form.
Content Server 7.0 Developer’s Guide

Chapter 15. Designing Basic Asset Types

The AssetMaker Utility
290
AppendSelectDetailsSE Builds the SQL queries on the individual fields in the
Advanced Search form when your system is using a
search engine such as Verity or AltaVista.

When this function is invoked, AssetMaker uses the
SEARCHFORM statements in the asset descriptor file to
create the SQL queries.

IndexAdd The IndexAdd and IndexReplace elements establish
which fields (columns) are indexed by the search engine
when you are using a search engine. By default, only the
standard fields are indexed. If you want other fields
indexed, you must customize these forms. For more
information, see “Step 8: (Optional) Customize the
Asset Type Elements” on page 306.

IndexReplace See the description of IndexAdd, above.

IndexCreateVerity If you are using Verity as your search engine, this
element interacts with the IndexAdd and
IndexReplace elements to establish which fields to
index.

Tile Formats the Search Results page, a page that lists the
assets that meet the search criteria, for assets of this
type.

When the page is rendered, AssetMaker uses the
SEARCHRESULTS statements in the asset descriptor file
to display the results.

LoadTree Determines how the assets of this type appear when they
are displayed on any tab in the tree other than the Site
Plan tab.

LoadSiteTree Determines how assets of this type appear when they are
displayed on the Site Plan tab.

PreUpdate Is called before a function that writes to the database is
completed. In other words, before an asset is saved and
during the create, edit, delete, or XMLPost functions,
this element is called.

This element takes no input from the asset descriptor
file. However, you can customize it directly.

PostUpdate Is called after a function that writes to the database is
completed. In other words, after an asset is created,
edited, deleted, or imported with XMLPost, this element
is called.

You can customize this element.

Element Description
Content Server 7.0 Developer’s Guide

Chapter 15. Designing Basic Asset Types

The AssetMaker Utility
291
The SQL Statements
AssetMaker places the SQL statements in the SystemSQL table according to the
following naming convention:

OpenMarket/Xcelerate/AssetType/YourNewAssetType

For example, the elements for the sample asset type “ImageFile” are located here:

OpenMarket/Xcelerate/ImageFile

The following table lists the SQL elements that AssetMaker creates:

Statement Description

SelectSummary A SQL statement that defines the query used in the Simple
Search and Advanced Search form for assets of this type.

SelectSummarySE Not used.
Content Server 7.0 Developer’s Guide

Chapter 15. Designing Basic Asset Types

Creating Basic Asset Types
292
Creating Basic Asset Types
The length of time that it takes you to create a new asset type can range widely depending
on the complexity of your asset type.

A simple asset type might require you to code one simple asset descriptor file and then
upload it. A more complicated asset type might require you to modify the code in the
elements that AssetMaker creates for your asset type or to add a database table to hold
information that you want displayed in a drop-down list.

Overview
Following is an overview of the process for creating and configuring a new asset type.
This chapter describes each of the steps, except as noted:

1. Code an asset descriptor file.

2. Use AssetMaker forms (accessible from the Admin tab in the Content Server user
interface) to upload the asset descriptor file, create the database table, and copy the
asset type elements from the AssetStubElementCatalog table to the appropriate
directory in the ElementCatalog table.

3. Configure the asset type.

4. Enable the asset type for the site that you are using to develop assets on and create a
Start Menu shortcut so that you can work with the asset type.

5. Examine the New, Edit, Inspect, Search, and Search Results forms. If necessary,
fine-tune the asset descriptor file, and re-register the asset type elements.

6. (Optional) If necessary, customize the asset type elements.

7. (Optional) Create asset Association fields for the new asset type.

8. (Optional) Add Category entries for the new asset type.

9. (Optional) Add Source entries for the new asset type.

10. (Optional) Add Subtype entries for the new asset type.

11. (Optional) Add Mimetypes for the new asset type.

12. (Optional) If you are using a search engine (Verity or AltaVista) rather than the CS-
Direct database search utility to perform the logic behind the search forms and you
want to use it on your new asset type, edit your search elements to enable indexed
searching.

13. Code templates for assets of this type. (See Chapter 24, “Coding Elements for
Templates and CSElements.”)

14. Move the asset types to the other systems, management and delivery. This allows your
administrator to complete the final steps in creating the asset type, including setting up
workflow and creating start menu items.
Content Server 7.0 Developer’s Guide

Chapter 15. Designing Basic Asset Types

Creating Basic Asset Types
293
Before You Begin
Before you begin coding your asset descriptor files, you must plan your design and set up
your development system, as described in the following sections.

Plan the Asset Type Design
Be sure to design your asset types on paper before you start coding an asset descriptor file.
Consider the following kinds of details:

• What fields do you need?

In general, try to minimize the number of fields that you use by organizing the
information into useful units. When determining those units, consider both the
information you plan to display on your online site and the data-entry needs of the
content providers who will enter that data.

• What is the appropriate data type for each field?

• For fields with options, how will you supply the options? With a static list coded in the
asset descriptor file or with a lookup table that holds the valid options?

• Which of the CS-Direct features will you use to organize or categorize assets of this
type? For example, source, category, and asset associations. For each one, determine
their names and plan how it will be used both on the management system and in the
design of your online site.

• Does the implementation of your site design require assets of this type to use a
different default template based on the publishing target that they are published to? If
so, you will need to use the Subtype feature. Determine the names of the subtypes that
you will need for assets of this type.

Set Up Your Development System
Also before you begin, be sure to set up your development system. For information about
any of these preliminary steps, see the Content Server Administrator’s Guide:

• Create the appropriate sites.

• Create a user name for yourself that has administrator rights and enable that user name
on all of the sites on your development system. (Be sure that the TableEditor ACL is
assigned to your user name or you will be unable to create new asset types.)

Note that without administrator rights, you do not have access to the Admin tab,
which means that you cannot perform any of the procedures in this chapter. For the
sake of convenience, assign the Designer and GeneralAdmin roles to your user
name. That way you will have access to all the tabs and all of the existing Start Menu
shortcuts for the assets in the sample site.

• If you plan to use eWebEditPro, a third-party HTML editor, you must obtain it from
FatWire (contact your FatWire sales representative) and configure it on the systems
that you plan to use it on. It is not delivered with CS-Direct (or CS-Direct Advantage).
Content Server 7.0 Developer’s Guide

Chapter 15. Designing Basic Asset Types

Creating Basic Asset Types
294
Step 1: Code the Asset Descriptor File
As described in “Asset Descriptor Files” on page 282, this is the basic format of an asset
descriptor file:

<?xml version="1.0" ?>
<ASSET NAME="assetName"...>

 <PROPERTIES>
 <PROPERTY.../>

<STORAGE.../>
 <INPUTFORM.../>

<SEARCHFORM.../>
<SEARCHRESULTS.../>

 </PROPERTY>
 <PROPERTY... />

<STORAGE.../>
 <INPUTFORM.../>

<SEARCHFORM.../>
<SEARCHRESULTS.../>

 </PROPERTY>
</PROPERTIES>

</ASSET>

To code your asset descriptor files, read the “AssetMaker Tags” chapter in the Content
Server Tag Reference and use the tags described in that chapter to code the file. You can
use the native XML editor in Content Server Explorer to code the file or you can use any
other XML editor.

Note that you can customize any of the standard asset fields by including them in your
asset descriptor file. You may not change the storage type of a standard asset field. For a
list of these storage types, see “Datatypes for Standard Asset Fields” on page 288.

This section offers a sample asset descriptor file and several examples about coding
specific kinds of properties.

Sample Asset Descriptor File: ImageFile.xml
If the Burlington Financial sample site is installed on your system, you will find the
ImageFile.xml asset descriptor file in the AssetType table. You can either start
Content Server Explorer and open the file or you can examine it here:

<!-- this is the description of an asset -->
<ASSET NAME="ImageFile" DESCRIPTION="ImageFile" MARKERIMAGE="/
Xcelerate/data/help16.gif" PROCESSOR="4.0"
DEFDIR="c:\FutureTense\Storage\ImageFile">
 <PROPERTIES>

 <PROPERTY NAME="source" DESCRIPTION="Source">
 <STORAGE TYPE="VARCHAR" LENGTH="24"/>
 <INPUTFORM DESCRIPTION="Source" TYPE="SELECT"
TABLENAME="Source" OPTIONDESCKEY="description"
OPTIONVALUEKEY="source" SOURCETYPE="TABLE"/>
 <SEARCHFORM DESCRIPTION="Source" TYPE="SELECT"
TABLENAME="Source" OPTIONDESCKEY="description"
OPTIONVALUEKEY="source" SOURCETYPE="TABLE"/>
 </PROPERTY>
Content Server 7.0 Developer’s Guide

Chapter 15. Designing Basic Asset Types

Creating Basic Asset Types
295
 <PROPERTY NAME="urlpicture" DESCRIPTION="Image File">
 <STORAGE TYPE="VARCHAR" LENGTH="255"/>
 <INPUTFORM TYPE="UPLOAD" WIDTH="36" REQUIRED="NO"
LINKTEXT="Image"/>
 </PROPERTY>

 <PROPERTY NAME="urlthumbnail" DESCRIPTION="Thumbnail
File">
 <STORAGE TYPE="VARCHAR" LENGTH="255"/>
 <INPUTFORM TYPE="UPLOAD" WIDTH="36" REQUIRED="NO"
LINKTEXT="Image"/>
 </PROPERTY>

 <PROPERTY NAME="mimetype" DESCRIPTION="Mimetype">
 <STORAGE TYPE="VARCHAR" LENGTH="36"/>
 <INPUTFORM TYPE="SELECT" SOURCETYPE="TABLE"
TABLENAME="MimeType" OPTIONDESCKEY="description"
OPTIONVALUEKEY="mimetype"

SQL="SELECT mimetype, description FROM MimeType WHERE
keyword = ’image’ AND isdefault = ’y’" INSTRUCTION="Add more
options to mimetype table with isdefault=y and keyword=image"/>
 <SEARCHFORM DESCRIPTION="MimeType" TYPE="SELECT"
SOURCETYPE="TABLE" TABLENAME="MimeType"
OPTIONDESCKEY="description" OPTIONVALUEKEY="mimetype"

SQL="SELECT mimetype, description FROM MimeType WHERE
keyword = ’image’ AND isdefault = ’y’"/>
 </PROPERTY>

 <PROPERTY NAME="width" DESCRIPTION="Width">
 <STORAGE TYPE="INTEGER" LENGTH="4"/>
 <INPUTFORM TYPE="TEXT" WIDTH="4" MAXLENGTH="4"
REQUIRED="NO" DEFAULT=""/>
 <SEARCHFORM DESCRIPTION="Width is" TYPE="TEXT"
WIDTH="4" MAXLENGTH="4" VERB="="/>
 </PROPERTY>

 <PROPERTY NAME="height" DESCRIPTION="Height">
 <STORAGE TYPE="INTEGER" LENGTH="4"/>
 <INPUTFORM TYPE="TEXT" WIDTH="4" MAXLENGTH="4"
REQUIRED="NO" DEFAULT=""/>
 <SEARCHFORM DESCRIPTION="Height is" TYPE="TEXT"
WIDTH="4" MAXLENGTH="4" VERB="="/>
 </PROPERTY>

 <PROPERTY NAME="align" DESCRIPTION="Alignment">
 <STORAGE TYPE="VARCHAR" LENGTH="8"/>
 <INPUTFORM TYPE="SELECT" SOURCETYPE="STRING"
OPTIONVALUES="Left,Center,Right"
OPTIONDESCRIPTIONS="Left,Center,Right"/>
 <SEARCHFORM DESCRIPTION="Alignment" TYPE="SELECT"
SOURCETYPE="STRING" OPTIONVALUES="Left,Center,Right"
OPTIONDESCRIPTIONS="Left,Center,Right"/>
Content Server 7.0 Developer’s Guide

Chapter 15. Designing Basic Asset Types

Creating Basic Asset Types
296
 </PROPERTY>

 <PROPERTY NAME="artist" DESCRIPTION="Artist">
 <STORAGE TYPE="VARCHAR" LENGTH="64"/>
 <INPUTFORM TYPE="TEXT" WIDTH="36" MAXLENGTH="36"
REQUIRED="NO" DEFAULT=""/>
 <SEARCHFORM DESCRIPTION="Artist contains" TYPE="TEXT"
WIDTH="36" MAXLENGTH="64"/>
 </PROPERTY>

 <PROPERTY NAME="alttext" DESCRIPTION="Alt Text">
 <STORAGE TYPE="VARCHAR" LENGTH="255"/>
 <INPUTFORM TYPE="TEXT" WIDTH="48" MAXLENGTH="255"
REQUIRED="NO" DEFAULT=""/>
 <SEARCHFORM DESCRIPTION="Alt Text contains"
TYPE="TEXT" WIDTH="48" MAXLENGTH="255"/>
 </PROPERTY>

 <PROPERTY NAME="keywords" DESCRIPTION="Keywords">
 <STORAGE TYPE="VARCHAR" LENGTH="128"/>
 <INPUTFORM TYPE="TEXT" WIDTH="48" MAXLENGTH="128"
REQUIRED="NO" DEFAULT=""/>
 <SEARCHFORM DESCRIPTION="Keywords contain" TYPE="TEXT"
WIDTH="48" MAXLENGTH="128"/>
 </PROPERTY>

 <PROPERTY NAME="imagedate" DESCRIPTION="Image date">
 <STORAGE TYPE="TIMESTAMP" LENGTH="8"/>
 <INPUTFORM TYPE="ELEMENT" WIDTH="24" MAXLENGTH="48"
REQUIRED="NO" DEFAULT="" INSTRUCTION="Format: yyyy-mm-dd hh:mm"/>
 <SEARCHFORM DESCRIPTION="Image date"
TYPE="ELEMENT" WIDTH="48" MAXLENGTH="128"/>
 </PROPERTY>

 </PROPERTIES>
</ASSET>

Examine this asset descriptor file and then, if Burlington Financial is installed on your
system, start CS-Direct, select the Burlington Financial site, examine the CS-Direct forms
for the imagefile asset type, and compare the forms to the asset descriptor file.

Note the following about the ImageFile asset descriptor file:

• The ASSET tag provides a value for the DEFDIR parameter. All asset tables have at
least two URL columns (upload fields) by default, which means you must set a value
for the default storage directory (defdir) of any new asset type. (the imagefile asset
type has two additional URL columns: urlpicture and urlthumbnail.)

You can set the defdir value either with the ASSET tag’s DEFDIR parameter, or with
the defdir field in the AssetMaker Create Asset Table form.
Content Server 7.0 Developer’s Guide

Chapter 15. Designing Basic Asset Types

Creating Basic Asset Types
297
For more information about URL columns, see “Indirect Data Storage with the
Content Server URL Field” on page 233.

• There are no PROPERTY statements for any of the default columns that AssetMaker
creates in an asset type’s database table. (Those columns are listed in “Default
Columns in the Basic Asset Type Database Table” on page 203.)

• Not every property that has a SEARCHFORM statement has a matching
SEARCHRESULTS statement. In other words, if you decide to put a field on the
Advanced Search form, it does not mean that you have to display the data from that
field on the Search Results form.

Example: Adding the Source Column and Field
The source column is not created by default even though CS-Direct has a Source feature
on the Admin tab. In order to use the Source feature on your new asset types, you must
include a property statement for the source column and field.

Note the following:

• STORAGE TYPE must be set to “VARCHAR” and LENGTH must be set to “24”.

• INPUTFORM SOURCETYPE must be set to “TABLE” and TABLENAME must be set to
“Source”.

For example:

<PROPERTY NAME="source" DESCRIPTION="Source">
<STORAGE TYPE="VARCHAR" LENGTH="24"/>
<INPUTFORM TYPE="SELECT" TABLENAME="Source"
OPTIONDESCKEY="description" OPTIONVALUEKEY="source"
SOURCETYPE="TABLE"/>
<SEARCHFORM DESCRIPTION="Source" TYPE="SELECT"
TABLENAME="Source" OPTIONDESCKEY="description"
OPTIONVALUEKEY="source" SOURCETYPE="TABLE"/>

</PROPERTY>

Example: An Asset Type With Unnamed Associations
You can create an asset type that supports unnamed associations (multiple asset types
associated with the asset) by setting the ASSET tag’s UNNAMEDASSOCIATIONS parameter
to YES. This causes a Contents field to appear in the asset’s ContentForm, similar to the
Contains field on the Page asset forms.

The sample code for creating an asset type with unnamed associations follows:

<ASSET NAME="Container" DESCRIPTION="Container"
PLURAL="Containers" UNNAMEDASSOCIATIONS="YES" DEFDIR="C:/
FutureTense/Storage/Container">
<PROPERTIES>
</PROPERTIES>
</ASSET>

Note

A defdir set using the Create Asset Table form overrides a defdir set in
the asset descriptor file.
Content Server 7.0 Developer’s Guide

Chapter 15. Designing Basic Asset Types

Creating Basic Asset Types
298
Upload Example 1: A Standard Upload Field
To create an upload field with a Browse button, code the PROPERTY statement as follows:

1. The string set for PROPERTY NAME must begin with the letters url.

2. The value for STORAGE TYPE must be set to VARCHAR.

3. The value for INPUT TYPE must be set to UPLOAD.

Here is a code snippet of an upload field from the ImageFile asset descriptor file:

<PROPERTY NAME="urlpicture" DESCRIPTION="Image File">
<STORAGE TYPE="VARCHAR" LENGTH="255"/>
<INPUTFORM TYPE="UPLOAD" WIDTH="36" REQUIRED="NO"
LINKTEXT="Image"/>

</PROPERTY>

Upload Example 2: A Text Box Field
To create an upload field with a text box that you can enter the text in (rather than with a
Browse button that you use to select a file), code the PROPERTY statement as follows:

1. The string set for PROPERTY NAME must begin with the letters url.

2. The value for STORAGE TYPE must be set to VARCHAR.

3. The value for INPUT TYPE must be set to TEXTAREA.

The following code snippet creates a text area field for a url column:

<PROPERTY NAME="urlbody" DESCRIPTION="Article Body">
<STORAGE TYPE="VARCHAR" LENGTH="256"/>

 <INPUTFORM TYPE="TEXTAREA" COLS="48" ROWS="25"
 REQUIRED="YES"/>

</PROPERTY>

Upload Example 3: An eWebEdit Pro Field
eWebEditPro is a third-party HTML editor from Ektron, Inc. that the CS-Direct and CS-
Direct Advantage products support. You must obtain eWebEditPro from FatWire (contact
your FatWire sales representative) to be able to use it—it is not delivered with CS-Direct
or CS-Direct Advantage. For information about configuring your system to use
eWebEditPro, see the Content Server Administrator’s Guide.

Code the property statement as follows:

1. The PROPERTY NAME should begin with the letters “url”. In other words, you should
use a URL column for the field. If you do not, you run the risk of making your field
too small.

2. The value for STORAGE TYPE must be set to VARCHAR.

Note

The size of a file that you can select in an upload field is limited to 30 megabytes.
Content Server 7.0 Developer’s Guide

Chapter 15. Designing Basic Asset Types

Creating Basic Asset Types
299
3. INPUT TYPE must be set to EWEBEDITPRO.

For example:

<PROPERTY NAME=“urlbody” DESCRIPTION=“Body”>
<STORAGE TYPE=“VARCHAR” LENGTH=“500”/>
<INPUTFORM TYPE=“EWEBEDITPRO” WIDTH=“300” HEIGHT=“300”
REQUIRED=“YES” INSTRUCTION=“Be concise! No more than 3
paragraphs.”/>

</PROPERTY>

Upload Example 4: A Text Field With Embedded Links
You can allow content editors to embed hyperlinks within a text field. If embedded links
are enabled for a text field, two embedded link buttons—Add Link and Include—appear
next to the field. To enable embedded links for a text field, code the property statement as
follows:

1. The string set for PROPERTY NAME must begin with the letters url.

2. The value for STORAGE TYPE must be set to VARCHAR.

3. The value for INPUT TYPE must be set to TEXTAREA.

The following code snippet creates a text area field for a url column:

<PROPERTY NAME="urltext" DESCRIPTION="Text">
<STORAGE TYPE="VARCHAR" LENGTH="2000"/>

 <INPUTFORM TYPE="TEXTAREA" COLS="48" ROWS="25"
EMBEDDEDLINKS=”YES” REQUIRED="YES"/>
</PROPERTY>

Upload Example 4: A Field That Uploads a Binary File
The following code creates a field where you can upload a blob. Note that if you do not
specify the MIMETYPE, you may not be able to view the blob from the Edit and Inspect
forms.

<PROPERTY NAME="type_binary" DESCRIPTION="Binary">
 <STORAGE TYPE="BINARY"/>
 <INPUTFORM TYPE="UPLOAD" WIDTH="24" MAXLENGTH="64"
MIMETYPE="application/msword" LINKTEXT="Edit with Microsoft Word"
INSTRUCTION="maps to cc.blob"/>
 </PROPERTY>

Example: Enabling path, filename, startdate, and enddate
The path, filename, startdate, and enddate columns are special cases.

AssetMaker creates columns for path, filename, startdate, and enddate without requiring a
PROPERTY statement for them. However, while these columns exist, their fields do not
appear on your asset forms unless you include a PROPERTY statement for them in the asset
descriptor file.

Note the following about these columns:

• For path, STORAGE TYPE must be set to VARCHAR and LENGTH must be set to 255.

• For filename, STORAGE TYPE must be set to VARCHAR and LENGTH must be set to
128.
Content Server 7.0 Developer’s Guide

Chapter 15. Designing Basic Asset Types

Creating Basic Asset Types
300
• For startdate, STORAGE TYPE must be set to TIMESTAMP.

• For enddate, STORAGE TYPE must be set to TIMESTAMP.

For example:

<PROPERTY NAME="path" DESCRIPTION="Path">
<STORAGE TYPE="VARCHAR" LENGTH="255"/>
<INPUTFORM DESCRIPTION="Path" TYPE="TEXT" LENGTH=“255”/>

</PROPERTY>

Example: Using a Query to Obtain Options for a Drop-Down
List
When the INPUTFORM TYPE of your property is SELECT, you can have CS-Direct
populate the drop-down list for the select field with a static list of items that you provide
with the OPTIONDESCRIPTIONS parameter, or with a list of items that CS-Direct obtains,
dynamically, from a database table.

Another example of a select field that populates its drop-down list dynamically from a
table is the Mimetype field on the imagefile forms, which queries the MimeType table for
its options. Here’s the code:

<PROPERTY NAME="mimetype" DESCRIPTION="Mimetype">

<STORAGE TYPE="VARCHAR" LENGTH="36"/>

<INPUTFORM TYPE="SELECT" SOURCETYPE="TABLE"
TABLENAME="mimetype" OPTIONDESCKEY="description"
OPTIONVALUEKEY="mimetype" SQL="SELECT mimetype, description
FROM mimetype WHERE keyword = ’image’ AND
isdefault = ’y’" INSTRUCTION="Add more options to mimetype
table with isdefault=y and keyword=image"/>

<SEARCHFORM DESCRIPTION="Mimetype" TYPE="SELECT"
SOURCETYPE="TABLE" TABLENAME="mimetype"
OPTIONDESCKEY="description" OPTIONVALUEKEY="mimetype"
SQL="SELECT mimetype, description FROM mimetype WHERE keyword =
’image’ AND isdefault = ’y’"/>

</PROPERTY>

This example shows a field that not only selects items from a database table, but, through
an additional SQL query, further restricts which items are returned from that table, as well.

Note

If you include one of these standard columns in your asset descriptor file but your
storage type does not match the one specified in this list, AssetMaker cannot create
the asset type.
Content Server 7.0 Developer’s Guide

Chapter 15. Designing Basic Asset Types

Creating Basic Asset Types
301
Example: Using a Query to Obtain Labels for Radio Buttons
If the INPUTFORM TYPE of your property is RADIO, you can input the label for each radio
button using a static list of items that you provide with the OPTIONDESCRIPTIONS
parameter, or with a list of items that CS-Direct obtains, dynamically, from a database
table.

The following sample code creates radio buttons with labels drawn from the CreditCard
table:

<PROPERTY NAME="sqlrbcc" DESCRIPTION="SQL RB Credit Card">
 <STORAGE TYPE="VARCHAR" LENGTH="4"/>
 <INPUTFORM TYPE="RADIO" SOURCETYPE="TABLE"
TABLENAME="CreditCard" RBVALUEKEY="ccvalue"
RBDESCKEY="ccdescription" />

<SEARCHFORM TYPE="SELECT" DESCRIPTION="Credit Card:"
SOURCETYPE="TABLE" TABLENAME="CreditCard" OPTIONVALUEKEY="ccvalue"
OPTIONDESCKEY="ccdescription" SQL="SELECT ccvalue,ccdescription
FROM CreditCard ORDER BY ccdescription"/>
 </PROPERTY>

Example: Creating a Field with the ELEMENT Input Type
You can modify the fields on your asset forms by using the ELEMENT input type to call
custom code to display the fields as you want them. You can use this method to create new
asset fields, or to change the appearance of standard asset fields—though you cannot
modify the storage type of a standard asset field.

An ELEMENT field can have any storage type, including BLOB.

When you set a field’s input type to ELEMENT, Content Server calls a custom element to
display the field. The custom element must be found at one of the following locations:

• For a field on the ContentForm form:

 OpenMarket/Xcelerate/AssetType/myAssetType/ContentForm/fieldname

• For a field on the ContentDetails form:

 OpenMarket/Xcelerate/AssetType/myAssetType/ContentDetails/
fieldname

• For a field on the SearchForm form:

 OpenMarket/Xcelerate/AssetType/myAssetType/SearchForm/fieldname

Note that myAssetType is the asset type that you are creating the custom field for, and
fieldname is the name of the custom field.

The following exerpt from an asset descriptor file uses the ELEMENT input type:

 <PROPERTY NAME="imagedate" DESCRIPTION="Image date">
 <STORAGE TYPE="TIMESTAMP" LENGTH="8"/>
 <INPUTFORM TYPE="ELEMENT" WIDTH="24" MAXLENGTH="48"
REQUIRED="NO" DEFAULT="" INSTRUCTION="Format: yyyy-mm-dd hh:mm"/>
 <SEARCHFORM DESCRIPTION="Image date" TYPE="ELEMENT"
WIDTH="48" MAXLENGTH="128"/>
 </PROPERTY>

Note that the input form uses a customized field, but the search form and content details
forms display default fields.
Content Server 7.0 Developer’s Guide

Chapter 15. Designing Basic Asset Types

Creating Basic Asset Types
302
The following code exerpt is the element that the descriptor file calls:

<!-- OpenMarket/Xcelerate/AssetType/ImageFile/ContentForm/
imagedate
-
- INPUT
- Variables.AssetType

Variables.fieldname
Variables.fieldvalue- default or value for this field
Variables.datatype - from STORAGE tag in ADF for this field
Variables.helpimage - help icon
Variables.alttext - help text from INPUT tag in ADF
Other fields from input tag are in:

Variables.assetmaker/property/Variables.fieldname/
inputform/[tag attribute]
- field name used in form should be
Variables.AssetType:Variables.fieldname

- OUTPUT
-
-->

Enter date in the format yyyy-mm-dd hh:mm:ss

<setvar NAME="inputfieldsize" VALUE="Variables.assetmaker/
property/Variables.fieldname/inputform/width"/>

<callelement NAME="OpenMarket/Xcelerate/Scripts/FormatDate"/>
<INPUT TYPE="text" SIZE="Variables.inputfieldsize"

NAME="Variables.AssetType:Variables.fieldname"
VALUE="Variables.fieldvalue"
REPLACEALL="Variables.inputfieldsize,Variables.fieldvalue,
Variables.fieldname,Variables.AssetType"

onChange="padDate(this.form.elements[’Variables.AssetType:Variable
s.fieldname’].value,this,’Variables.AssetType:Variables.fieldname’
);"/>

</FTCS>

Note that you can customize as many fields as you want using the ELEMENT input type,
but that you must write a separate element for each field that you want to modify.

Step 3: Upload the Asset Descriptor File in to Content Server
After you have coded the asset descriptor file for your asset type, use AssetMaker to
upload it and register the new elements:

1. Open your browser and enter this address:

http://your_server/Xcelerate/LoginPage.html

2. Enter your login name and password and click Login. Note that you must have
administrator rights associated with your user name (login name) in order to have
access to AssetMaker.
Content Server 7.0 Developer’s Guide

Chapter 15. Designing Basic Asset Types

Creating Basic Asset Types
303
3. Select the Admin tab > AssetMaker > Add New.

The “Add New Asset Type” form appears:

4. Click in the Name field and enter the name of the new asset type. The string that you
enter into this field must exactly match the string specified by the ASSET NAME
parameter in the asset descriptor file that you are going to upload.

5. Click the Browse button next to the Descriptor File field and select the asset
descriptor file.

6. Click Save.

AssetMaker enters the file into the AssetType table (that is, it uploads the asset
descriptor file to the default storage directory for the AssetType table), and then
displays the “Asset Type” form:

Step 4: Create the Asset Table (continued from Step 3)
7. Select Create Asset Table.

8. Examine the value in the Defdir field and change it if necessary. AssetMaker reads
this value from the asset descriptor file. You must enter a value in this field if either of
the following conditions exist:
Content Server 7.0 Developer’s Guide

Chapter 15. Designing Basic Asset Types

Creating Basic Asset Types
304
- If you did not provide a value with the DEFDIR parameter for the ASSET tag in the
asset descriptor.

- If you want to change the default storage directory, which is typical when you are
migrating the asset type to another system.

If you check the Add ‘General’ category checkbox, AssetMaker adds one row to the
Category table for the new asset type and names that category General.

9. Click Create Asset Table.

AssetMaker creates the table.

10. Select Register Asset Elements and then click the Register Asset Elements button.

AssetMaker copies the elements from the AssetStubElementCatalog table to the
asset type’s directory in the ElementCatalog table and copies the SQL statements in
the SystemSQL table. When it is finished, it displays a summary like this one:

Step 5: Configure the Asset Type
When AssetMaker created the new asset type (in step 2), it also created an icon and
administrative forms for configuring the new asset type, located on the Admin tab.

Complete the following configuration steps:

1. On the Admin tab, expand the Asset Types icon.

2. Under Asset Types, select your new asset type. (If you do not see it in the list, click
the right mouse button, select Refresh from the pop-up menu, and then select your
new asset type.)
Content Server 7.0 Developer’s Guide

Chapter 15. Designing Basic Asset Types

Creating Basic Asset Types
305
3. Click Edit.

The following form appears:

4. (Optional) Click in the Description field and change it, if necessary. The text in this
field is the name that CS-Direct uses for this asset type on the forms and lists in the
Content Server interface. By default, Description is set to the value of the ASSET
DESCRIPTION statement in the asset descriptor file.

5. (Optional) Click in the Plural Form field and change it, if necessary. The text in this
field is the text that CS-Direct uses in the Content Server interface when it is
appropriate to refer to the asset type in the plural. By default, Plural Form is set to the
value of the ASSET DESCRIPTION statement in the asset descriptor file plus the
letter “s.” You can also specify your own plural form in the asset descriptor file by
setting the value of the ASSET tag’s PLURAL parameter.

6. (Optional) Click in the Can Be Child Asset field and change the value, if necessary.
By default, this field is set to True, which means that this asset type can be the child
asset type in an association field for another asset type. Its name appears in the list of
asset types in the Child Asset Field on the “Add New Association” forms.

7. Click Save.

Step 6: Enable the Asset Type on Your Site
Before you can examine the forms that the new elements render for the asset type, you
must enable the asset on the site (or sites) that you are working with and create a simple
Start Menu item for it.

For instructions on how to enable your asset types and create Start Menu items for them,
see the Content Server Administrator’s Guide.
Content Server 7.0 Developer’s Guide

Chapter 15. Designing Basic Asset Types

Creating Basic Asset Types
306
Step 7: Fine-Tune the Asset Descriptor File
Create a new asset of your new type and examine the “New,” “Edit,” “Inspect,” and
“Search” forms. (To create a new asset of this type, click New on the toolbar and select the
Start Menu shortcut that you created in the preceding procedure. For step-by-step
procedures that describe how to create and work with assets, see the Content Server User’s
Guide.)

After you examine the forms, you might need to modify the asset descriptor file.

You can make any of the following changes with relatively few steps:

• Re-ordering the fields that appear on the CS-Direct forms for the asset type

• Changing the name of a field (that is, the value of PROPERTY DESCRIPTION)

• Changing anything in an INPUTFORM, SEARCHFORM, or SEARCHRESULTS statement

If you want to make any of the changes in the preceding list, complete the following steps:

1. Use Content Server Explorer to open and modify the asset descriptor file that you
uploaded in “Step 3: Upload the Asset Descriptor File in to Content Server” on page
302.

2. Save your changes.

3. Re-register the elements for the asset type.

You cannot change the schema of the asset type’s database table after it is created. The
following changes are schema changes:

• Changing the name of a column (the NAME parameter in an existing PROPERTY
statement)

• Changing the data type of the column (the STORAGE TYPE or LENGTH in an existing
PROPERTY statement)

• Adding a new property (new PROPERTY statement), which adds a new column to the
table

• Deleting a property (an existing PROPERTY statement), which deletes a column from
the table

Therefore, if you want to make any of the changes in the preceding list, you must first
delete the asset type, modify the asset descriptor file, and then create the asset type again.

Note that if you have customized the elements that AssetMaker copied from the
AssetStubElementCatalog table to the asset type’s directory in the
ElementCatalog table, your changes are overwritten when you re-register the elements.

Step 8: (Optional) Customize the Asset Type Elements
There are two ways to customize your asset type elements:

• If your management system requires the same modifications for assets of all types,
modify the source elements in the AssetStubElementCatalog table before you
create your asset types. That way you only have to make your customizations once.

• If your change is specific to a certain asset type, modify the elements in that asset
type’s directory in the ElementCatalog table.

If you change the source elements (stub), you must re-register all of the asset types that
you want to take the new changes.
Content Server 7.0 Developer’s Guide

Chapter 15. Designing Basic Asset Types

Creating Basic Asset Types
307
Note that, although customizing elements might be necessary, it is not supported. If you
need to customize any element, consider the following issues:

• When you re-register asset elements, AssetMaker moves new copies of the elements
from the AssetStubElementCatalog table to the asset type’s directory in the
ElementCatalog table. If you made any code changes to the elements in the asset
type directory, they are overwritten when AssetMaker moves the new copies.

• The upgrade from one version of CS-Direct to another typically installs new source
elements in the AssetStubElementCatalog table. That means that any code
changes in the stub elements are overwritten when you re-register your asset types
after you upgrade.

Be scrupulous about tracking all of your customizations at all times. That way you can re-
create your work if you need to.

About PreUpdate and PostUpdate
The actions or procedures that can be performed on any asset type are called functions.
For example, to create, edit, copy, delete, and so on are all functions.

The PreUpdate and PostUpdate elements contain logic that is invoked before and after
writing information about an asset to the database. The PreUpdate and PostUpdate
elements uses a variable named updatetype. to determine the kind of function that is
underway. If necessary, you can customize these elements, using the value of
updatetype as a condition for additional logic.

The functions that invoke the PreUpdate and PostUpdate elements are as follows:

• new

• edit

• delete

• XMLPost

Both the new function and the edit function call the PreUpdate element twice:

• Before the function renders the “New” or “Edit” form

• Before it saves an asset

The following table defines the values of the updatetype variable:

updatetype value Description

setformdefaults For PreUpdate only: the new function is about to render the
“New” form.

(Note that updatetype is never set to setformdefaults in
the PostUpdate element.)

create For PreUpdate: the new function is about to save a new
asset.

For PostUpdate: the new function saved a new asset.

editfront For PreUpdate only: the edit function is about to render the
“Edit” form.

(Note that updatetype is never set to editfront in the
PostUpdate element.)
Content Server 7.0 Developer’s Guide

Chapter 15. Designing Basic Asset Types

Creating Basic Asset Types
308
There are several reasons why you might need to modify the PreUpdate or PostUpdate
elements. For example, perhaps your system is set up to import batches of articles from a
wire service. You can modify the PreUpdate element to set the value for Source to
“wirefeed” and the value for a Byline field to “API” when updatetype=remotepost.

Step 9: (Optional) Configure Subtypes
For the basic asset types that you design with AssetMaker, subtype means a subclass of the
asset type based on how that asset is rendered. You can use subtypes to define a separate
default approval template for an asset of that type and subtype on each publishing target.

Adding Subtypes

To create a subtype

1. On the Admin tab, expand the Asset Types option.

2. Under the Asset Types option, select the asset type that you want to create subtypes
for.

3. Select the Subtypes option.

The “Subtypes” form appears:

4. Click Add New Subtype.

edit For PreUpdate: the edit function is about to save the edited
asset.

For PostUpdate: the edit function just saved an edited asset.

delete For PreUpdate: the delete function is about to delete an
asset.

For PostUpdate: the delete function just deleted an asset.

remotepost For PreUpdate: the XMLPost function is about to import an
asset.

For PostUpdate: the XMLPost function just imported an
edited asset.

MSWord For PreUpdate: CS-Desktop is about to save an asset created
or edited in Microsoft Word.

updatetype value Description
Content Server 7.0 Developer’s Guide

Chapter 15. Designing Basic Asset Types

Creating Basic Asset Types
309
5. In the next form, click in the first field in the Name column and enter the name of the
subtype.

6. In the corresponding field in the Sites column, select the names of the sites that need
this subtype.

7. Repeat steps 5 and 6 for up to five subtypes.

8. Click Save.

Deleting Subtypes

To delete a subtype

1. On the Admin tab, expand the Asset Types option.

2. Under the Asset Types option, select the asset type that you want to create subtypes
for.

3. Select the Subtypes option.

4. In the “Subtypes” form, click the icon.

5. Click Delete Subtype.

Step 10: (Optional) Configure Association Fields
Named associations are described in “The Basic Asset Model” on page 198. Briefly,
named associations are defined, asset-type-specific relationships that describe parent-child
relationships or links between individual assets or asset sub-types. When you code your
template elements, you use the names of these relationships to identify individual assets or
sub-types, without having to refer to the object by its name.

For example, the Burlington Financial sample site associates imagefile assets with article
assets. The template elements are coded to extract an associated imagefile asset by the
name of the association rather than the name of the asset. That way, if you choose a
different imagefile for an article, the template displays the new imagefile without your
having to recode the template.

Named associations are represented as fields in the asset forms. These fields are not
created from an asset descriptor file. Instead, you use the “Asset Associations” forms on
the Admin tab.

Examples of association fields from the Burlington Financial sample site include the Main
Image and Teaser Image associations between article assets and imagefile assets. When
you create a Burlington Financial article asset, you can select an image asset from the
Main Image and Teaser Image fields.

Adding Association Fields

To add an association field

1. On the Admin tab, select Asset Types.

2. Under the Asset Types option, select the asset type that you want to create
associations for.

3. Under the asset type you selected, select Asset Associations > Add New.
Content Server 7.0 Developer’s Guide

Chapter 15. Designing Basic Asset Types

Creating Basic Asset Types
310
The “Add New Association” form appears:

4. Click in the Name field and enter the name of the association field, without using
spaces, decimal points, or punctuation marks.

5. Click in the Description field and enter a short description of the field. Keep the
description short because CS-Direct uses the text entered into this field as the name of
the field when it is displayed on the new asset form.

6. Click in the Child Asset field and select the kind of asset type that will appear in this
field. (It is called the Child Asset field because associations create parent-child
relationships between assets.) You cannot specify the template or the page asset type
in this field.

7. Select the subtype or subtypes for this association by highlighting them in the
Subtypes field. To select multiple subtypes, press the Control key while you click
your selection with the mouse.

8. Select the appropriate Dependency Type for this asset association. By default, it is set
to Exists. (The dependency type specified here is used by the approval system when
your publishing method is Mirror to Server. For information about dependency types,
see “About Coding to Log Dependencies” on page 539).

9. Click Add.

CS-Direct creates a row in the Association table for this association. The name
used in the row is the text you entered in the Name field in step 6.

Deleting Association Fields
Before you delete an association field, be sure to search for any assets that use it and clear
the value in the field. Otherwise, those assets will still have the association when you
delete the association field, but, because the field is no longer displayed in the Content
Server interface, you will be unable to change it.
Content Server 7.0 Developer’s Guide

Chapter 15. Designing Basic Asset Types

Creating Basic Asset Types
311
To delete an association field

1. On the Admin tab, select Asset Types.

2. Under the Asset Types option, select the asset type whose association field you want
to delete.

3. Under the asset type you selected, select the association that you want to delete.

4. In the form on the right, click Delete.

The association field is now no longer displayed on forms for this asset type.

Step 11: (Optional) Configure Categories
You can use categories to organize your asset types according to some convention that
works for your site design. For example, the Burlington Financial sample site uses queries
based on category to determine which articles should be selected for various sections of
the online site.

Although all basic asset types have a Category field (column) by default, it is not a
required field and you do not have to use it.

Adding Categories

To add a category

1. On the Admin tab, select Asset Types.

2. Under the Asset Types option, select the asset type that you want to create categories
for. (For example, select Article.)

3. Under that asset type, select Categories > Add New.

The following form appears:

4. Click in the Description field and enter a short description of the category. Keep the
description short because CS-Direct uses the text that you enter in this field in the site
tree and in the drop-down list for the Category field on the forms for assets of this
type.

5. In the Category Code field, enter a two-character code for your new category.

6. Click the Add button.

7. Repeat steps 4 through 8, as needed, to finish creating the categories for this asset
type.

The categories you created now appear in the drop-down lists in the Category fields on
the “New” and “Edit” asset forms.
Content Server 7.0 Developer’s Guide

Chapter 15. Designing Basic Asset Types

Creating Basic Asset Types
312
Deleting Categories

To delete a category

1. On the Admin tab, select Asset Types.

2. Under the Asset Types option, select the asset type that you want to delete a category
for.

3. Under that asset type, select the category that you want to delete.

4. Click Delete.

Step 12: (Optional) Configure Sources
Sources apply to all the asset types in all the sites on your system. Therefore, if you are
using Source, you need to add your sources only once (not for each asset type).

Adding Sources

To create a source

1. On the Admin tab, select Sources > Add New.

The “Add Source” form appears:

2. Click in the Source field and enter the name of a source.

3. Click in the Description field and enter a short description of the source. Keep this
description short because CS-Direct uses the text from this field in the drop-down list
for the Source field on the forms for assets.

4. Click Add.

The source is written to the Source table.

5. Repeat steps 1 through 4 for each source that you need for your asset types.

Deleting Sources

To delete a source

1. On the “Admin” form, select Sources.

2. Under the Sources option, select the name of the source that you want to delete.

3. In the form for this source, click Delete.
Content Server 7.0 Developer’s Guide

Chapter 15. Designing Basic Asset Types

Creating Basic Asset Types
313
Step 13: (Conditional) Add Mimetypes
The MimeType table holds mimetype codes that can be displayed in mimetype fields. You
must add mimetypes for your asset if you reference the MimeType table in your asset
descriptor file.

For example, both the imagefile and stylesheet asset types have upload fields with Browse
buttons next to them. After you select a file in the upload field, you specify the mimetype
of the file you selected from the Mimetype field.

The Mimetype fields for the imagefile and stylesheet asset types query the MimeType
table for mimetype codes based on the keyword column:

• Mimetype codes with their keyword set to stylesheet appear in the drop-down list
of the Mimetype field in the “Stylesheet” form.

• Mimetype codes with their keyword set to image appear in the drop-down list of the
Mimetype field in the “ImageFile” form.

By default, stylesheet files can be CSS files and imagefile files can be GIF or JPEG files.
You can add mimetype codes for these asset types, for your own custom asset types, or for
any other reason.

To add mime types to a Mimetype drop-down list

1. Open Content Server Explorer.

2. Expand the MimeType table.

3. Do one of the following:

- If you are adding a mimetype for the imagefile asset type, select the image folder
in the MimeType table.

- If you are adding a mimetype for the stylesheet asset type, select the text folder in
the MimeType table

- If you are adding a mimetype for a custom asset type with an upload field or for
any other reason, select the appropriate location in the MimeType table.

4. Right-click in the frame on the right and then select New from the drop-down list.

Content Server Explorer creates a new row in the table.

5. In the mimetype field, enter the name of the mimetype. For example: XSL.

6. In the extension field, enter the extension for mime types of this type. For example:
.xml.

7. In the description field, enter a short description of this mimetype.

8. In the isdefault field, do one of the following:

- If you want to specify more than one extension for the same mimetype, enter n.
For example, if a mimetype named JPG has .jpg and .jpeg extensions, set
isdefault to n.

- If this is the only extension for the mimetype, enter y.

9. Click in the keyword field and do one of the following:

- If you are adding a mimetype for the imagefile asset type, enter image.
- If you are adding a mimetype for the stylesheet asset type, enter stylesheet.
Content Server 7.0 Developer’s Guide

Chapter 15. Designing Basic Asset Types

Creating Basic Asset Types
314
- If you are adding a mimetype for a custom asset type with an upload field or for
any other reason, enter the appropriate keyword.

10. Select File > Save all.

Content Server Explorer saves the row.

If you added a mimetype code with the keyword of image, that mimetype is now
displayed in the Mimetype field of the “ImageFile” form. If you added a mimetype
code with the keyword of stylesheet, that mimetype is now displayed in the Mimetype
field of the “Stylesheet” form.

Step 14: (Optional) Edit Search Elements to Enable Indexed
Search

CS-Direct (and CS-Direct Advantage and Engage) has its own database SQL search
mechanism that runs the Simple and Advanced searches. However, you can set up your
management system to one of the supported third-party search engines instead. (See the
Content Server Administrator’s Guide for configuration information.)

When you are using a search engine on your management system, each asset is indexed
when it is saved after being created or edited. By default, only the default fields are
indexed (for a list, see “Default Columns in the Basic Asset Type Database Table” on page
203). If you want the fields that you created with PROPERTY statements in your asset
descriptor file to be indexed, you must add statements for them in the following elements:

• OpenMarketXcelerate/AssetType/YourAssetType/IndexAdd.xml

• OpenMarketXcelerate/AssetType/YourAssetType/IndexReplace.xml

• OpenMarketXcelerate/AssetType/YourAssetType/
IndexCreateVerity.xml

To add the asset type’s custom fields to these elements, use the Content Server INDEX tags
and follow the convention illustrated in these elements.

Step 15: Code Templates for the Asset Type
Creating your asset types and coding the templates for assets of that types is an iterative
process. Although you need to create asset types before you can create templates for assets
of that type, it is likely that you will discover areas that need refinement in your data
design only after you have coded a template and tested the code.

For information about coding templates, see Chapter 24, “Coding Elements for Templates
and CSElements.”

Step 16: Move the Asset Types to Other Systems
When you have finished creating all of your new asset types (including creating templates
for them), you migrate them to the management and delivery systems. Then, the system
administrators configure the asset types for the management system. They enable revision
tracking where appropriate, create workflow processes, create Start Menu shortcuts, and
so on.

For information about this step, see the Content Server Administrator’s Guide.
Content Server 7.0 Developer’s Guide

Chapter 15. Designing Basic Asset Types

Deleting Basic Asset Types
315
Deleting Basic Asset Types
When you delete an asset type that you created with AssetMaker, CS-Direct can either
delete components of the asset type that you select, or delete all traces of the asset type
from the database. A list of asset type components follows:

• The database table and all the data in it

• The elements in the ElementCatalog table

• The SQL statements in the SystemSQL table

• The row in the AssetType table

• Any rows in the Association table (optional)

• Any rows in the Category table (optional)

• Any rows in the AssetPublication table

• Any rows in the AssetRelationTree table.

To delete an asset type that you created with AssetMaker

1. Open your browser and enter this address:

http://your_server/Xcelerate/LoginPage.html

2. Enter your login name and password and click Login. Note that you must have
administrator rights associated with your user name (login name) in order to have
access to AssetMaker.

3. Select the Admin tab > AssetMaker and then select the asset type that you want to
delete.

The “Asset Type” form appears:

4. Select the Delete Asset option and click Submit.

CS-Direct displays a confirmation message.

5. Click OK.

Images and eWebEditPro
The eWebEditPro toolbar allows users to upload an image to the management system.
However, if your delivery system is dynamic, think carefully before allowing your users to
take advantage of this feature. An image that is uploaded in this manner is not an asset,
and so it is not mirror published when the asset that uploaded it is published to the
delivery system. You must set up a separate file-transfer process to ensure that those
images are moved to the delivery system. To avoid the extra step, consider making your
images assets and using the association fields to connect an image to another asset.
Content Server 7.0 Developer’s Guide

Chapter 15. Designing Basic Asset Types

Images and eWebEditPro
316
Content Server 7.0 Developer’s Guide

317
Chapter 16

Designing Flex Asset Types
As mentioned in Chapter 11, “Data Design: The Asset Models,” the data model for flex
asset types can be thought of in terms of a family of asset types, with each asset type in the
family having several database tables.

You create new flex asset types with the Flex Family Maker utility. However, when
working with the flex asset model, developers not only create the flex asset types, they
also create the individual data structure assets of those types—that is, flex attributes, flex
parent definitions, flex definitions, and flex parent assets.

Typically, you design the flex asset types and create the data structure assets on a
development system. Then when your data model is ready, you migrate your work from
the development system to the management and delivery systems.

This chapter contains the following sections:

• Design Tips for Flex Families

• The Flex Family Maker Utility

• Creating a Flex Asset Family

• Editing Flex Attributes, Parents, and Definitions

• Using Product Sets
Content Server 7.0 Developer’s Guide

Chapter 16. Designing Flex Asset Types

Design Tips for Flex Families
318
Design Tips for Flex Families
Your job when designing your flex family is to create a data structure that meets the needs
of two audiences:

• The visitors to your online site (that is, the users of your delivery system)

• The content providers who use CS-Direct Advantage to enter data into the Content
Server database (that is, the users of the management system)

Visitors on the Delivery System
The experience of the visitors to your online site is based on the following asset types:

• flex asset

• flex attribute

Your online site pages display flex assets (assetsets) for the visitors through queries that
are based on attribute values (searchstates. See “Assetsets and Searchstates” on page 219.)
You use attribute values as the basis for drill-down searches that can give the appearance
of a hierarchy on your online site if that is the look and feel that you want.

Users on the Management System
The users of your management system navigate through a visual hierarchical structure that
you create for them with the following flex asset types:

• flex parent definition

• flex definition

• flex parent

Although the organizational structure that you create with these asset types does affect the
data — it determines which attribute values are inherited by which flex assets—its biggest
impact is on the users of the management system.

You are not required to use flex parents and flex parent definitions, but their inheritance
properties make them a valuable tool for users who are maintaining a large amount of data
such as an online catalog:

• Changing an attribute value at the parent level changes that value for all the flex assets
who are children of that parent, which means you only have to change the value once.

• Inherited attribute values are values that aren’t subject to user error during data entry,
which means less data cleanup is required.

The inheritance tree that you create for your content providers has no bearing on how your
site visitors navigate the online site you are designing. For example, if content is entered
into your management system through some completely automated process—perhaps it is
bulk loaded from an ERP system—you would have no need for parent asset types at all,
yet you can still create drill-down searches on your online site.
Content Server 7.0 Developer’s Guide

Chapter 16. Designing Flex Asset Types

Design Tips for Flex Families
319
How Many Attribute Types Should You Create?
As described in “Assetsets and Searchstates” on page 219, only the flex assets that share a
common attribute type can belong to the same assetset because queries (searchstates) are
based on attributes and not on the organizational constructs of parent definitions and flex
definitions.

Therefore, when you design your data structure, remember that if you organize your data
to use separate types of attributes, you might create a nicely delineated interface on the
management system, but that data cannot be synthesized well on the delivery system and
that is rarely what you want.

As a general rule, you should create one type of attribute for your system. If you need to,
you can create more than one version of the rest of the family members (the flex asset
type, flex definition type, flex parent type, and flex parent definition type), but they should
still share the same pool of attributes.

For example, if the GE Lighting sample site had been designed such that the product
family and the content family shared the same attribute type, you would be able to create
assetsets that contained a product and a corresponding article about that product.

Designing Flex Attributes
Before you begin creating attributes, design them on paper. Determine all the attributes
you need and decide where they will appear—with flex assets or the flex parents.

Start by planning out the bottom level of your hierarchy (that is, the individual instances of
flex asset types like products) and determine the attributes you need for each item at that
level. For example, if you plan to create flex filter assets, determine which attributes need
to be created and assigned to the definitions as the input and output attributes for your
filters.

You must determine all of the flex attributes that you need before you begin creating them
because the way you plan to use them creates dependencies that you must account for
when you create them.

Which Data Types
Assess the data types that are available for attributes and the default input types for those
data types. Determine which data types will work best for which attributes. If you want to
change the default input style for an attribute, you create an attribute editor for it before
you create the attribute. (See Chapter 17, “Designing Attribute Editors.”)

When you create a flex asset that uses an attribute of type blob, the format of the value
entered for the attribute on an Inspect form depends on its type. For example, a text file
shows the first 200 bytes in the file. An image file appears as a thumbnail image. And
some files cannot be displayed at all. In this case, CS-Direct Advantage displays the
message “filename not displayable” but the file location is still successfully recorded.

Using Attribute Editors
The default input type for an attribute depends on the data type that you select for it. If you
do not want to use the default input type, you can create an attribute editor for the attribute.

Creating flex assets and their attribute editors is an iterative process. You can create the
attribute editors first or you can create the attributes first and then go back and assign the
Content Server 7.0 Developer’s Guide

Chapter 16. Designing Flex Asset Types

Design Tips for Flex Families
320
attribute editors after you have created them. The process of creating attribute editors is
described in Chapter 17, “Designing Attribute Editors.”

Attributes of Type Blob
The default input style of an attribute of type blob is a text field with a Browse button.
You use the Browse button to locate and select a file and Content Server uploads it to the
default storage directory. You cannot use the CS-Direct Advantage forms to edit the
contents of the file.

If you want to be able to enter content directly into the external file through the CS-Direct
Advantage forms, you must assign an attribute editor to the attribute:

• If you use an attribute editor that uses the TEXTAREA input style, you can create a field
that can hold up to 2,000 characters (entered through the forms); when saved, that
content is written to the default storage directory.

• If you have eWebEditPro, you can use an eWebEditPro field to edit the contents of the
external file that the attribute represents.

Attributes of Type Asset
The default input style for an attribute of type asset is a pull-down list of all the assets of
the type specified. An unfiltered pull-down list is not recommended if you have more than
20 assets of that type.

In general, whenever you create an attribute of type asset, you should assign it an attribute
editor.

• An attribute editor that uses the PICKASSET style checks to find out whether the tree
is toggled on or off in the Content Server interface. If the tree is on, the user can select
an asset from a tab in the tree. If the Tree is toggled off, the attribute editor displays a
pop-up window that lists the assets from the Active List and History tabs.

• Another option is to use the PULLDOWN style but to supply a query asset that limits the
options that appear in the list.

• If the number of assets that are valid choices is small, you can also use the
CHECKBOXES or the RADIOBUTTONS input style, both of which require a query asset
to identify the assets.

Where Will Each Attribute Be Used?
After you have determined the list of attributes, determine whether you plan to use them in
a flex definition or a flex parent definition. Sort them logically by using the following
guidelines:

• If an attribute’s value is unique to an individual flex asset (product, article, image, for
example), the attribute belongs at the bottom of the tree, with the flex asset.

• If an attribute’s value is the same for multiple flex assets, the attribute belongs in a
parent. (Of course there are always exceptions. For example, even if a toaster costs the
same amount as a bowling ball, it is unlikely that they would inherit their prices from
a common parent.)

• Based on that attribute distribution, you can determine how many flex definitions you
need and how many parent definitions you need.

Remember that there is both a physical limit (based on your DBMS) and a psychological
limit (user satisfaction) as to how many attributes you can or should use in an individual
flex asset or flex parent. Someone has to enter all those values. Be sure to create and then
Content Server 7.0 Developer’s Guide

Chapter 16. Designing Flex Asset Types

Design Tips for Flex Families
321
assign to the definitions only those attributes that you really plan to use. It is very easy to
add attributes in the future if you decide that you need additional ones.

Dependencies Imposed by Hierarchy
After you know where an attribute will be used, you can determine whether hierarchical
concerns add requirements to the attribute. For example, if an attribute is to used by a flex
parent and your data structure allows flex assets to have more than one parent, the attribute
must be configured to hold multiple values because a flex asset might inherit more than
one value for it.

In general, try not to make the inheritance structure too complex.

How Many Definition Types Should You Create?
The appearance and input of data on the management system is based on the flex asset
definitions and the flex parent definitions. Parents and flex assets appear on tabs in the tree
in the Content Server interface based on the hierarchy that you create through the
definitions.

In general, it is best to create a separate set of definition types for each flex asset member
in a family.

For example, the GE Lighting sample site has two flex asset members in the content
family: article (flex) and image (flex). They share parents, parent definitions, and flex
definitions. This means that some attributes are left blank for the image assets because
they don’t apply and some attributes are left blank for the article assets because they don’t
apply.

It would be better to have article parents, article definitions, and article parent definitions
that are different from image parents, image definitions, and image parent definitions. But
they should absolutely share the same attribute type, which they do.

Designing Parent Definition and Flex Definition Assets
The hierarchy on the tabs in the tree in the Content Server interface is created through the
flex parent definitions and flex definitions:

• To set a hierarchy three levels deep, you need at least two parent definitions and at
least one flex definition.

• To specify a hierarchy two levels deep, you need at least one parent definition and at
least one flex definition.

Be sure to consider the basic tenets of usability when you set up a structural hierarchy with
the flex definitions and flex parent definitions. For example:

• How deep can the hierarchy go before the content providers feel lost in the tree?

• How many attribute values can be inherited to alleviate the possibility of user error
during input?

• How many options can be comfortably displayed in a drop-down list?

If you create a system that is overly difficult to use, the content providers will complain.

Determining Hierarchical Place
Open CS-Direct Advantage, log in to the GE Lighting sample site, and examine the form
for a new product parent definition or for a new product definition.
Content Server 7.0 Developer’s Guide

Chapter 16. Designing Flex Asset Types

Design Tips for Flex Families
322
In the Parent Definition section of these forms, you determine two things:

• The hierarchical position of the assets that use this definition and determine

• The parents that they can inherit attributes from

Remember that although the hierarchical position has meaning only in the user interface
on the management system, the attributes that they inherit have meaning both on the
management system and on your online site.

The text box named Available lists all the existing parent definitions. You use this section
of the form to specify how many parents are possible by selecting parent definitions from
the Available list and moving it to the Selected list.

When you create a parent asset or a flex asset, the New form displays a drop-down field
for each definition that you selected from the Available list when you created the
definition that you are using to create the new parent or flex asset. The drop-down list in
the New form displays all the parents that were created with that definition.

If the parent that is selected in the New form has any attribute values, the asset inherits
them.

How many possible parents should you allow? In general, it is best to keep this simple.
The more parent definitions you select from the Available list, the more fields the content
providers have to fill out when they create a new flex asset.

If you do not select a parent definition in the Available list, it means that assets created
with this definition are positioned at the top level of the tree on the tab that displays your
flex assets.

The best way to understand how parent definitions, flex definitions, parent assets, and flex
assets interact is to examine the assets delivered with the GE Lighting sample site.

Determining Attribute Inheritance
You configure attribute inheritance in the Attributes section of the parent definition form.
You use that section to specify the attributes that define the parents that are created with
this definition.

When you create a parent with this definition, the values that are entered for these
attributes are passed down to the flex assets that are children of the parent asset.

How Many Flex Parent Definition Assets?
The simple answer is “as many as you need.” Be sure to consider usability when you
decide how many flex parent definition assets you need, and how many parent assets of
those definitions that you need.

If you create many parent definitions, it probably means that you will have fewer parents
created with each definition, which leads to shorter drop-down lists in the new parent and
new flex asset forms. Short drop-down lists make it easier for content providers to select
the correct parent from the list.

However, if your data needs require you to have a small number of parent definitions and
a large number of parents, create a tab that lists all the parents so the content providers can
select the correct parent asset from the tab.

How Many Flex Definition Assets?
A general rule is this: create enough flex definitions so that fields (attributes) are not left
blank on the New and Edit flex asset forms.
Content Server 7.0 Developer’s Guide

Chapter 16. Designing Flex Asset Types

The Flex Family Maker Utility
323
If you create too few definitions, you run the risk of creating long forms with lots of
attribute fields, not all of which apply for each asset. When you have long forms with lots
of attribute fields, not only do content providers have to sort through the form to determine
which attributes apply to the asset they are currently creating, the form takes a long time to
be rendered in the user’s browser.

Summary
Keep the following rules in mind as you design the data structure with a flex family for
your online site:

• Carefully planned, easy-to-use asset design (data design) makes content providers
happy.

• Usable layout and efficient code makes site visitors happy.

And both user groups need efficient systems that perform well.

The Flex Family Maker Utility
When you create a flex family with Flex Family Maker, it does the following:

• Creates several database tables (the number depends on which flex asset types that
you create).

• Writes information about the new flex family to the following tables:

- FlexAssetTypes, which holds a row for each flex asset member type
- FlexGrpTmplTypes, which holds a row for each flex parent definition type
- FlexGrpTypes, which holds a row for each flex parent type
- FlexTmplTypes, which holds a row for each flex definition type

• Creates new directories in the ElementCatalog table using the following naming
convention:

OpenMarket/Xcelerate/AssetType/NameOfYourAssetType

• Copies elements from the ElementCatalog table to the directories in created for
your asset types. CS-Direct Advantage use these elements to format the New, Edit,
Inspect, Search, and Search Results forms for assets of that type.

For information about the main database tables for flex assets and flex parent assets, see
“Flex Families and the Database” on page 216. For information about all the database
tables in a flex family, see the Content Server Database Schema Guide.

The Flex Asset Elements
When you create a new flex asset type, Flex Family Maker copies elements to the
following location in the ElementCatalog table:

OpenMarket/Xcelerate/AssetType/NameOfAssetType

For example, the GE sample site product asset elements are in:

OpenMarket/Xcelerate/AssetType/Products

It also creates a SQL statement that the search elements use and places it in the
SystemSQL table under OpenMarket/Xcelerate/AssetType/NameOfAssetType.
Content Server 7.0 Developer’s Guide

Chapter 16. Designing Flex Asset Types

Creating a Flex Asset Family
324
For a description of the elements and the SQL statement that Flex Family Maker copies
for you, see “Elements and SQL Statements for the Asset Type” on page 288. The
elements for flex assets are the same as the elements for the basic assets with the exception
of the AppendSelectDetailsSE element.

Creating a Flex Asset Family
When you are using the flex asset data model to represent the content you want to display
on your online site, you and the other developers do not create only the flex asset types.
You also create the individual data structure assets of those types: flex attributes, flex
parent definitions, flex definitions, and flex parent assets.

Overview
Following is an overview of the process for creating a new flex asset type or family of flex
asset types. Where you start in the process depends how many asset types you need to
design. If you can base your data structure on either of the sample site flex families, you
do not have to create an entire flex family—you can create only the new members that you
need.

This chapter describes each of the following steps in the process, except as noted:

1. Create the new flex family or new member of the flex family.

2. Configure the development system so that you have easy access to the new asset
types:

a. Enable the new asset types on all the Content Server sites on the development
system.

b. Create Start Menu shortcuts for all the new asset types.

c. Put the new flex definition, flex parent definition, and attribute types on the
Design tab.

d. Create a tab for your new flex parent and flex asset types.

3. Create the flex attributes and design your attribute editors. For information about
attribute editors, see Chapter 17, “Designing Attribute Editors.”

4. Create the flex filter assets.

5. Create the flex parent definitions.

6. Create the flex definitions.

7. Create the flex parents.

8. Test your design by creating enough flex assets to examine the data structure that you
have designed. (Procedures for creating assets are presented in the Content Server
User’s Guide.)

9. Create templates for the flex assets, the flex member of the flex family. This step is
described in Chapter 21, “Creating Template, CSElement, and SiteEntry Assets” and
Chapter 24, “Coding Elements for Templates and CSElements.”

10. Move your asset types to other systems (management and delivery). This step is
described in the Content Server Administrator’s Guide.
Content Server 7.0 Developer’s Guide

Chapter 16. Designing Flex Asset Types

Creating a Flex Asset Family
325
Before You Begin
Be sure to set up your development system and get access to it, as follows:

• Create the appropriate Content Server sites.

• Create a user name for yourself that has administrator rights, and enable that user
name on all of the sites on your development system. Note that without administrator
rights, you do not have access to the Admin tab, which means that you cannot
perform some of the procedures in this chapter.

For the sake of convenience, assign the Designer and GeneralAdmin roles to your
user name. That way you will have access to all the tabs in the Content Server
interface and all of the existing Start Menu shortcuts for the assets in the sample site.
(Be sure that the TableEditor ACL is assigned to your user name.)

• If you plan to use eWebEditPro, a third-party HTML editor from Ektron, Inc., you
must obtain it from FatWire (contact your FatWire sales representative) and configure
it on the systems that you plan to use it on. It is not delivered with CS-Direct (or CS-
Direct Advantage).

For information about these tasks, see the Content Server Administrator’s Guide.

Step 1: Create a Flex Family or a New Flex Family Member

To create a new flex family or family member

1. Open your browser and enter this address:

http://your_server/Xcelerate/LoginPage.html

2. Enter your login name and password and click Login. Note that you must have
administrator rights associated with your user name (login name) in order to have
access to the Admin tab, which is where Flex Family Maker is located.

3. Select Admin > Flex Family Maker.

The Flex Family Maker form appears:
Content Server 7.0 Developer’s Guide

Chapter 16. Designing Flex Asset Types

Creating a Flex Asset Family
326
4. For Flex Attribute, do one of the following:

- If you are creating a completely new flex family — all five members — click in
the Name field and enter the name of the new flex attribute type.
The name you enter in this field is the internal name of the new attribute type. It
becomes the name of the core table for this asset type and the prefix for all its
auxiliary tables.

- If you are creating a family that shares attributes with another family, select the
appropriate attribute type from the drop-down field.

5. For Flex Parent Definition, do one of the following:

- If you are creating a completely new flex family — all five members — or
creating a new family that shares attributes with another family, click in the Name
field and enter the name of the new flex parent definition.
The name you enter in this field is the internal name of the new parent definition
type. It becomes the name of the core table for this asset type and the prefix for all
its auxiliary tables.

- If you are creating a family that shares attributes and parents, select the
appropriate parent definition from the drop-down field.

6. For Flex Definition, click in the Name field and enter the name of the new flex
definition.

The name you enter in this field is the internal name of the new flex definition type. It
becomes the name of the core table for this asset type and the prefix for all its
auxiliary tables.

7. For Flex Parent, do one of the following:

- If you are creating a completely new flex family — all five members — or
creating a new family that shares attributes with another family, click in the Name
field and enter the name of the new flex parent asset type.
The name you enter in this field is the internal name of the new parent type. It
becomes the name of the core table for this asset type and the prefix for all its
auxiliary tables.

- If you are creating a family that shares attributes and parents, select the
appropriate parent from the drop-down field.

8. For Flex Asset, click in the Name field and enter the name of the new flex asset type.

The name you enter in this field is the internal name of the new flex asset type. It
becomes the name of the core table for this asset type and the prefix for all its
auxiliary tables.

9. For Flex Filter, click in the Name field and enter the name of the new flex filter asset
type.

The name you enter in this field is the internal name of the new flex filter asset type. It
becomes the name of the core table for this asset type and the prefix for all its
auxiliary tables.

10. Click Continue.
Content Server 7.0 Developer’s Guide

Chapter 16. Designing Flex Asset Types

Creating a Flex Asset Family
327
Flex Family Maker displays the following form:

11. For each new member of the family, click in the Description field and enter the
external name of the asset type, that is, the name of the asset type when it is displayed
in CS-Direct Advantage. This is the name that appears on the forms (New, Edit,
Inspect, and so on).

12. For each new member of the family, click in the Plural field and enter the plural
version of its name. This version is used in status messages and so on when
appropriate.

13. Click Add New Flex Family.

Flex Family Maker creates the database tables that will store assets of these types. For
information about these tables, see “Flex Families and the Database” on page 216.

It also copies elements that format the forms for assets of these types to a directory
with the name of the asset type in the ElementCatalog and SystemSQL tables.

Step 2: Enable the New Flex Asset Types
Before you can start creating assets (attributes, flex parent definitions, and so on), you
must complete some steps on the Admin tab so that you have access to them. Note that
your login must grant you administrator rights in order for you to have access to the
Admin tab.
Content Server 7.0 Developer’s Guide

Chapter 16. Designing Flex Asset Types

Creating a Flex Asset Family
328
Complete the following steps:

1. On the Admin tab, click the Sites icon and complete the following steps:

a. Select the site that you are going to use to work with this asset type.

b. Under that site, select Asset Type > Enable Asset Types.

c. Select your new asset types from the list and click Enable Asset Types.

d. Content Server can automatically create a New Start Menu Item and/or a Search
Start Menu Item for the Asset Types you are enabling. Check the box next to any
available Start Menu Item that you would like Content Server to create.

If you choose not to generate these menu items at this time, you or your site
administrator must manually create them later (no one can create assets of the
enabled asset types until Start Menu items are created for them).

e. Repeat steps a through d for each appropriate site.

2. Click Enable Asset Types.

3. The asset types are now enabled for the site(s). If you did not use Content Server to
generate start menu items, you or your site administrator must now manually create
them. As the developer of the asset types and the designer of the online site, your
responsibility is to let the administrator know enough about your asset and site design
that the site administrator can configure meaningful Start Menu items.

You (the developers) must let the site and system administrators know which fields are
used by the queries, collections, or other design elements for your online site so that
they can create meaningful Start Menu items for the content providers. For more
information about creating Start Menu items, see the Content Server Administrator’s
Guide.

After you or your administrator has created Start Menu items for your new asset types,
you can create assets of these types. Note that even if you add your asset types to a tab,
you will not be able to create new assets until you have created Start Menu shortcuts for
them.
Content Server 7.0 Developer’s Guide

Chapter 16. Designing Flex Asset Types

Creating a Flex Asset Family
329
Step 3: Create Flex Attributes
Because the steps that you follow can differ significantly based on the data type that you
select for your attribute, this section presents several procedures:

• A basic procedure for creating attributes of most data types

• Creating attributes of type blob

• Creating attributes of type asset

• Creating foreign attributes (that is, attributes that are stored in a foreign table)

Note

The url data type has been deprecated in the 4.0 version of the product. Use
the blob data type instead.
Content Server 7.0 Developer’s Guide

Chapter 16. Designing Flex Asset Types

Creating a Flex Asset Family
330
Creating Flex Attributes: the Basic Procedure
1. If the Content Server interface is not open, log in and select the appropriate site.

2. Click New and select the name of your attribute type from the list of shortcuts.

The New attribute form appears. For example, here’s the New Product Attribute
form from the GE Sample site:

3. Click in the Name field and enter a name of up to 64 characters, excluding spaces.

4. Click in the Description field and enter a short, descriptive phrase that describes the
use or function of the attribute.

5. Click in the Value Type field and select a data type for this attribute. (If you select
asset or blob, see “Creating Flex Attributes of Type Asset” on page 332 or “Creating
Flex Attributes of Type Blob (Upload Field)” on page 331, as appropriate.)

If you need help deciding which data type is appropriate for your attribute, see “Data
Types for Attributes” on page 210.
Content Server 7.0 Developer’s Guide

Chapter 16. Designing Flex Asset Types

Creating a Flex Asset Family
331
6. Click in the Number of Values field and select either single or multiple from the
drop-down list, as appropriate for the data type that you selected in the Value Type
field.

If this attribute is to be used by a flex parent and your data structure allows multiple
flex parents for a flex asset, you must select multiple because the flex assets that
inherit values for this attribute might inherit a value from more than one parent.

7. (Optional) If you do not want to use the default input type for this attribute (which is
based on the data type that you selected in the Value Type field), click in the
Attribute Editor field and select one from the drop-down list.

If you need more information:

For a list of the default input types (so you can determine whether you want to use an
attribute editor instead), see “Default Input Styles for Attributes” on page 211.

For information about creating attribute editors, see Chapter 17, “Designing Attribute
Editors.”

For information about which attribute editors are appropriate for the data type of this
attribute, see “The Attribute Editor Asset” on page 351.

8. (Optional) If you need to override the default ISO character set (ISO 8859-1), click in
the ISO Character Set field and enter the one you want to use for this attribute.

9. Click Save.

Creating Flex Attributes of Type Blob (Upload Field)

To create an attribute of type blob

1. Complete steps 1 through 4 in the procedure “Creating Flex Attributes: the Basic
Procedure” on page 330.

2. Click in the Value Type field and select blob.

3. (Optional) Click in Folder field and enter a path to the directory that you want to store
the attribute values in. Note that the value that you enter in this field is appended to the
value set as the default storage directory (defdir) for the MungoBlobs table.

4. Click in the Number of Values field and select single or multiple, as appropriate. For
more information about this field, see “Creating Flex Attributes: the Basic Procedure”
on page 330.

Note

When an attribute is configured to accept multiple values, it appears on the
flex parent and flex asset forms as a field with an Add Another attribute
name button.

If you want the attribute to accept multiple values for inheritance reasons but
you do not want content providers to select more than one value for the
attribute for individual parents or flex assets, assign the attribute an attribute
editor that presents it as a single value field (but select multiple in the Value
Type field).
Content Server 7.0 Developer’s Guide

Chapter 16. Designing Flex Asset Types

Creating a Flex Asset Family
332
5. (Optional) If you do not want to use the default input type (a Browse button), click in
the Attribute Editor field and select one of the following:

- An attribute editor that specifies the TEXTAREA input style
- If your system is configured to use eWebEditPro, an attribute editor that specifies

the EWEBEDITPRO input style

For information about attribute editors, see “The Attribute Editor Asset” on page 351.

6. Complete steps 8 through 10 of the procedure “Creating Flex Attributes: the Basic
Procedure” on page 330.

Creating Flex Attributes of Type Asset

To create an attribute of type asset

1. Complete steps 1 through 4 in the procedure “Creating Flex Attributes: the Basic
Procedure” on page 330.

2. Click in the Value Type field and select asset.

3. Click in the Asset Type field and select one from the drop-down list.

4. Click in the Mirror Dependency Type field and select a dependency type.

5. Click in the Number of Values field and select either single or multiple from the
drop-down list, as appropriate for the data type that you selected in the Value Type
field.

If this attribute is to be used by a flex parent and your data structure allows flex assets
to have more than one flex parent, you must select multiple because the flex assets
who inherit values for this attribute might inherit a value from more than one parent.

6. (Optional) If the number of assets of the type you selected in the Number of Values
field is more than 20, click in the Attribute Editor field and select one. See “Using
Attribute Editors” on page 319 for information about appropriate attribute editors.

7. Complete steps 8 through 10 of the procedure “Creating Flex Attributes: the Basic
Procedure” on page 330.

Creating Foreign Flex Attributes
If you keep data in another system (a price list, for example) that you also want to use for
your flex assets, you can create a foreign attribute that points to the column in the foreign
table whose data you want to use as a flex attribute.

Before you begin, be sure to register the foreign table with Content Server. For
information, see “Registering a Foreign Table” on page 239.

To create a foreign attribute

1. Complete steps 1 through 6 in the procedure “Creating Flex Attributes: the Basic
Procedure” on page 330. Note that you cannot select either asset or blob (or url) in
the Value Type field.

2. (Optional) If you plan to use the CS-Direct Advantage flex asset forms to enter values
for the attribute into the foreign table and you do not want to use the default input type
for the data type that you selected in the Value Type field, click in the Attribute
Editor field and select an appropriate one.
Content Server 7.0 Developer’s Guide

Chapter 16. Designing Flex Asset Types

Creating a Flex Asset Family
333
3. Click in the Editing Style field and do one of the following:

- If you want to use the CS-Direct Advantage forms to enter values into this
attribute’s fields for the flex assets that use it, select local.

- If you do not want users to be able to write values to this table through the CS-
Direct Advantage forms, select external.

4. Click in the Storage Style field and select external from the drop-down list.

5. Click in the External ID field and specify the name of the column that serves as the
primary key for the table that holds this foreign attribute, that is, the column that
uniquely identifies the attribute.

6. Click in the External Table field and enter the name of the table that stores this
attribute.

7. Click in the External Column and enter the name of the column in the table specified
in the External Table that holds the values for this attribute.

8. Complete steps 9 through 11 of the procedure “Creating Flex Attributes: the Basic
Procedure” on page 330.

Step 4: (Optional) Create Flex Filter Assets
Before you can create flex filter assets, the flex attributes that you plan to use as the input
and output attributes must already be created. If the appropriate flex attributes do not exist
yet, create them before continuing with this procedure. Note the following requirements:

• For flex filters that use the Document Transformation filter type, the input and output
attributes must be of type blob.

• For any flex filter, the input attribute, output attribute, and flex filter must all belong to
the same flex family.

To create a flex filter asset

1. If the Content Server interface is not open, log in and select the appropriate site.

2. Click New and then select the name of your flex definition asset type from the list of
shortcuts.

The New filter form appears:
Content Server 7.0 Developer’s Guide

Chapter 16. Designing Flex Asset Types

Creating a Flex Asset Family
334
3. In the Name field, enter a name for the flex filter asset. You can use up to 64
characters.

4. In the Description field, enter a description of the filter asset.

5. In the Filter field, select one of the registered filters from the drop-down list. By
default, there is only one registered filter: Document Transformation. For
information about this filter type, see “Flex Filters” on page 214.

6. Click Get Arguments.

The New Filter form displays the Arguments fields:

7. Specify the Document transformer name argument for the Document
Transformation filter as follows:

a. From the top Arguments field, select Document transformer name from the
drop-down list.

b. Click in the Arguments ([Value]) field and enter the following text, exactly as it
is presented:

Verity: Convert to HTML

c. Click Add.

Note

If your system has any custom filters registered, they will also
appear in this drop-down list. Custom filters use custom
arguments.

This procedure describes how to configure values for the
Document Transformation filter. If you select a custom filter, be
sure that you specify appropriate values for its arguments.
Content Server 7.0 Developer’s Guide

Chapter 16. Designing Flex Asset Types

Creating a Flex Asset Family
335
8. Specify the Output document extension argument for the Document
Transformation filter as follows:

a. From the top Arguments field, select Output document extension from the
drop-down list.

b. Click in the Arguments ([Value]) field and enter: .htm

c. Click Add.

9. Specify the Input attribute name argument for the Document Transformation filter
as follows:

a. From the top Arguments field, select Input attribute name from the drop-down
list.

b. Click in the Arguments ([Value]) field and enter the name of the flex attribute
whose contents will be converted to HTML by this filter and then stored in the
output variable. This attribute must already exist and it must be of type blob.

c. Click Add.

10. Specify the Output attribute name argument for the Document Transformation
filter as follows:

a. From the top Arguments field, select Output attribute name from the drop-
down list.

b. Click in the Arguments ([Value]) field and enter the name of the flex attribute
that holds the data that the filter converts to HTML. This attribute must already
exist and it must be of type blob.

c. Click Add.

11. Click Save.

This filter will now appear in the Filter list on the New and Edit forms for your flex
parent definition and flex definition assets.

Step 5: Create Parent Definition Assets
Complete the following steps:

1. If the Content Server interface is not open, log in and select the appropriate site.

2. Click New and select the name of your product definition asset from the list of
shortcuts.

The New form appears. For example, this is the New form for the GE sample site
product parent definition asset type:

Note

By default, the Verity: Convert to HTML transformation engine
is the only registered engine that you can specify for the
Document transformer name argument. For information about
configuring the Verity transformation engine so that it can also
convert documents to XML, see “Registering a New
Transformation Engine” on page 345.
Content Server 7.0 Developer’s Guide

Chapter 16. Designing Flex Asset Types

Creating a Flex Asset Family
336
3. Click in the Name field and enter a name of up to 64 characters.

4. Click in the Description field and enter a short, descriptive phrase that describes the
parent definition.

5. Click in the Parent Select Style field and determine how flex parents that use this
definition will be selected on the parent asset forms. Do one of the following:

- If the number of parents of this type will be small, choose Select Boxes. Then, all
the parents of this type will be displayed as options in a drop-down field on the
flex asset forms.

- If the number of parents of this type will be large, choose Pick From Tree. Then,
when you select a parent of this type on the flex asset form, you select it from the
tree on the tab that displays your catalog data. For example, on the GE Sample
site, the catalog data is displayed in a tree on the Catalog tab.

6. Select a parent definition from the Available list. For information about selecting
parent definitions, see “Determining Hierarchical Place” on page 321.
Content Server 7.0 Developer’s Guide

Chapter 16. Designing Flex Asset Types

Creating a Flex Asset Family
337
7. Click the appropriate arrow button, as described in this table:

CS-Direct Advantage moves the parent definition from the Available list to the
Selected list.

8. Repeat steps 6 and 7 as many times as necessary. Remember that the corresponding
New parent form will include a field for each item that you select in the Available list
on this parent definition form.

9. In the Attributes section, select the appropriate attributes. Note that if you are going
to assign a flex filter asset to this parent definition, you must include the input and
output attributes that the flex filter uses.

10. Do one of the following:

- Click the Required button to specify that the attribute is required, that is, that all
flex parents created with this definition must have a value for this attribute.

- Click the Optional button to specify that the attribute is optional.

11. (Optional) If you did not select the attributes in the order in which you want them to
appear on the parent form for parents of this type, use the arrow buttons to the right of
the Selected box to order them.

12. (Optional) In the Filters section, select any flex filter assets that are appropriate for
this parent definition.

13. Click Save.

14. Repeat this procedure for each parent definition asset that you need to create.

Step 5: Create Flex Definition Assets
Complete the following steps:

1. If the Content Server interface is not open, log in and select the appropriate site.

2. Click New and then select the name of your flex definition asset type from the list of
shortcuts.

The New form appears. For example, this is the New form for the GE Lighting sample
site product definition asset:

Button in parent
definition form

Creates a field in the New parent form
that does the following:

Single Value
(Required)

Forces you to select one parent for the field.

Single Value
(Optional)

Allows you to select only one parent for the
field.

Multiple Value,
(Required)

Forces you to select at least one parent asset
for the field.

Multiple Value
(Optional)

Allows you to select more than one parent
asset for the field.
Content Server 7.0 Developer’s Guide

Chapter 16. Designing Flex Asset Types

Creating a Flex Asset Family
338
3. Click in the Name field and enter a name of up to 64 characters.

4. Click in the Description field and enter a short, descriptive phrase that describes the
parent definition.

5. Select a parent definition from the Available list. For information about selecting
parent definitions, see “Determining Hierarchical Place” on page 321.

6. Click the appropriate arrow button, as described in the following table:

CS-Direct Advantage moves the parent definition from the Available list to the
Selected list.

Button in flex
definition form

Creates a field in the New flex asset
form that does the following:

Single Value
(Required)

Forces you to select only one parent in the
field.

Single Value
(Optional)

Allows you to select only one parent in the
field.

Multiple Value
(Required)

Forces you to select at least one parent asset in
the field.

Multiple Value
(Optional)

Allows you to select more than one parent
asset in the field.
Content Server 7.0 Developer’s Guide

Chapter 16. Designing Flex Asset Types

Creating a Flex Asset Family
339
7. Repeat steps 5 and 6 as many times as is necessary. Remember that the corresponding
New flex asset form will include a field for each item that you select in the Available
list on this flex definition form.

8. In the Attributes section, select an attribute. Note that if you are going to assign a flex
filter asset to this flex definition, you must include the input and output attributes that
the flex filter uses.

9. Do one of the following:

- Click the Required button to specify that the attribute is required; that is, that all
flex assets created with this definition must have a value for this attribute.

- Click the Optional button to specify that the attribute is optional.

10. (Optional) If you did not select the attributes in the order in which you want them to
appear on the New and Edit forms for flex assets created with this definition, use the
arrow buttons to the right of the Selected box to order them.

11. (Optional) In the Filters section, select any flex filter assets that are appropriate for
this flex definition.

12. Click Save.

13. Repeat this procedure for each flex definition that you need to create.

Step 6: Create Flex Parent Assets

To create flex parent assets

1. If the Content Server interface is not open, log in and select the appropriate site.

2. Click New and then select the name of your flex parent asset type from the list of
shortcuts.

The New form appears. For example, this is the New form for the GE Lighting sample
site product parent asset:

3. Click in the Parent Definition field and select one from the drop-down list. The
definition you select formats the next form, the form you fill out to define this parent
asset.

The second New Parent form appears.
Content Server 7.0 Developer’s Guide

Chapter 16. Designing Flex Asset Types

Creating a Flex Asset Family
340
4. Click in the Name field and enter a name of up to 64 characters.

5. The fields displayed in the Parent section of the form depends on the parent definition
you chose for this parent. The parents that you select in these fields are the
grandparents of any flex assets that have the parent you are creating in this procedure.
If you do not select any parents (grandparents), the parent you are creating is a top-
level parent in the tree tab that displays your flex assets.

Note the following about the kinds of fields that might appear in this section:

- If there is an (S) next to a field, you can select one grandparent from the drop-
down list.

- If there is an asterisk (*) and an (S) next to the field, you must select one
grandparent from its drop-down list.

- If there is an (M) next to a field, you can select more than one grandparent from its
drop-down list.

- If there is both an asterisk (*) and an (M) next to a field, you must select at least
one grandparent from its drop-down list.

6. In the attributes section of the form, fill in the appropriate values for this parent. If a
field has an asterisk (*) next to it, it is a required field.

The fields displayed in this section are based on the parent definition you chose for
this parent. The values that you enter into these fields are inherited by any flex assets
that have this parent asset as their parents.

7. Click Save.

CS-Direct Advantage writes the new parent to the database. All the information other
than the attribute values are written to the FlexParent, FlexParent_AMap, and
FlexParent_Extension tables, where FlexParent represents the internal name
of your flex parents. The attribute values are written to the FlexParent_Mungo
table.
Content Server 7.0 Developer’s Guide

Chapter 16. Designing Flex Asset Types

Creating a Flex Asset Family
341
Step 8: Code Templates for the Flex Assets
Creating your flex asset definitions and coding the templates for the flex assets that use
those definitions is an iterative process. Although you need to create definitions and flex
assets before you can create templates for your flex assets, it is likely that you will
discover areas that need refinement in your data design only after you have coded a
template and tested the code.

For information about coding elements for your templates, see Chapter 24, “Coding
Elements for Templates and CSElements.”

Step 9: Test Your Design (Create Test Flex Assets)
To thoroughly test your design, you must create some flex assets so that you can examine
where they appear on the tree, what their forms look like, how long it takes to load their
forms, and so on.

For information about creating new assets, see the Content Server User’s Guide.

Step 10 (optional): Create Flex Asset Associations
In most cases, you should use a flex asset’s attributes to form associations. In the rare case
that your associations must work across flex definitions, create associations between flex
assets by completing the following steps:

1. Log in to the Content Server user interface as a user with general administrator
privileges.

2. On the Admin tab of the tree, click the Asset Type node.

3. Click on the plus sign next to asset type you wish to create an association for.

4. Click on the plus sign for the Asset Associations node.

5. Click Add New. The following screen appears:
Content Server 7.0 Developer’s Guide

Chapter 16. Designing Flex Asset Types

Editing Flex Attributes, Parents, and Definitions
342
6. Click in the Name field and enter a name.

7. Click in the Description field and enter a description of the association.

8. Select a child asset to associate with this asset using the Child Asset drop-down select
box.

9. Select one or more sub-types using the Subtypes field.

10. Choose a dependency type for the associated flex asset using the Mirror Dependency
Type radio buttons.

11. Click Add New Association to associate the flex asset types.

Step 11: Move the Asset Types to Other Systems
When you have finished creating your flex family— which includes creating the new flex
asset types with Flex Family Maker, creating the data structure assets (including attribute
editors), and coding templates for the flex asset type—you move them to the management
and delivery systems.

Then, the system administrators configure the asset types for the management system.
They enable revision tracking where appropriate, create workflow processes, create Start
Menu shortcuts, and so on.

For information about moving your asset types to the management and delivery systems,
see the Content Server Administrator’s Guide.

Editing Flex Attributes, Parents, and Definitions
Editing most of the flex asset types requires careful planning because certain edits cause
schema changes and schema changes cause data loss.

This section presents tips and advice about editing flex family asset types.

Editing Attributes
Note the following when editing a flex attribute:

• You can change the Name without causing a schema change. However, if you are
using XMLPost to import flex assets into your Content Server database, you must edit
your XMLPost files if you change the name of an attribute.

• You can change the Description without causing data loss.

• If you change the data type in the Value Type field, you lose all data associated with
the attribute in the _Mungo table(s) that use this attribute type.

• If the attribute’s data type is asset and you change the asset type, all existing data for
the attribute is invalid.

• If you change the Folder field for a blob attribute, CS-Direct Advantage will no
longer be able to find any existing data for that attribute. If you absolutely must
change this value, you need to move the file system to match the new value that you
set.

• You can change the Number of Values from single to multiple without causing data
loss or complications.
Content Server 7.0 Developer’s Guide

Chapter 16. Designing Flex Asset Types

Editing Flex Attributes, Parents, and Definitions
343
• If you change the Number of Values from multiple to single, CS-Direct Advantage
cannot determine which of the values in any existing rows are the values to keep.

• You can change the Search Engine and ISO Character Set without causing data loss.

Editing Parent Definitions and Flex Definitions
Note the following when editing a parent definition or a flex definition:

• You can change the Name without causing a schema change. However, if you are
using XMLPost to import flex assets into your Content Server database, you must edit
your XMLPost files if you change the name of a parent definition.

• You can change the Description and the Parent Select Style fields without causing
data loss.

• If you change the parent selections:

- Adding parents is allowed
- Removing parents can cause assets to no longer have valid data.
- Changing parents from optional to required can cause problems because parents

or flex assets who do not have one of the newly required parents are no longer
valid.

- Changing parents from required to optional is allowed.
- Changing parents from single value to multiple value is allowed.
- Changing parents from multiple value to single value causes unpredictable results

because CS-Direct Advantage can’t know which of the previously acceptable
multiple values is the one to keep and which ones to remove.

• If you change the attribute selections:

- Adding optional attributes is allowed.
- Adding required attributes causes existing parents or flex assets without them to

be invalid.
- Removing attributes causes existing parents or flex assets with such an attribute

value to be invalid.

Editing Parents and Flex Assets
Note the following when editing a flex or parent asset:

• You can change the Name without causing a schema change. However, if you are
using XMLPost to import flex assets into your Content Server database, you must edit
your XMLPost files if you change the name of a parent definition.

• You can change the Description without causing data loss.

• If you change parents, CS-Direct Advantage corrects all the inherited attribute values.

• You cannot change the definition that you used to create the parent or flex asset.

• Changing the value of an attribute is allowed. If you change the value of an attribute
for a parent, CS-Direct Advantage corrects that attribute for all the assets that
inherited it from this parent. Changing the attribute value for a flex asset is allowed.
Content Server 7.0 Developer’s Guide

Chapter 16. Designing Flex Asset Types

Using Product Sets
344
Using Product Sets
When you are using CS-Direct Advantage to manage an online catalog, there is a special
feature that you can use with product assets called a product set. Product sets allow you to
group products that are actually the same product except that they are packaged and sold
differently.

What Is a Product Set?
For example, a book is the same book whether it is the paperback version or the hard-
cover version. And a soft drink is the same soft drink whether it is sold in individual cans,
as a six-pack, in a 2-liter bottle, or a case.

Product sets allow you to group products like these together so that they can be displayed
together (in the same form) on the management system, yet remain individual saleable
units, identified as such by their SKUs.

The model for the product set feature is as follows:

• The product set is a product parent that takes on the characteristics of a product asset.
The product set (parent) has all of the attributes that define the core product.

• The product assets are SKUs. That is, they have only those attributes that describe the
packaging or are the unique identifiers for members of the set: the SKU, the bottle
size, and so on.

• The product set (parent) has an attribute that marks it as a product set and the value of
this attribute is unique among all the product sets. This attribute is called
GAProductSet and is a reserved name. The products in the set inherit this attribute
and, by this inheritance, are marked as members of that product set (that is, children of
that product parent).

Creating Product Sets

To create a product set

1. Create a product attribute named GAProductSet. This is a reserved name and your
attribute name must match it exactly.

2. Create a new product parent definition and select the GAProductSet attribute.

3. Create a new product definition and designate that the parents created with the
definition that you created in step 2 can be parents of products created with this
product definition.

4. Create a new product parent from the definition you created in step 2.

5. Using the product definition that you created in step 3, create the products in the set
and designate that the parent that you created in step 4 is their product parent.

Now, when you inspect or edit the product set (product parent), each product (SKU) in the
set is listed on the Product Parent form, presenting a representation of the product set
relationship.

There can be only one GAProductSet attribute in the Content Server database. If you
have more than one Content Server site and you want to create product sets in more than
one site, you must share the GAProductSet attribute to the sites that you want to use it in.
Content Server 7.0 Developer’s Guide

Chapter 16. Designing Flex Asset Types

Custom Filter Classes or Transformation Engines
345
Custom Filter Classes or Transformation Engines
This section describes how to register a new filter class or transformation engine.

Registering a New Filter Class

To register a new filter class

1. Copy your .jar or class file to the directory that holds the Content Server product
jars:

- For WebLogic: app-server-install-dir/bea/path-to-domain/
domain-name/applications/WEB-INF/lib

- For WebSphere: WebSphere-Installation-Directory/InstalledApps/
WEB-INF/lib

- For Sun ONE: domain-name/application-name/applications/J2ee-
apps/ContentServer/cs_war/WEB-INF/lib

- For Oracle Application Server: use the Oracle Admin console to deploy the .jar
file.

2. Open CS-Explorer and add a row to the Filters table for the new filter class, as
follows:

a. Select the Filters table.

b. Either select File > New > Record, or select New from the right-mouse menu.

c. Enter the name of the filter class in the name column.

d. Enter a description of the filter class in the description column.

e. Enter the exact name of the filter class in the classname column.

f. Select File > Save.

Your filter class is registered and will now be displayed in the Filter drop-down list in
the New and Edit forms for filter assets.

Registering a New Transformation Engine
The Document Transformation filter class can invoke any registered transformation
engine, that is, a transformation engine with an entry in the SystemTransforms table.
By default, Verity Keyview is the only transformation engine that is installed. Also by
default, this engine is configured to convert documents to HTML.

If appropriate, you can register your own transformation engines to use with the
Document Transformation filter class. For example, because the Verity Keyview engine is
also capable of converting documents to XML, you can create another entry for the Verity
Keyview engine and configure it to convert documents to XML.
Content Server 7.0 Developer’s Guide

Chapter 16. Designing Flex Asset Types

Custom Filter Classes or Transformation Engines
346
To register a new transformation engine

1. Copy the .jar or class file of the transformation engine to the directory that holds the
Content Server product jars:

- For WebLogic: app-server-install-dir/bea/path-to-domain/
domain-name/applications/WEB-INF/lib

- For WebSphere: WebSphere-Installation-Directory/InstalledApps/
WEB-INF/lib

- For Sun ONE: domain-name/application-name/applications/J2ee-
apps/ContentServer/cs_war/WEB-INF/lib

- For Oracle Application Server: use the Oracle Admin console to deploy the .jar
file.

2. Open CS-Explorer and add a row to the SystemTransforms table for the new
transformation engine, as follows:

a. Select the SystemTransforms table.

b. Either select File > New > Record, or select New from the right-mouse menu.

c. In the name column, enter the name of the transformation engine. For example:
Verity_Convert_to_XML

d. In the description column, enter a description of the engine. For example:
Convert to XML using Verity Keyview

e. In the target column, enter text/filetype. For example: text/XML

f. In the classname column, enter the exact name of the engine class. For example,
if you are creating an additional entry for the Verity Keyview engine, copy and
paste the classname from the Verity: Convert to HTML row. (Its classname
is com.openmarket.Transform.Keyview.KeyviewTransform.)

g. In the args column, set any arguments that are appropriate for this transformation
engine. For example, if you are creating an additional entry for the Verity
Keyview engine, enter exporttype=XML

h. Select File > Save.

Your transformation engine is registered. You can now use this transformation engine
with your Document Transformation filter assets.

Note

If you are adding another instance of the Verity Keyview engine
to the SystemTransforms table so that you can configure it to
convert documents to XML, do not complete step 1of this
procedure. The Keyview class file is already in the appropriate
place so you should start with step 2.
Content Server 7.0 Developer’s Guide

347
Chapter 17

Designing Attribute Editors
An attribute editor specifies how data is entered for an attribute when that attribute is
displayed on a “New” or “Edit” form for a flex asset or a flex parent asset in the Content
Server interface on the management system.

When you assign an attribute editor to an attribute, it replaces the default input mechanism
(style) that would otherwise be used for that attribute. The default input style is based on
the data type of the attribute.

Because attribute editors format the input mechanism for attributes, you design your
attribute editors as you design your flex attributes. Attribute editors are assets, which
means you can use the workflow and revision tracking features to manage them as you do
for any other type of asset.

This chapter contains the following sections:

• Overview

• Creating Attribute Editors

• Customizing Attribute Editors

• Editing Attribute Editors
Content Server 7.0 Developer’s Guide

Chapter 17. Designing Attribute Editors

Overview
348
Overview
There are three parts to an attribute editor, with an optional fourth and fifth:

• The presentationobject.dtd file, located in the Content Server installation
directory. (Required.) This is the DTD file that defines all the possible input styles
(presentation objects) for flex attributes and their style tags.

• The attribute editor asset. (Required.) It holds or points to XML code that provides
input options for the attribute it is associated with. You use the style tags defined in the
DTD to create this XML code.

• An element that formats the attribute, or, displays an edit mechanism, when that
attribute appears in a “New” or “Edit” form. (Required.) This element must be located
in the OpenMarket/Gator/AttributeTypes directory in the ElementCatalog
table for CS-Direct Advantage to be able to find it and its name must exactly match
the name of the style tag that invokes it from the attribute editor. (See below for more
information.)

• An element that formats the attribute value when it appears in an “Inspect” form.
(Optional.) This element must also be located in the OpenMarket/Gator/
AttributeTypes directory in the ElementCatalog table.

The name of the element must use the convention DisplayStyleTag, where
StyleTag represents and must exactly match the name of the style tag that invokes it
from the attribute editor.

• An element that formats the attribute data before it is saved in the database (Optional.)
This element must also be located in the OpenMarket/Gator/AttributeTypes
directory in the ElementCatalog table.

The name of the element must use the convention StyleTagFlexAssetGather, where
StyleTag represents and must exactly match the name of the style tag that invokes it
from the attribute editor.

CS-Direct Advantage provides the following items, by default, to support the development
of your attribute editors:

• The presentationobject.dtd file. It defines several input styles (presentation
objects) that you can use in your attribute editors. This means you do not have to
define your own unless the nine that are included do not cover your needs.

• Nine text files with sample XML that you can use to create attribute editor assets. You
can cut and paste the sample XML into your attribute editor assets. These files are
located in the installation directory under Samples/Attribute_Editors.

• Ten display elements that work with the sample XML code for attribute editor assets.
They are located in the OpenMarket/Gator/AttributeTypes directory in the
ElementCatalog table.

Remember that attribute editors are not required. When you do not use attribute editors,
CS-Direct Advantage uses default input styles for the attributes, based on their data types.
For a list of the default styles, see “Default Input Styles for Attributes” on page 211. If the
default input styles are sufficient for your attributes, you do not need to create attribute
editors.
Content Server 7.0 Developer’s Guide

Chapter 17. Designing Attribute Editors

Overview
349
The presentationobject.dtd File
The presentationobject.dtd file defines all of the input types (presentation objects)
that you can implement through attribute editors. The default
presentationobject.dtd file defines nine input style tags and the arguments that they
can pass from the attribute editor to the display elements (described in “The Attribute
Editor Elements” on page 357).

Following is the entire presentationobject.dtd file. It is located in the Content
Server installation directory:

<!-- PRESENTATIONOBJECT: An editor
-- PRESENTATIONOBJECT defines the presentation object
-- for instances of Gator attribute types. A presentation object
-- defines the properties of an editor for one of the following
-- controls:
--
-- For additional information, refer to
-- com.openmarket.gator.interfaces.IPresentationObject.
--
-->

<!ELEMENT PRESENTATIONOBJECT (TEXTFIELD | TEXTAREA | PULLDOWN |
RADIOBUTTONS | CHECKBOXES | PICKFROMTREE | EWEBEDITPRO | REMEMBER
|PICKASSET)>

<!ATTLIST PRESENTATIONOBJECT NAME CDATA #REQUIRED>

<!-- TEXTFIELD: A text field of a specific width
-- You must specify the x dimension; the maximum number of
-- allowable characters defaults to 256.
-->
<!ELEMENT TEXTFIELD ANY>
<!ATTLIST TEXTFIELD XSIZE CDATA #REQUIRED>
<!ATTLIST TEXTFIELD MAXCHARS CDATA "256">
<!ATTLIST TEXTFIELD BLANKED (YES | NO) "NO">

<!-- TEXTAREA: A text area of a specific size
-- You must specify the x and y dimensions; the wrap style
-- defaults to soft.
-->
<!ELEMENT TEXTAREA ANY>
<!ATTLIST TEXTAREA XSIZE CDATA #REQUIRED>
<!ATTLIST TEXTAREA YSIZE CDATA #REQUIRED>
<!ATTLIST TEXTAREA WRAPSTYLE (OFF | SOFT | HARD) "SOFT">

<!-- PULLDOWN: A pulldown menu with an enumeration of items
-- You can specify zero or more list items; the fontsize
-- defaults to relative fontsize 3.
-->
<!ELEMENT PULLDOWN ((ITEM)* | QUERYASSETNAME)>
<!ATTLIST PULLDOWN FONTSIZE CDATA "3">

<!-- RADIOBUTTONS: Radio buttons with an enumeration of items
Content Server 7.0 Developer’s Guide

Chapter 17. Designing Attribute Editors

Overview
350
-- You can specify zero or more list items; the fontsize
-- defaults to relative fontsize 3.
-->
<!ELEMENT RADIOBUTTONS ((ITEM)* | QUERYASSETNAME)>
<!ATTLIST RADIOBUTTONS FONTSIZE CDATA "3">
<!ATTLIST RADIOBUTTONS LAYOUT (HORIZONTAL | VERTICAL)
"HORIZONTAL">

<!-- CHECKBOXES: Check boxes with an enumeration of items
-- You can specify zero or more list items; the fontsize
-- defaults to relative fontsize 3.
-->
<!ELEMENT CHECKBOXES ((ITEM)* | QUERYASSETNAME)>
<!ATTLIST CHECKBOXES FONTSIZE CDATA "3">
<!ATTLIST CHECKBOXES LAYOUT (HORIZONTAL | VERTICAL) "HORIZONTAL">

<!-- ITEM: A list item
-- You can specify zero or more characters of text.
-->
<!ELEMENT ITEM (#PCDATA)*>

<!-- SQL: Query to populate list of items
-- You can specify zero or more characters of text. Query must
-- return a ’value’ column.
-->
<!ELEMENT QUERYASSETNAME (#PCDATA)*>

<!-- EWEBEDITPRO: EWebEditPro ActiveX widget
-- You must specify the x and y pixel dimensions-->
<!ELEMENT EWEBEDITPRO ANY>
<!ATTLIST EWEBEDITPRO XSIZE CDATA #REQUIRED>
<!ATTLIST EWEBEDITPRO YSIZE CDATA #REQUIRED>

<!-- PICKFROMTREE: An "add from tree" button. -->
<!ELEMENT PICKFROMTREE ANY>

<!-- REMEMBER: The Content Centre version 3.6 remember widget. -->
<!ELEMENT REMEMBER ANY>

<!-- PICKASSET: When the tree is active, it’s the "add from tree"
-- button. When the tree is disabled, it’s The Content Centre
-- version 3.6 remember widget. -->
<!ELEMENT PICKASSET ANY>
Content Server 7.0 Developer’s Guide

Chapter 17. Designing Attribute Editors

Overview
351
Conventions for the presentationobject.dtd File
If you want to create custom attribute editors other than the ones made possible by default,
you must first define an XML input style tag, a PRESENTATIONOBJECT tag, in the
presentationobject.dtd file. To define a new PRESENTATIONOBJECT tag, you must
do the following:

• Add the new tag (presentation object) to the list in the <!ELEMENT
PRESENTATIONOBJECT ...> statement.

• Add a <!ELEMENT ...> section that defines the new tag (presentation object) and
the arguments that it takes. Follow the normal syntax rules for a .dtd file and follow
the conventions used in the presentationobject.dtd file.

The Attribute Editor Asset
The attribute editor asset either holds XML code or points to an .xml file.

That XML code does one thing: if the input type is one that provides options (check boxes,
radio options, pull-down lists, and so on), it provides the values of those options.

Although CS-Direct Advantage provides nine text files with sample code that you can use
to create new attribute editor assets, it does not provide any attribute editor assets because
you need to customize the sample code so that any options are appropriate for your data.

When you create your attribute editors, you can either cut and paste the code from HTML
version of this book (samples follow this section) or you can use the text files located in
the Samples subdirectory of the installation directory on your system.

The Syntax and the Default Tags
The code in an attribute editor asset has the following basic format:

<?XML VERSION="1.0"?>
<!DOCTYPE PRESENTATIONOBJECT SYSTEM "presentationobject.dtd">

<PRESENTATIONOBJECT NAME="SomeName">
...
...
...

</PRESENTATIONOBJECT>

The tag that describes the format of the input style (presentation object) is embedded
between the pair of PRESENTATIONOBJECT tags and it can have additional nested tags in
it. Although the NAME attribute is required for the PRESENTATIONOBJECT tag, it is not
used yet; it is reserved for future use.

The name of any PRESENTATIONOBJECT tag that you include in the code for an attribute
editor asset must be defined in the presentationobject.dtd file. This .dtd file has
the following PRESENTATIONOBJECT tags defined by default:

• TEXTFIELD

• TEXTAREA

• PULLDOWN

• RADIOBUTTONS

• CHECKBOXES

• EWEBEDITPRO
Content Server 7.0 Developer’s Guide

Chapter 17. Designing Attribute Editors

Overview
352
• PICKASSET

• REMEMBER

• PICKFROMTREE (deprecated; use PICKASSET instead)

Note that the PRESENTATIONOBJECT tag that you use in the attribute editor code must
exactly match the name of the display element that you want to use for the attribute editor.
Therefore, if you decide to define a new tag for a custom attribute editor, the element that
you create must use the same name as the tag.

For a description of the elements, see “The Attribute Editor Elements” on page 357. For
code samples for attribute editors, read on:

CHECKBOXES Example
The presentationobject.dtd defines a CHECKBOXES tag—an attribute editor that
uses the tag invokes the CHECKBOXES element, which creates a set of check boxes for the
attribute.

The CHECKBOXES tag takes the following parameters:

• ITEM or QUERYASSETNAME — the source of the names listed next to the check boxes.
To specify the names, use the ITEM parameter. To specify a query asset that obtains
the names dynamically from a database table, use the QUERYASSET parameter.

Note the following:

- You cannot use a SQL statement — you must use a query asset if you want to use
a query.

- The SQL in the query asset must return a “value” column. For example: select
name as value from shippingtype

- If the data type of the attribute using the attribute editor is “asset”, the query must
also return the assets’ IDs. For example: select name as value, id as
assetid from Products where...

• LAYOUT— whether the check boxes should be positioned in a vertical list or spread
out in a horizontal row. Valid options are HORIZONTAL or VERTICAL. The default is
HORIZONTAL.

The following attribute editor code specifies that the CHECKBOXES element should use the
results of a query asset named A Prods for the names of a vertical list of check boxes:

<?XML VERSION="1.0"?>
<!DOCTYPE PRESENTATIONOBJECT SYSTEM "presentationobject.dtd">
<PRESENTATIONOBJECT NAME="CheckBox">

<CHECKBOXES LAYOUT="VERTICAL">
<QUERYASSETNAME>A Prods</QUERYASSETNAME>

</CHECKBOXES>
</PRESENTATIONOBJECT>

For example code that shows the use of the ITEM parameter, see “PULLDOWN Example”
on page 354.
Content Server 7.0 Developer’s Guide

Chapter 17. Designing Attribute Editors

Overview
353
Notes About Data Types
A CHECKBOXES attribute editor is appropriate for attributes with the following data types:

• date

• float

• integer

• money

• string

• asset (if asset, you must supply the name of the query asset that returns the names of
the assets)

EWEBEDITPRO Example
The presentationobject.dtd defines an EWEBEDITPRO tag. An attribute editor that
uses the tag invokes the EWEBEDITPRO element which launches the eWebEditPro HTML
editor in a separate window. The person creating the flex asset enters the value for the
attribute in that window.

Note the following about creating an eWebEditPro field with an attribute editor:

• You must have the eWebEditPro application installed and configured correctly. It is
not delivered with CS-Direct Advantage. You must obtain it from FatWire (contact
your FatWire sales representative). For information about configuring eWebEditPro,
see the Content Server Administrator’s Guide.

• It is highly recommended that you use eWebEditPro only when the data type of the
attribute is set to blob. If you use blob as the data type, you do not have to worry
about sizing the field.

The EWEBEDITPRO tag takes the following parameters:

• XSIZE—the x axis dimension, in pixels.

• YSIZE— the y axis dimension, in pixels.

The following attribute editor code includes an EWEBEDIT pro tag that creates text box
that is 400 pixels wide by 200 pixels high:

<?XML VERSION="1.0"?>
<!DOCTYPE PRESENTATIONOBJECT SYSTEM "presentationobject.dtd">

<PRESENTATIONOBJECT NAME="eWebEditProTest">
<EWEBEDITPRO XSIZE="400" YSIZE="200">
</EWEBEDITPRO>

</PRESENTATIONOBJECT>

Notes About Data Types
The best choice for the data type of an attribute that uses an EWEBEDITPRO attribute editor
is blob. You can use string or text but it is problematic because it is hard to predict
how large the data entered into the attribute’s field will be because each HTML marker
counts toward the limit. The string data type is limited to 256 characters and text is
limited to 2000.

FatWire recommends that you use blob as the data type for attributes that use
eWebEditPro as their input mechanism.
Content Server 7.0 Developer’s Guide

Chapter 17. Designing Attribute Editors

Overview
354
PICKASSET Example
The presentationobject.dtd defines a PICKASSET tag—an attribute editor that uses
the tag invokes the PICKASSET element, which formats a field that accepts the value of an
asset in one of two ways, depending on whether the tree is toggled on or off.

• If the tree in the Content Server interface is toggled on, the PICKASSET element uses
the Pick From Tree method. That is, you select an asset by clicking on it in one of the
tabs on the tree in the left frame of the CS-Direct Advantage window.

• If the tree is toggled off, the PICKASSET element uses the Remember method, pop-up
window that displays all the assets that are currently listed in your Active List and
History list.

This tag has no default parameters.

Here is the code to create a PICKASSET attribute editor:

<?XML VERSION="1.0"?>
<!DOCTYPE PRESENTATIONOBJECT SYSTEM "presentationobject.dtd">

<PRESENTATIONOBJECT NAME="PickAsset">
<PICKASSET>
</PICKASSET>

</PRESENTATIONOBJECT>

Notes About Data Types
A PICKASSET attribute editor is only appropriate for attributes with a data type of asset.

PULLDOWN Example
The presentationobject.dtd defines a PULLDOWN tag—an attribute editor that uses
the tag invokes the PULLDOWN element, which formats a field with a drop-down list of
values.

This tag takes the following parameters:

• ITEM or QUERYASSETNAME — the source of the names in the drop-down list. To
specify the names, use the ITEM parameter. To specify a query asset that obtains the
names dynamically from a database table, use the QUERYASSET parameter.

Note the following:

- You cannot use a SQL statement — you must use a query asset if you want to use
a query.

- The SQL in the query asset must return a “value” column. For example: select
name as value from shippingtype

- If the data type of the attribute using the attribute editor is “asset”, the query must
also return the assets’ IDs. For example: select name as value, id as
assetid from Products where...

The following attribute editor code specifies that the list holds the items red, green, and
blue:

<?XML VERSION="1.0"?>
<!DOCTYPE PRESENTATIONOBJECT SYSTEM "presentationobject.dtd">

<PRESENTATIONOBJECT NAME="PulldownTest">
<PULLDOWN>
Content Server 7.0 Developer’s Guide

Chapter 17. Designing Attribute Editors

Overview
355
<ITEM>Red</ITEM>
<ITEM>Green</ITEM>
<ITEM>Blue</ITEM>

</PULLDOWN>

For example code that shows how to use the QUERYASSETNAME parameter rather than
ITEM, see “CHECKBOXES Example” on page 352.

Notes About Data Types
A PULLDOWN attribute editor is appropriate for attributes with the following data types:

• date

• float

• integer

• money

• string

• asset

A pull-down list is the default input style for attributes of type asset. The list displays all
the assets of that type. Use a PULLDOWN attribute editor when you want to further restrict
the items in the drop-down list with a query asset so that the list doesn’t display every
asset of that type.

RADIOBUTTONS Example
The presentationobject.dtd defines a RADIOBUTTONS tag—an attribute editor that
uses the tag invokes the RADIOBUTTONS element, which creates a set of radio options for
the attribute.

The RADIOBUTTONS tag takes the following parameters:

• ITEM or QUERYASSETNAME — the source of the names listed next to the radio options.
To specify the names, use the ITEM parameter. To specify a query asset that obtains
the names dynamically from a database table, use the QUERYASSET parameter.

Note the following:

- You cannot use a SQL statement—you must use a query asset if you want to use a
query.

- The SQL in the query asset must return a “value” column. For example: select
name as value from shippingtype

- If the data type of the attribute using the attribute editor is “asset”, the query must
also return the assets’ IDs. For example: select name as value, id as
assetid from Products where...

• LAYOUT— whether the buttons should be positioned in a vertical list or spread out in a
horizontal row. Valid options are HORIZONTAL or VERTICAL. The default is
HORIZONTAL.

The following attribute editor code specifies that the RADIOBUTTONS element should use
the results of a query asset named A Prods for the names of a vertical list of buttons:

<?XML VERSION="1.0"?>
<!DOCTYPE PRESENTATIONOBJECT SYSTEM "presentationobject.dtd">

<PRESENTATIONOBJECT NAME="RadioButtonTest">
Content Server 7.0 Developer’s Guide

Chapter 17. Designing Attribute Editors

Overview
356
<RADIOBUTTONS LAYOUT="VERTICAL">
<QUERYASSETNAME>A Prods</QUERYASSETNAME>

</RADIOBUTTONS>
</PRESENTATIONOBJECT>

For example code that shows the use of the ITEM parameter, see “PULLDOWN Example”
on page 354.

Notes About Data Types
A RADIONBUTTON attribute editor is appropriate for attributes with the following data
types:

• date

• float

• integer

• money

• string

• asset (if asset, you must supply the name of the query asset that returns the names of
the assets)

TEXTAREA Example
The presentationobject.dtd defines a TEXTAREA tag— an attribute editor that uses
the tag invokes the TEXTAREA element, which creates a text box field for the attribute,
and a pair of radio buttons that allows users to specify whether or not that attribute should
display embedded link buttons.

The TEXTAREA tag takes the following parameters:

• XSIZE — the x axis dimension, in pixels.

• YSIZE — the y axis dimension, in pixels.

• WRAPSTYLE — whether the text in the box wraps at all, and, if it does whether it
wraps automatically (soft) or only when the user presses the Enter key (a hard return).
Valid options are SOFT, HARD, and OFF. The default is OFF.

The following attribute editor code defines the XSIZE as 40 pixels, the YSIZE as 5 pixels,
and disables text wrapping by setting WRAPSTYLE to OFF:

<?XML VERSION="1.0"?>
<!DOCTYPE PRESENTATIONOBJECT SYSTEM "presentationobject.dtd">

<PRESENTATIONOBJECT NAME="TextAreaTest">
<TEXTAREA XSIZE="40" YSIZE="5" WRAPSTYLE="OFF">
</TEXTAREA>

</PRESENTATIONOBJECT>

Notes About Data Types
A TEXTAREA attribute editor is appropriate for attributes with the data type of text and
blob. Use the text data type when you need to store up to 2000 characters. If you need to
store more than 2000 characters, use the blob data type.
Content Server 7.0 Developer’s Guide

Chapter 17. Designing Attribute Editors

Overview
357
TEXTFIELD Example
The presentationobject.dtd defines a TEXTFIELD tag—an attribute editor that uses
the tag invokes the TEXTFIELD element from the New and Edit forms, which creates a
text field for the attribute. When the attribute is displayed on the “Inspect” form, however,
it uses the DisplayTEXTFIELD element.

The TEXTFIELD tag takes the following parameters:

• XSIZE — the length of the field, in characters.

• MAXCHARS — the number of characters, up to 256, allowed in the field.

• BLANKED — whether the attribute’s value is replaced with a string of asterisks when it
is displayed in the “Inspect” form. For example, if you created a “password” attribute,
you would not want the value of the password displayed in an “Inspect” form. Valid
options are YES and NO. The default is NO.

Because using the BLANKED parameter automatically means that you need the field to
behave differently on the “New” and “Edit” forms than it does on the “Inspect” form,
the TEXTFIELD tag is delivered with both of the two possible elements by default.

The following attribute editor code defines the XSIZE as 60 and the maximum number of
characters as 80:

<?XML VERSION="1.0"?>
<!DOCTYPE PRESENTATIONOBJECT SYSTEM "presentationobject.dtd">

<PRESENTATIONOBJECT NAME="TextFieldTest">
<TEXTFIELD XSIZE="60" MAXCHARS="80">
</TEXTFIELD>

</PRESENTATIONOBJECT>

Notes About Data Types
A TEXTFIELD attribute editor is appropriate for attributes with the following data types:

• float

• integer

• money

• string

• url

The Attribute Editor Elements
The elements that take the input values passed to them from their attribute editor
counterparts supply the logic behind the format and behavior of the attribute when it is
displayed on a form. For example, it might perform a loop sequence for multivalue
attributes so that additional values can be entered in the field.

Following are the default flex attribute display elements located in the ElementCatalog
table under OpenMarket/Gator/AttributeTypes. The names of these elements
match exactly the names of the custom XML tags defined in the
presentationobject.dtd file:
Content Server 7.0 Developer’s Guide

Chapter 17. Designing Attribute Editors

Overview
358
Element Description

CHECKBOXES Formats the input style of the attribute as a set of check box
options. The attribute editor must either define the names of
the options or provide the name of a query asset to use to
obtain the names.

EWEBEDITPRO Invokes the WebEditPro HTML editor, a third-party
product available from Ektron, Inc.

The attribute editor must specify the x and y pixel
dimensions.

PULLDOWN Formats the input style of the attribute as a select field with
a drop-down list. The attribute editor must either specify
the items that are displayed in the list or provide the name
of a query asset to use to obtain the values.

RADIOBUTTONS Formats the input style of the attribute as a set of radio
options. The attribute editor must define the names of the
options or provide the name of a query asset to use to obtain
the names.

TEXTAREA Formats the input style of the attribute as a text box and
displays radio buttons that allow the user to specify whether
or not the text box will allow embedded links. The attribute
editor must define the x and y dimensions of the box.

TEXTFIELD Formats the input style of the attribute as a text field. The
attribute editor must define the length of the field and the
number of characters that are allowed in the field.

DisplayTEXTFIELD Formats the appearance of the text field attribute’s value
when it is displayed on the “Inspect” form. If the attribute
editor sets the BLANKED parameter to YES, this element
displays the value from the field as a string of asterisks.
Typically used for password fields.

PICKASSET Formats the input style of the attribute to change based on
whether the tree is toggled off or on:

• When the tree is displayed, the attribute uses the “pick
from tree” mechanism.

• When the tree is not displayed, the attribute uses the
“remember” mechanism.

PICKFROMTREE Deprecated. Use PICKASSET.

REMEMBER Formats the input style of the attribute as a popup window
that displays all the assets that are currently on the user’s
Active List and History tabs.
Content Server 7.0 Developer’s Guide

Chapter 17. Designing Attribute Editors

Overview
359
Conventions for the Attribute Editor Elements
In order for CS-Direct Advantage to use an element for an attribute editor, that element
must conform to the following rules:

• It must have the same name as the input style tag that calls it from the attribute editor
code. For example, the default CHECKBOXES tag has a default CHECKBOXES.xml
element.

• The element must be placed in the ElementCatalog using the following naming
conventions: OpenMarket/Gator/AttributeTypes/name

If you want to create your own display elements to use with custom attribute editors, it is
best to find one that is the closest to the attribute editor element that you want to create and
then copy as much of it as possible.

For help, examine the code in the default attribute editor elements and read the following
descriptions of the variables and syntax in them.

Variables
When CS-Direct Advantage loads a form that uses the attribute editor, it calls the element
with the machine name. It passes the information in the following variables to the display
element:

• PresInst—the instance of the current presentation object

• AttrName—the name of the current attribute

• AttrType—the data type of the current attribute

• EditingStyle—whether the attribute can take more than one value (based on the
value in the Number of Values field for the attribute). This variable is set to either
single or multiple.

• RequiredAttr—whether or not the attribute is required for the current asset. The
variable is set to either true or false.

• MultiValueEntry—instructs CS-Direct Advantage how to handle the values for an
attribute that can take more than one value.

When this value is set to yes, the display element is called once, under the assumption
that the widget created by the element enables the user to select more than one value
in it (a multi-select drop-down list, for example).

When this value is set to no, CS-Direct Advantage calls the display element once for
each possible value for the attribute and displays one widget for each value that can be
stored.

Note that this value is always set to yes initially.

• doDefaultDisplay—whether to use the default input style for an attribute of this
type. (For a list, see “Default Input Styles for Attributes” on page 211.) When CS-
Direct Advantage calls the display element, this variable is initially set to yes. To use
the input widget created by the element, the element must reset this variable to no.

• AttrValueList—the list of all the values for this attribute.

• TempVal—the value of a single attribute value.
Content Server 7.0 Developer’s Guide

Chapter 17. Designing Attribute Editors

Overview
360
Other Required Syntax
The code in the display element must also use the following conventions:

• It must store information about how to validate the attribute values in a variable
named RequireInfo. CS-Direct Advantage passes this variable elements use
JavaScript to validate the attribute values. Those elements are:

OpenMarket/Gator/FlexibleAssets/FlexAssets/ContentForm1
OpenMarket/Gator/FlexibleAssets/FlexGroups/ContentForm1

This JavaScript performs prescribed error checking and validation based on the type
of control, the data type, and other predictable characteristics. The information passed
in the RequireInfo variable informs the JavaScript about the custom requirements
for the attribute editor.

• The name of the widget in the display element (the INPUT NAME) must use the
following convention:

- For a single-value attribute, the name of the attribute.
- For a multi-value attribute, it must use a 1-based counter prepend the attribute

name for each attribute value (for example, 1color, 2color, 3color).

For an example, see “Customizing Attribute Editors” on page 363.
Content Server 7.0 Developer’s Guide

Chapter 17. Designing Attribute Editors

Creating Attribute Editors
361
Creating Attribute Editors
To create an attribute editor using the sample XML code provided in this chapter or in the
sample text files, complete the following steps:

1. Open your browser and enter this address:

http://your_server/Xcelerate/LoginPage.html

2. Enter your login name and password and click Login.

3. Click New and select Attribute Editor from the shortcut list

The New Attribute Editor form appears:

4. Click in the Name field and enter a unique name of up to 64 characters, excluding
spaces.

5. Click in the Description field and enter a short phrase that describes the purpose of
the attribute editor.

6. Click in the XML field. Either cut and paste the appropriate sample XML attribute
editor code from the HTML version of this guide or from the sample text files
provided in the Samples subdirectory of the installation directory.
Content Server 7.0 Developer’s Guide

Chapter 17. Designing Attribute Editors

Creating Attribute Editors
362
7. Edit the code as needed. For example, if you are creating a CHECKBOXES or a
RADIOBUTTONS attribute editor, you must provide names for the check boxes or radio
buttons. If you are creating a PULLDOWN attribute editor, you must provide the values
for the drop-down list.

See “The Attribute Editor Asset” on page 351 for more information about coding the
attribute editor.

8. Click Save.

9. Before this attribute editor can be published to the management system, you must
Approve it. For information about approving assets, see the Content Server User’s
Guide.

.

Note

Another option is to code the XML for the attribute editor in a separate .xml file.
In this case, rather than enter the code directly into the XML field, click the
Browse button next to the XML in file field and select the file.

Note

If you are using a query asset with this attribute editor, be sure to approve both the
attribute editor and the query asset.

Because the dependency between an attribute editor and its query asset is specified
in the XML code in the attribute editor, the approval system can not detect the
dependency and verify that the query asset exists on the management system.
Content Server 7.0 Developer’s Guide

Chapter 17. Designing Attribute Editors

Customizing Attribute Editors
363
Customizing Attribute Editors
If you need to create your own custom attribute editor, the best thing to do is to copy as
much as you can from the sample attribute editor code and the sample display elements.

If you determine that you must create a new input style (you cannot use any of the default
PRESENTATIONOBJECT tags), you must add a new PRESENTATIONOBJECT section that
to the presentationobject.dtd file that defines the attribute editor. For information
about adding to this file, see “The presentationobject.dtd File” on page 349.

When you create a custom PRESENTATIONOBJECT tag, you must also supply the
appropriate display elements for it:

• Required: An element that formats the attribute (displays an edit mechanism) when
that attribute appears in a “New” or “Edit” form.

• Optional: An element that formats the attribute when it appears in the “Inspect” form.

• Optional: An element that formats the attribute data before it is saved in the database.

For information about the variables and conventions used in the display elements for an
attribute editor, see “The Attribute Editor Elements” on page 357.

Example: Customized Attribute Editor
This example demonstrates how you could customize the description of the TEXTAREA tag
in the presentationobject.dtd file and the TEXTAREA element to create an attribute
editor that disables a text box if the user does not have the proper permissions.

There are three steps:

1. Editing the description of the TEXTAREA tag in the presentationobject.dtd to
support a new parameter named PERMISSIONS.

2. Writing the code for the attribute editor and creating the attribute editor.

3. Editing the TEXTAREA element to check the value of PERMISSIONS.

Step 1: Editing the presentationobject.dtd file
To support the new parameter, you add a single line of code to the TEXTAREA description
in the presentationobject.dtd:

1 <!-- TEXTAREA: A text area of a specific size. You must
specify

2 -- the x and y dimensions; the wrap style defaults to soft.
3 -->
4 <!ELEMENT TEXTAREA ANY>
5 <!ATTLIST TEXTAREA XSIZE CDATA #REQUIRED>
6 <!ATTLIST TEXTAREA YSIZE CDATA #REQUIRED>
7 <!ATTLIST TEXTAREA WRAPSTYLE (OFF | SOFT | HARD) "SOFT">
8 <!ATTLIST TEXTAREA PERMISSION CDATA>

The new line of code is line 8. Lines 1 through 7 are the default description of the
TEXTAREA tag.
Content Server 7.0 Developer’s Guide

Chapter 17. Designing Attribute Editors

Customizing Attribute Editors
364
Step 2: Example Code for the Example Attribute Editor
Here’s the example code with the new parameter. It specifies that a user must have
“Administrators” as the value for PERMISSION in order to see the field:

<?XML VERSION="1.0"?>
<!DOCTYPE PRESENTATIONOBJECT SYSTEM "presentationobject.dtd">

<PRESENTATIONOBJECT NAME="TextAreaTest">
<TEXTAREA XSIZE="40" YSIZE="10" WRAPSTYLE="SOFT"

PERMISSION="Administrators">
</TEXTAREA>

</PRESENTATIONOBJECT>

Step 3: Editing the TEXTAREA Element
The third step is editing the TEXTAREA element. Lines 56–70, 123–125, and 172–174 are
the new code that enables or disables the field, based on the value of the PERMISSION
parameter:

1 <?XML VERSION="1.0" ?>
2 <!DOCTYPE FTCS SYSTEM "futuretense_cs.dtd">
3 <FTCS Version="1.1">
4 <!-- OpenMarket/Gator/AttributeTypes/TEXTAREA
5 --
6 -- INPUT
7 --
8 -- OUTPUT
9 --
10 -->
11
12 <!-- Display one TEXTAREA per attribute value -->
13 <IF COND="Variables.MultiValueEntry=no">
14 <THEN>
15
16 <!-- Don’t want default display field -->
17 <setvar NAME="doDefaultDisplay" VALUE="no"/>
18
19 <!-- Get all parameters from Attribute Editor xml -->
20 <presentation.getprimaryattributevalue
21 NAME="Variables.PresInst"
22 ATTRIBUTE="FONTSIZE" VARNAME="FONTSIZE"/>
23 <if COND="Variables.errno!=0">
24 <then>
25 <setvar NAME="FONTSIZE" VALUE="2"/>
26 </then>
27 </if>
28
29 <presentation.getprimaryattributevalue
30 NAME="Variables.PresInst"
31 ATTRIBUTE="WRAPSTYLE" VARNAME="WRAPSTYLE"/>
32 <if COND="IsVariable.WRAPSTYLE!=true">
33 <then>
34 <setvar NAME="WRAPSTYLE" VALUE="OFF"/>
Content Server 7.0 Developer’s Guide

Chapter 17. Designing Attribute Editors

Customizing Attribute Editors
365
35 </then>
36 </if>
37
38 <presentation.getprimaryattributevalue
39 NAME="Variables.PresInst"
40 ATTRIBUTE="XSIZE" VARNAME="XSIZE"/>
41 <if COND="IsVariable.XSIZE!=true">
42 <then>
43 <setvar NAME="XSIZE" VALUE="24"/>
44 </then>
45 </if>
46
47 <presentation.getprimaryattributevalue
48 NAME="Variables.PresInst"
49 ATTRIBUTE="YSIZE" VARNAME="YSIZE"/>
50 <if COND="IsVariable.YSIZE!=true">
51 <then>
52 <setvar NAME="YSIZE" VALUE="20"/>
53 </then>
54 </if>
55
56 <setvar NAME="disableTextArea" VALUE="no"/>
57 <presentation.getprimaryattributevalue
58 NAME="Variables.PresInst"
59 ATTRIBUTE="PERMISSION" VARNAME="PERMISSION"/>
60 <if COND="IsVariable.PERMISSION=true">
61 <then>
62 <setvar NAME="errno" VALUE="0"/>
63 <USERISMEMBER GROUP="Variables.PERMISSION"/>
64 <IF COND="Variables.errno=0">
65 <THEN>
66 <setvar NAME="disableTextArea" VALUE="yes"/>
67 </THEN>
68 </IF>
69 </then>
70 </if>
71
72 <tr>
73
74 <!-- Standard element to display attribute name or

description
75 -->
76 <callelement NAME="OpenMarket/Gator/FlexibleAssets/Common
77 /DisplayAttributeName"/>
78 <td></td>
79 <td>
80
81 <!-- Single valued attributes -->
82 <if COND="Variables.EditingStyle=single">
83 <then>
84
85 <!-- Special case: TEXTAREA for URL attributes -->
Content Server 7.0 Developer’s Guide

Chapter 17. Designing Attribute Editors

Customizing Attribute Editors
366
86 <IF COND="Variables.AttrType=url">
87 <THEN>
88 <setvar NAME="errno" VALUE="0"/>
89 <BEGINS STR="AttrValueList.urlvalue"
90 WHAT="AttrValueList."/>
91 <IF COND="Variables.errno=1">
92 <THEN>
93 <setvar NAME="filename" VALUE="CS.UniqueID.txt"/>
94 </THEN>
95 <ELSE>
96 <setvar NAME="filename"
97 VALUE="AttrValueList.urlvalue"/>
98 </ELSE>
99 </IF>
100
101 <INPUT TYPE="hidden" NAME="Variables.AttrName_file"
102 VALUE="Variables.filename"
103 REPLACEALL="Variables.AttrName,Variables.filename"/>
104
105 <setvar NAME="errno" VALUE="0"/>
106 <BEGINS STR="AttrValueList.@urlvalue"
107 WHAT="AttrValueList."/>
108 <IF COND="Variables.errno=1">
109 <THEN>
110 <setvar NAME="MyAttrVal" VALUE="Variables.empty"/>
111 </THEN>
112 <ELSE>
113 <setvar NAME="MyAttrVal"
114 VALUE="AttrValueList.@urlvalue"/>
115 </ELSE>
116 </IF>
117 </THEN>
118 </IF>
119
120 <!-- Display a TEXTAREA with all parameters from Attribute
121 --Editor xml -->
122 <!-- The NAME of the input must be the attribute name -->
123 <IF COND="Variables.disableTextArea=yes">
124 <THEN>
125 <TEXTAREA DISABLED="yes" NAME="Variables.AttrName"
126 ROWS="Variables.YSIZE" COLS="Variables.XSIZE"
127 WRAP="Variables.WRAPSTYLE"
128 REPLACEALL="Variables.AttrName,Variables.XSIZE,
129 Variables.YSIZE,Variables.WRAPSTYLE,Variables.empty">
130
131 <!-- For most single valued attrs, the value is contained

in
132 MyAttrVal -->
133 <csvar NAME="Variables.MyAttrVal"/>
134 </TEXTAREA>
135 </THEN>
136 <ELSE>
Content Server 7.0 Developer’s Guide

Chapter 17. Designing Attribute Editors

Customizing Attribute Editors
367
137 <TEXTAREA NAME="Variables.AttrName"
138 ROWS="Variables.YSIZE" COLS="Variables.XSIZE"
139 WRAP="Variables.WRAPSTYLE"
140 REPLACEALL="Variables.AttrName,Variables.XSIZE,
141 Variables.YSIZE,Variables.WRAPSTYLE,Variables.empty">
142 <!-- For most single valued attrs, the value is
143 contained in MyAttrVal -->
144 <csvar NAME="Variables.MyAttrVal"/>
145 </TEXTAREA>
146 </ELSE>
147 </IF>
148 </then>
149 <else>
150 <!-- Multiple valued attributes -->
151 <!-- For single value attributes we can usually use the
152 default RequireInfo -->
153 <!-- For multiple value attributes we need to append to
154 RequireInfo for each value -->
155 <if COND="Variables.RequiredAttr=true">
156 <then>
157 <setvar NAME="RequireInfo"
158 VALUE="Variables.RequireInfo*Counters.TCounterVariables.
159 AttrName*ReqTrue*Variables.AttrType!"/>
160 </then>
161 <else>
162 <setvar NAME="RequireInfo"
163 VALUE="Variables.RequireInfo*Counters.TCounterVariables
164 .AttrName*ReqFalse*Variables.AttrType!"/>
165 </else>
166 </if>
167
168 <!-- Display a TEXTAREA with all parameters from Attribute
169 Editor xml -->
170 <!-- The NAME of the input must be the attribute name
171 prepended by the TCounter counter -->
172 <IF COND="Variables.disableTextArea=yes">
173 <THEN>
174 <TEXTAREA DISABLED ="yes"

NAME="Counters.TCounterVariables.AttrName"
175 ROWS="Variables.YSIZE" COLS="Variables.XSIZE"
176 WRAP="Variables.WRAPSTYLE"
177 REPLACEALL="Counters.TCounter,
178 Variables.AttrName,Variables.XSIZE,
179 Variables.YSIZE,Variables.WRAPSTYLE">
180 <csvar NAME="Variables.tempval"/> </TEXTAREA>
181 </THEN>
182 <ELSE>
183 <TEXTAREA NAME="Counters.TCounterVariables.AttrName"
184 ROWS="Variables.YSIZE" COLS="Variables.XSIZE"
185 WRAP="Variables.WRAPSTYLE"
186 REPLACEALL="Counters.TCounter,
187 Variables.AttrName,Variables.XSIZE,
Content Server 7.0 Developer’s Guide

Chapter 17. Designing Attribute Editors

Editing Attribute Editors
368
188 Variables.YSIZE,Variables.WRAPSTYLE">
189 <csvar NAME="Variables.tempval"/> </TEXTAREA>
190 </ELSE>
191 </IF>
192 </else>
193 </if>
194 </td>
195 </tr>
196 </THEN>
197 </IF> <!-- MultiValueEntry -->
198 </FTCS>

Editing Attribute Editors
Note the following when editing an attribute editor:

• You can change the Name without causing a schema change.

• You can change the Description without causing data loss.

• If you change code in the attribute editor:

- You can add input options.
- If you have existing data, you should not remove input options. If you do, some of

your existing data will no longer be valid and you will have to search through the
database and fix it.

- If you change the input style, you risk a data mismatch.
Content Server 7.0 Developer’s Guide

369
Chapter 18

Importing Assets of Any Type
After you have determined your data design, created your asset types, tested them on your
development system, and moved them to your management system, the next step is to
inport assets (content) from their current source in to the database on the management
system. For example, you could be using a wire feed service or some other source of
remotely generated content, and need to import that content into the Content Server
database on your management system.

To import any data into the Content Server database, you can use the XMLPost utility.
This utility is based on the Content Server FormPoster Java class and it is delivered with
the Content Server base product. It imports data using the HTTP POST protocol.

This chapter describes the general process of importing assets with the XMLPost utility.
You use the information in this chapter for importing assets of all types. The next chapter,
Chapter 19, “Importing Flex Assets,”provides additional information that you need to
import your assets when you are using the flex asset data model.

This chapter contains the following sections:

• The XMLPost Utility

• XMLPost Configuration Files

• XMLPost Source Files

• Using the XMLPost Utility

• Customizing RemoteContentPost and PreUpdate

• Troubleshooting XMLPost
Content Server 7.0 Developer’s Guide

Chapter 18. Importing Assets of Any Type

The XMLPost Utility
370
The XMLPost Utility
To import assets, you instruct the XMLPost utility to invoke one of the importing
(posting) elements provided by CS-Direct or CS-Direct Advantage, as appropriate for that
asset type.

There are four components involved in this process:

• The XMLPost utility, which is delivered with Content Server.

• A posting element. CS-Direct delivers a posting element named
RemoteContentPost. CS-Direct Advantage delivers three additional posting
elements, described in Chapter 19, “Importing Flex Assets.”

• A configuration file with an .ini file extension. You create a configuration file for
each asset type that you plan to import. This file contains information about what to
expect in the source files (what tags XMLPost will find there), what to do with the
data provided, and which importing (posting) element to use to import the data.

• Source files. You provide an individual source file for each asset that you want to
import (well-formed XML files). Each tag in a file identifies a field for that asset type.
The information contained in the tag is the data to be written to that column.

The XMLPost utility parses the configuration file to determine how to interpret the data
provided for the asset type, parses the source files and creates name/value pairs for each
field value, and passes those name/value pairs as ICS variables to the
RemoteContentPost element. The RemoteContentPost element then creates the
asset from the variables.

You can also create your own posting elements that work with the XMLPost utility.
However, for importing assets, the posting elements that are provided by CS-Direct and
CS-Direct Advantage should meet your needs.

Overview
This section provides a brief overview of the steps that the developer completes before
invoking the XMLPost utility and what the XMLPost utility does.

What the Developer Does
When you import assets into your Content Server database, you perform four general
steps:

1. You create a configuration file that identifies the type of asset that is to be imported
and the tags that are used in the source files.

This file also sets several configuration properties, including the name of the
SiteCatalog entry for the posting element that you want XMLPost to use. For all
assets, the name of this posting element is RemoteContentPost. For information about
the posting elements for flex assets, see Chapter 19, “Importing Flex Assets.”

Note

For added security, you can rename the RemoteContentPost page to
prevent attempts to hack into the system.
Content Server 7.0 Developer’s Guide

Chapter 18. Importing Assets of Any Type

The XMLPost Utility
371
Note that the configuration file is specific for this asset type. You must provide a
separate configuration file for each asset type.

2. You create the source files for the data that you want to import. Note that you create a
separate source file for each individual asset.

3. You place the source and configuration files in a directory on the management system.

4. From that directory, you invoke the XMLPost utility, identifying the source files and
the configuration file to use for those source files.

What XMLPost and Content Server Do
After you invoke the XMLPost utility to import the source files, this is what happens next,
as shown in the following diagram and list of steps:

1. The XMLPost utility parses the configuration file.

2. XMLPost parses the source file and creates name/value pairs for each field value
specified in the source file.

3. XMLPost invokes the FormPoster Java class by posting (HTTP POST) the name/
value pairs as ICS variables to the page name passed in from the configuration file.
When you are importing basic asset types, that pagename is:

OpenMarket/Xcelerate/Actions/RemoteContentPost

4. Content Server locates the page in the SiteCatalog table and invokes the root
element of the RemoteContentPost page, which has the same name by default
(RemoteContentPost).

5. The RemoteContentPost element passes the data from the source files as variables
to the PreUpdate element for assets of that type.

6. The PreUpdate element for assets of that type sets the variable values for that asset
and then returns to the RemoteContentPost element.

7. The RemoteContentPost element creates the asset.

8. The web server returns a stream of HTML to XMLPost, which then parses the stream
to determine whether the import operation succeeded or failed, logging the results to a
text file that you specify in the configuration file.

9. If the asset type of the asset that you are importing uses a search engine,
RemoteContentPost indexes the new element.

10. If you set a certain parameter in the configuration file, RemoteContentPost deletes
the source files for the assets that were successfully imported.
Content Server 7.0 Developer’s Guide

Chapter 18. Importing Assets of Any Type

XMLPost Configuration Files
372
XMLPost Configuration Files
There are three types of properties in a configuration file for XMLPost:

• Properties that provide information to XMLPost about the database and environment.
These properties remain the same even if you create your own posting element.

• Properties that provide configuration values for the posting (importing) process. This
chapter describes the properties that you must provide for the RemoteContentPost
element to function correctly.

Examples of properties include the URL of the page that invokes
RemoteContentPost, a user name and password that gives XMLPost write
privileges to the asset type table in the database, the name of the asset type that you
want to import, how to log errors, and any data values that are the same for all of the
assets that you are importing.

• Properties that specify the tags that are used in the source files.

Certain information, such as which site the assets should belong to or which workflow
should be assigned to the asset, can be configured either in the RemoteContentPost
section of the configuration file or the source file section.

For example, if you have only one content management site or if all of the assets that you
are importing belong to the same site, specify the name of the site in the configuration
section so you do not have to repeat that information in each source file. If your system
has more than one content management site, specify which sites an asset belongs to in the
individual source files.

Configuration Properties for XMLPost
The following table lists the properties that specify database connection information and
other general configuration instructions that the XMLPost utility needs:

Property Description

xmlpost.xmlfilenamefilter Required.

The file extension for your source files. Typically
set to xml.

For example:

xmlpost.xmlfilenamefilter: .xml

xmlpost.proxyhost Optional.

If a firewall separates you and the Content Server
database that you want to import the assets in to,
use this property to specify the host name of the
proxy server.

For example:

xmlpost.proxyhost: nameOfServer
Content Server 7.0 Developer’s Guide

Chapter 18. Importing Assets of Any Type

XMLPost Configuration Files
373
xmlpost.proxyport Optional.

If a firewall separates you and the Content Server
database that you want to import the assets in to,
use this property to specify the port number on the
proxy server that XMLPost should connect to.

For example:

xmlpost.proxyport: 80

xmlpost.url Required.

The first part of the URL for the page entry of the
posting element.

XMLPost creates the URL for the posting element
by prepending the value specified for this property
to the value specified for the pagename
postargname (described below).

The value that you set for this property should use
the following convention:

• The name of the server that holds the Content
Server database.

• The CGI path appropriate for the application
server software installed on the server. For
example, for WebLogic, WebSphere, and Sun
ONE this path is /servlet/ and for iPlanet,
this path is /NASapp/cs/.

• The name of the ContentServer servlet.

For example:

xmlpost.url: http://servername/
servlet/ContentServer

or

xmlpost.url: http://servername/
NASapp/cs/ContentServer

xmlpost.logfile Optional.

The name of the file to log the results of importing
(posting) each source file.

Each source file is posted to the Content Server
database through a post request. When the post
request returns from the web server, XMLPost
parses the HTML stream that the web server
returned, searching for the postsuccess and
postfailure parameters. XMLPost then writes
the result to the file that you name identify with
this parameter.

For example:

xmlpost.logfile: ArticlePost.txt

Property Description
Content Server 7.0 Developer’s Guide

Chapter 18. Importing Assets of Any Type

XMLPost Configuration Files
374
xmlpost.success Optional.

The string to look for in the response to determine
if the post was a success.

For example:

xmlpost.success: Success!

xmlpost.failure Optional.

The string to look for in the response to determine
if the post was a failure.

For example:

xmlpost.failure: Error

xmlpost.deletefile Optional.

Whether to delete the source files after they have
been successfully imported into the Content Server
database. Valid settings are y (yes) or n (no). By
default, the source files are not deleted.

For example:

xmlpost.deletefile: y

Property Description
Content Server 7.0 Developer’s Guide

Chapter 18. Importing Assets of Any Type

XMLPost Configuration Files
375
Configuration Properties for the Posting Element
The following table lists the arguments that specify information that must be posted to the
RemoteContentPost page (and passed to the RemoteContentPost element). The
values of these arguments are concatenated into the URL that is posted to the
RemoteContentPost page; they can be in any order in the configuration file:

Property Description

xmlpost.numargs Required.

There are several required variables that the
configuration file passes to XMLPost as name/value
pairs attached to the URL, the primary of which is the
page name. Use this property (xmlpost.numargs) to
tell XMLPost how many variables the configuration
file is passing in.

For example:

xmlpost.numargs: 7

Note that you can also specify your own custom
variables with these name/value pairs.

xmlpost.argname1:
pagename

Required.

The pagename for the RemoteContentPost element.
Typically the pagename argument is specified as
xmlpost.argname1.

For example:

xmlpost.argname1: pagename
xmlpost.argvalue1: OpenMarket/Xcelerate/
Actions/RemoteContentPost

xmlpost.argname2:
AssetType

Required.

The asset type of the assets that are defined in the
source files. Typically, AssetType is specified as
xmlpost.argname2.

For example:

xmlpost.argname2: AssetType

xmlpost.argvalue2: Collection

Note that the value for the AssetType argument must
exactly match the table name of the table that holds
assets of this type.
Content Server 7.0 Developer’s Guide

Chapter 18. Importing Assets of Any Type

XMLPost Configuration Files
376
xmlpost.argname3:
authusername

Required.

The user name that you want XMLPost to use to log
into the Content Server database that you are importing
the assets into. Typically, authusername is specified
as xmlpost.argname3.

For example:

xmlpost.argname3: authusername

xmlpost.argvalue3: editor

The user name that you specify must have permission
to write to the table that holds assets of the type that
you are importing. (That is, it must have the
appropriate ACLs assigned to it.)

xmlpost.argname4:
authpassword

Required.

The password for the user that XMLPost logs in as to
the Content Server database that you are importing the
assets into. Typically, authpassword is specified as
xmlpost.argname4.

For example:

xmlpost.argname4: authpassword

xmlpost.argvalue4: xceleditor

xmlpost.argname5:
xmlpostdebug

Optional

Whether or not to include debugging information with
the results information that is written to the XMLPost
log file identified with the xmlpost.logfile
property.

You can set this property to any value. For example:

xmlpost.argname5: xmlpostdebug

xmlpost.argvalue5: on

Note: Be sure to include a value for the
xmlpost.logfile property if you enable debugging.

xmlpost.argname6:
inifile

Optional.

The name of the ini file to use when connecting to the
Content Server database. Typically, inifile is
specified as xmlpost.argname5.

For example:

xmlpost.argname6: inifile

xmlpost.argvalue6: futuretense.ini

Property Description
Content Server 7.0 Developer’s Guide

Chapter 18. Importing Assets of Any Type

XMLPost Configuration Files
377
Configuration Properties for the Source Files
The source file section in a configuration file specifies which tags are used in the source
files.

A tag represents a column name in the table that holds assets of this type. The content
between a pair of tags is the information that is to be written to that column. Configuration
files must list a tag for each column in the asset type’s primary storage table, which is why
you must provide a separate configuration file for each asset type.

Site Properties
In addition to the tags that pertain to your asset types, there are four tags that you can use
with all asset types to specify certain site configuration properties, that is, which sites an
asset should be associated with and which workflow it should use. This table lists the site
tags:

xmlpost.argname7:
publication

Optional.

Athough using this property is optional, you must
specify a site for each asset that you are importing.

If your system uses one content management site
(publication) or if all assets of this type should be
enabled on the same site, use this argument to set the
name of the site.

For example:

xmlpost.argname7: publication
xmlpost.argvalue7: Burlington Financial

If your system uses more than one content
management site, you must specify the value for site
for each asset in the individual source files. See
“Configuration Properties for the Source Files” on
page 377 for more information.

xmlpost.argname8:
startmenu

Optional.

If you are using workflow and you want the same
workflow assigned to all of the assets that you are
importing, use this argument to set the Start Menu
shortcut for the assets. (It is a Start Menu shortcut that
assigns a workflow ID to a new asset.)

For example:

xmlpost.argname8: startmenu

xmlpost.argvalue8: New Article

If you have more than one workflow for assets of this
type, you must specify the value for the Start Menu
shortcut for each asset in the individual source files.
See “Configuration Properties for the Source Files” on
page 377 for more information.

Property Description
Content Server 7.0 Developer’s Guide

Chapter 18. Importing Assets of Any Type

XMLPost Configuration Files
378
Remember that if the site or the workflow is the same for all of the assets that you are
importing, you can specify the value for site or workflow as an argument in the XMLPost
section of the configuration file. That way, you do not have to duplicate the same
information in all of the source files.

Asset Type Properties
To set up the tags that are specific to your asset types, you specify a tag for each column in
the database table for assets of that type. However, the source files are not required to
include data tagged with every tag in the configuration file. (Of course, they must include
data for required fields.)

For each tag representing a field (column), you specify the name of the tag and optionally
some additional processing properties for the tag. The name of the tag is the name of the

Site tag property Value Description

postpublication y or n

(yes or no)

Optional.

Specifies that a source file will provide a site
name that identifies which site the asset
belongs to.

For example:

postpublication: y

Note that a site (publication) value provided in
a source file with the publication tag
overrides the value specified for a publication
argument in the XMLPost section of the
configuration file.

postprimarypubid y or n

(yes or no)

Optional.

Specifies that a source file will provide a value
for pubid (a unique ID for the site) that
identifies which site the asset belongs to.

For example:

postprimarypubid: y

postpublist y or n

(yes or no)

Optional.

Specifies that a source file will provide a list of
sites that the asset is shared with.

For example:

postpublist: y

poststartmenu y or n

(yes or no)

Optional.

Specifies that a source file will provide a value
for the Start Menu short cut that places the
asset into a workflow process.

For example:

poststartmenu: y
Content Server 7.0 Developer’s Guide

Chapter 18. Importing Assets of Any Type

XMLPost Configuration Files
379
field (column). For the additional properties, the convention is a word prepended to the
name of the tag.

The following table describes how to specify the tags that are specific to your asset types:

Tag property Value Description

posttagname y or n

(yes or no)

Required.

Specifies the name of the tag. The name should
exactly match the name of the field that it
represents.

For example, the tag property for a name field is:

postname: y

trunctagname N

(integer)

Optional.

Whether to truncate the data in the source file
marked by this tag.

For example:

truncname: 64

By setting this property for the tag, if XMLPost
finds a string in the <name> tag that exceeds 64
characters, it shortens it to 64 characters and
stores the truncated string in the variable.

notrimtagname y or n

(yes or no)

Optional.

Whether to trim the white space at the beginning
or end of the marked with the tag. If you do not
want the white space trimmed, set this property
to y (yes).

For example:

notrimname: y

If you do not specify this property, XMLPost
trims the white space for the tag by default.
Content Server 7.0 Developer’s Guide

Chapter 18. Importing Assets of Any Type

XMLPost Configuration Files
380
multitagname combine

or

separate

Required if the same tag is used more than once
in a single source file.

Determines how many variables to use for the
data when a tag is used more than once in the
source file. If you set it to combine, the data
from all of the tags is stored in the same variable
with commas separating each value (a comma
delimited string).

If you set it to separate, the data from each tag
is stored in a separate variable. Those variables
are identified by appending the value that you set
for seedtagname to the variable name.

For example, for a keyword field (column):

• If you set multikeyword: combine,
XMLPost stores all the values marked by a
keyword tag to the same keyword variable.

• If you set multikeyword: separate and
seedkeyword: 1, XMLPost stores each
value in a separate variable. The first value it
finds is stored in a variable named keyword1.
The second value is stored in a variable named
keyword2, and so on.

seedtagname seed value Required when multitagname is set to
separate.

The number to start at when XMLPost
increments the suffix assigned to variable names
when a tag is used more than once and you do
not want the data contained in those tags written
to the same variable. See the description of
multitagname.

For example:

multikeyword: separate

seedkeyword: 1

Tag property Value Description
Content Server 7.0 Developer’s Guide

Chapter 18. Importing Assets of Any Type

XMLPost Configuration Files
381
Sample XMLPost Configuration File
Here is a sample configuration file named imagefile.ini, used to import imagefile
assets for the Burlington Financial sample site.

xmlpost.xmlfilenamefilter: xml
#xmlpost.xmlproxypost: Future
#xmlpost.xmlproxyport: 80
xmlpost.url: http://localhost/servlet/ContentServer
xmlpost.numargs: 6
xmlpost.argname1: pagename
xmlpost.argvalue1: OpenMarket/Xcelerate/Actions/RemoteContentPost
xmlpost.argname2: AssetType
xmlpost.argvalue2: ImageFile
xmlpost.argname3: authusername
xmlpost.argvalue3: user_author
xmlpost.argname4: authpassword
xmlpost.argvalue4: user
xmlpost.argname5: inifile
xmlpost.argvalue5: futuretense.ini
xmlpost.argname6: publication
xmlpost.argvalue6: BurlingtonFinancial

xmlpost.success: Success
xmlpost.failure: Error

filetagname y or n

(yes or no)

Required if the tag represents an upload field (a
URL column or BLOB).

If the tag represents a field that has a URL
column, you must include this property and the
source file must specify the name of the file that
RemoteContentPost is to upload to that
column.

For example, the imagefile asset type from the
Burlington Financial sample site has an upload
field named urlpicture. A configuration file
for the imagefile asset type would have the
following propeties:

posturlpicture: y

fileurlpicture: y

Then, in the source file for an imagefile asset,
you specify the value for the urlpicture field
like this:

<urlpicture>relative_path_to/
filename.jpg

</urlpicture>

Note that you must specify the location of the
file with a relative path—relative to the directory
in which you are running the XMLPost utility.

Tag property Value Description
Content Server 7.0 Developer’s Guide

Chapter 18. Importing Assets of Any Type

XMLPost Configuration Files
382
xmlpost.logfile: ImageFilePost.txt

postpublication: y
postprimarypubid: y
postpublist: y

postcategory: y
truncategory: 4

postpath: y
truncpath: 255

postname: y
truncname: 32

posttemplate: y
trunctemplate: 32

postsubtype: y
truncsubtype: 24

postfilename: y
truncfilename: 64

poststartdate: y

postdescription: y
truncdescription: 128

postsource: y

posturlpicture: y
fileurlpicture: y

posturlthumbnail: y
fileurlthumbnail: y

postmimetype: y
postwidth: y
postheight: y
postalign: y
postalttext: y

postkeywords: y
multikeywords: combine
trunckeywords: 128

postimagedate: y
Content Server 7.0 Developer’s Guide

Chapter 18. Importing Assets of Any Type

XMLPost Source Files
383
XMLPost Source Files
Source files must be made up of well-formed XML without the need for a document type
definition (DTD) file. Actually, the configuration file functions something like a DTD file
in that it defines the tags that will be processed in the source files.

The data in your source files must be tagged with tags whose names match the column
names for the table that holds assets of that type. For example, a source file for a
Burlington Financial imagefile asset uses tags named name, caption, picutureurl,
and so on.

This chapter does not describe how to automate the generation of your XML source files.
How you create your source files depends on the source of your data and the tools that you
have to convert your data into XML files. This chapter describes what needs to be in your
source files and what XMLPost does with them.

Sample XMLPost Source File
Here is a sample source file for a Burlington Financial imagefile asset. Its tags are defined
in the sample configuration file in the previous section, “Sample XMLPost Configuration
File” on page 381:

<document>
<name>High Five 25</name>
<keyword>Five</keyword>
<category>a</category>
<artist>by Ann. Artist</artist>
<alttext>Congratulations</alttext>
<align>CENTER</align>
<caption>A man extends <keyword>congratulations</keyword> with a
boy.</caption>
<pictureurl>/images/eZine/highfive.jpg</pictureurl>
</document>

How the Data is Passed (Posted)
All of the text contained between a pair of XML tags in a source file is passed to the
RemoteContentPost element from XMLPost as a variable that uses the
Variables.tagname syntax convention.

For example, this line of code:

<name>High Five 25</name>

is sent to RemoteContentPost as Variables.name and the value of name is the string
“High Five”.

XMLPost and File Encoding
If the data in a source file does not use the Content Server system’s default file encoding
but the database can accommodate that character set, you can specify the alternate file
encoding in the XML version statement at the beginning of the file.

For example:

<?xml version= “1.0” encoding=“UTF-8” ?>
Content Server 7.0 Developer’s Guide

Chapter 18. Importing Assets of Any Type

Using the XMLPost Utility
384
Using the XMLPost Utility
You can invoke the XMLPost utility in one of many ways:

• From the command line

• From a script or batch file

• From a program

No matter how you start XMLPost, you must provide the following pieces of information:

• The name of the configuration file to use

• The source files, which can be specified as a single file, a list of files, or a directory of
files

Before You Begin
Before you can use the XMLPost utility, the following must be true:

• Your asset types are created. (Otherwise, there are no database tables to import the
assets in to.)

• Your content management sites are created and the appropriate asset types are enabled
for each site.

• If you are using workflow, your workflow processes are created.

• Your Start Menu shortcuts are created and, if you are using workflow, they assign the
appropriate workflow process to the appropriate asset types.

• The templates for the asset type are created.

• The association fields for the asset types are created. However, to use XMLPost to set
the value of an association field requires custom code. See “Customizing
RemoteContentPost and PreUpdate” on page 387 for more information.

Running XMLPost from the Command Line
Complete the following steps:

1. Place the configuration file and source files in a directory on a system that has Content
Server installed.

2. Run the following command (on a single command line) from that directory:

Windows

% java -cp installdir\cs.jar;installdir\MSXML.jar;
installdir\commons-logging.jar;
installdir\cs-core.jar;installdir\commons-codec-
1.3.jar;installdir\commons-httpclient-3.0-
rc2.jar;installdir\commons-lang-2.1.jar
COM.FutureTense.XML.Post.XMLPostMain

-sSourcefile.xml -cConfigfile.ini

Solaris

% java -cp installdir/cs.jar:installdir/MSXML.jar:
installdir/commons-logging.jar:
installdir/cs-core.jar: installdir\commons-codec-
1.3.jar:installdir\commons-httpclient-3.0-
Content Server 7.0 Developer’s Guide

Chapter 18. Importing Assets of Any Type

Using the XMLPost Utility
385
rc2.jar:installdir\commons-lang-2.1.jar
COM.FutureTense.XML.Post.XMLPostMain
-sSourcefile.xml -cConfigfile.ini

where installdir is your FatWire installation directory. (Note that there are several
options for designating the source file. See “Options for Identifying Source Files” on
page 385 for information.)

Options for Identifying Source Files
The source parameter that you use to identify the source files to the XMLPost utility can
point to any of the following:

• A single file.

• A directory of files. All the files in that directory that have the file extension (typically
.xml) designated by the configuration file will be posted (imported).

• A list file that provides a list of all the files that you want to import. It is similar to an
.ini file but it has a file extension of .lst.

A Single File
To post the contents of one file, specify the name of that file in the command line. The
following example (Solaris) instructs XMLPost to use a configuration file named
articlepost.ini and one source file named article.xml:

% java -cp installdir/cs.jar:installdir/MSXML.jar:
installdir/commons-logging.jar:
installdir/cs-core.jar COM.FutureTense.XML.Post.XMLPostMain
-sarticle.xml -carticlepost.ini

A Directory of Files
To post all the files in a directory, specify the path to that directory in the command line.
The following example (Solaris) instructs XMLPost to import the files in the
xmlpostfiles directory:

% java -cp installdir/cs.jar:installdir/MSXML.jar:
installdir/commons-logging.jar:
installdir/cs-core.jar COM.FutureTense.XML.Post.XMLPostMain
-sxmlpostfiles -carticlepost.ini

A List File
As an alternative to specifying a directory, you can create a list file that uses the format of
a .ini file and includes the following properties:

• numfiles, which specifies how many files are included in the list.

• fileN, which specifies the path to a file and its file name. The N stands for the file’s
order in the list file. The first file listed is file1, the second is file2, and so on.

The value of N for the last fileN in the list must match the value specified by the
numfiles property. XMLPost stops importing when it has imported as many files as

Note

If the source files and configuration file are not in the directory that you are
working in, you must provide the path to those files in the command line. For
example: -s/products/product.xml.
Content Server 7.0 Developer’s Guide

Chapter 18. Importing Assets of Any Type

Using the XMLPost Utility
386
it is told to expect by the numfiles property. If you have included more files than
numfiles states, XMLPost does not import them.

The file extension for a list file must be .lst.

Here is an example list file, named xmlpostfiles.lst:

numfiles: 3
file1: c:\xmlpost\article1.xml
file2: c:\xmlpost\article2.xml
file3: c:\xmlpost\article3.xml

To post the files referenced in this file list, specify the name of the list file in the command
line. The following example (Windows NT) instructs XMLPost to import the files
specified in the xmlpostfiles.lst file:

% java -cp installdir\cs.jar;installdir\MSXML.jar;
installdir\commons-logging.jar;
installdir\cs-core.jar COM.FutureTense.XML.Post.XMLPostMain
-sc:\xmlpostfiles.lst -carticlepost.ini

Running XMLPost as a Batch Process
When you want to import assets of more than one type (which requires you to run the
utility separately for each asset type because you must identify a different configuration
file for each), it is convenient to run XMLPost from a batch file.

In the batch file, include a command line statement for each asset type: a statement that
identifies the configuration file and the location of the source files. You can use any of the
ways described in the preceding section to identify the source files.

Running XMLPost Programmatically
You can also invoke the XMLPost utility programmatically by creating an XMLPost
object and calling the doIt method doIt(String[] args), where the input is a string
array. The elements of the array are the same flags that you use when running XMLPost
from the command line.

For example:

String args [] = {"-sSourcefile.xml","-cConfigfile.ini"};
COM.FutureTense.XML.Post.XMLPost poster = new
COM.FutureTense.XML.Post.XMLPost();
try {
poster.doIt(args);
} catch (Exception e) {
ics.LogMsg("error in XMLPost under program control");
}

Note that you must include the complete path to the source files and the configuration file.
Content Server 7.0 Developer’s Guide

Chapter 18. Importing Assets of Any Type

Customizing RemoteContentPost and PreUpdate
387
Customizing RemoteContentPost and PreUpdate
If necessary, you can customize the XMLPost process by adding or modifying code in the
RemoteContentPost element or the PreUpdate element for your asset types.

If you want to import information about an asset to other tables, you must modify the
PreUpdate element for that asset type.

This section provides two customization examples:

• Customizing the PreUpdate element for the article asset type so that it sets headline
information in the description field. There is a description column in the Article
table but the field in the “New” or “Edit” article form is called Headline.

• Customizing the PreUpdate element for the article asset type so that it can add
associations to articles.

Setting a Field Value Programmatically
The article asset type has a special condition: it has a field in the New and Edit forms
called Headline, but the value for Headline is stored in the description column in the
Article table. In order for headline text to be written to the correct column in the
Article table when an article asset is imported (that is, the description column), the
PreUpdate element for the article asset type was modified.

First, examine the sample configuration file named ArticlePost.ini that is located in
the Xcelerate/Samples/XMLPost directory in your CS-Direct product kit. It has a tag
specified for the Headline field:

headline gets stored in the description field
postheadline: y

The following code in the PreUpdate element for the article asset type writes the data
that RemoteContentPost passes in as Variable.headline to the correct database
column:

<if COND="IsVariable.headline=true">
<then>

<ASSET.SET NAME="theCurrentAsset" FIELD="description"
VALUE="Variables.headline"/>

</then>
</if>

This example uses a tag called ASSET.SET. This tag sets data in a field for the asset that is
currently in memory. It takes three parameters:

• NAME (required). The name of the asset object that is in memory. This asset object
must have been previously instantiated either with the ASSET.LOAD tag or the
ASSET.CREATE tag. By convention, CS-Direct uses the name theCurrentAsset to
refer to the current asset object.

• FIELD (required). The name of the field whose value you want to set. The name of
this field must exactly match the name of a column in the storage table for assets of
this type.

• VALUE (required). The data to be inserted in the column.
Content Server 7.0 Developer’s Guide

Chapter 18. Importing Assets of Any Type

Customizing RemoteContentPost and PreUpdate
388
Setting an Asset Association
If an asset has an association with another asset, that information is written to the
AssetRelationTree table. Because the standard behavior of XMLPost is to write asset
information to the primary storage table of the asset type only, you must modify the
PreUpdate element for the asset type if you want to specify asset associations.

For example, the article asset type has an association field named MainImageFile. When
a content provider creates an article asset, she selects the appropriate imagefile asset in
this field.

Examine the sample configuration file named ArticlePost.ini that is located in the
Xcelerate/Samples/XMLPost directory in your CS-Direct product kit. It has a tag
specified for the MainImageFile association field:

postMainImageFile-name: y

The following code in the PreUpdate element for the article asset type writes the data
that RemoteContentPost passes in as Variable.mainimagefile to the correct
database table:

<if COND="IsVariable.MainImageFile-name=true">
<then>

<ASSET.LOAD NAME="anAssociatedImage" TYPE="ImageFile"
FIELD="name" VALUE="Variables.MainImageFile-name"/>
<if COND="IsError.Variables.errno=false">

<then>
<ASSET.GET NAME="anAssociatedImage" FIELD="id"
OUTPUT="imageid"/>
<ASSET.ADDCHILD NAME="theCurrentAsset" TYPE="ImageFile"
CHILDID="Variables.imageid" CODE="MainImageFile"/>
</then>

</if>
</then>
</if>

This example uses a tag named ASSET.ADDCHILD. This tag associates a child asset with
the asset that is currently held in memory. It takes five parameters:

• NAME (required). The name of the asset object that is in memory. This asset object
must have been previously instantiated either with the ASSET.LOAD tag or the
ASSET.CREATE tag. By convention, CS-Direct uses the name theCurrentAsset to
refer to the current asset object.

• TYPE (required). The asset type of the child asset.

• CHILDID (required). The ID of the child asset.

• CODE (optional). The name of the association. This value is written to the ncode
column in the AssetRelationTree table.

Note

The ASSET.ADDCHILD tag creates only the link between the two assets; it does
not create the associated asset. In order for this code to work, the asset specified
with the CHILDID parameter must already exist in the Content Server database.
Content Server 7.0 Developer’s Guide

Chapter 18. Importing Assets of Any Type

Troubleshooting XMLPost
389
• RANK (optional). A numeric value to establish an order for the child assets. This value
is written to the nrank column in the AssetRelationTree table.

For information about ASSET.GET and ASSET.LOAD, see the Content Server Tag
Reference.

Troubleshooting XMLPost
This is a brief list of some possible problems that can occur when you run the XMLPost
utility.

XMLPost does not run and does not create a log file message
There are two possible reasons for XMLPost to not start:

• The server name specified in the xmlpost.URL property setting in your configuration
file is not a valid server name. Examine this property and make sure that the server
name is correct.

• Content Server is not running on the system you are importing to. Start it.

XMLPost fails and there is a “Missing Entity” statement in the log file
When you see this message in the log file, it means that there is invalid XML in the source
file. Typically, your XML includes HTML code and that code includes special HTML
characters that are not referred to by their character entity codes. For best coding practice,
embed any HTML code in a <![CDATA[...]]> tag.

Error 105 is triggered when XMLPost tries to save an asset
There are several reasons why saving an asset can cause a database error.

One common reason for this error code is when the data that XMLPost tries to save to a
specific column (field) is too large for that column. Resolving this depends on your goals.
If it is okay for XMLPost to truncate the data that doesn’t fit into the column, you can add
a trunctag property to the configuration file. For example, truncbody: 2000.

Another common reason for this error code is that an asset of that type with the same name
already exists. Try changing the name of the asset and importing the asset again.

Debugging the Posting Element
If you have modified the RemoteContentPost element in any way or have created your
own posting element, you can use the XML Debugger utility to test it before you use it.

To use XML Debugger, replace ContentServer with DebugServer in the
xmlpost.url property setting.

For example, change xmlpost.url: http://6ipjk/servlet/ContentServer

to xmlpost.url: http://6ipjk/servlet/DebugServer

For more information about the XML Debugger utility, see Chapter 8, “Content Server
Tools and Utilities.”
Content Server 7.0 Developer’s Guide

Chapter 18. Importing Assets of Any Type

Troubleshooting XMLPost
390
Content Server 7.0 Developer’s Guide

391
Chapter 19

Importing Flex Assets
Chapter 18, “Importing Assets of Any Type” presents the core information about using the
XMLPost utility. If your Content Server configuration includes CS-Direct Advantage and
you are using the flex asset data model, you have more tools for importing your assets.

CS-Direct Advantage provides three additional posting elements for the XMLPost utility
and a bulk processing utility named BulkLoader.

This chapter describes the additional posting elements for the XML-Post utility. It
contains the following sections:

• Overview

• XMLPost and the Flex Asset Model

• Importing the Structural Asset Types in the Flex Model

• Importing Flex Assets with XMLPost

• Editing Flex Assets with XMLPost

• Deleting Assets with XMLPost

This chapter refers to the BulkLoader utility, but for in-depth information about how to
run it, see Chapter 20, “Importing Flex Assets with the BulkLoader Utility.”
Content Server 7.0 Developer’s Guide

Chapter 19. Importing Flex Assets

Overview
392
Overview
CS-Direct Advantage provides two methods for importing assets that use the flex data
model into the Content Server database:

• XMLPost. CS-Direct Advantage provides three additional posting elements that work
with XMLPost: addData, modifyData, and deleteData.

• The BulkLoader utility.

Importing the Data Structure Flex Asset Types
Before you can use either method, you must first create or import the data design or
“structural” asset types into your flex families with XMLPost and the standard posting
element, RemoteContentPost, provided by the CS-Direct product. That is, first you
create or import the attribute editors, flex attributes, flex definitions, and flex parent
definitions with the standard XMLPost posting element. If you are using the BulkLoader
utility, the flex parents must also be imported with XMLPost or created.

Importing the Flex Assets
After you import your data structure asset types, then you can import your flex assets with
one of the two import methods, depending on the situation:

• Use BulkLoader to import a large number—thousands or hundreds of thousands—of
flex assets.

• Use the CS-Direct Advantage posting element to load a moderate number—
hundreds—of flex and flex parent assets.

When to Use BulkLoader
When working within the basic asset model, it is typical to use XMLPost to import assets
into the database on the management system and then publish those assets to the delivery
system. This methodology changes with flex assets because the volume of data involved
in a flex asset data model tends to be much greater than that in a basic asset model.

You use the BulkLoader utility during the initial setup of your Content Server system. See
Chapter 20, “Importing Flex Assets with the BulkLoader Utility.”

When to Use XMLPost
For regular or incremental updates after the initial setup of your Content Server system—
perhaps some or all of your data originates in an ERP system, for example—you use the
XMLPost utility and the addData posting element.

Importing Flex Assets: The Process
Because assets using the flex model have dependencies on each other, flex asset types
must be imported in a specific sequence. And, as with basic assets, the asset types must
exist, there must be sites created, and so on before you can use XMLPost to import assets.

For information about the basic prerequisites for using XMLPost that apply to all asset
types (both asset models), see “Before You Begin” on page 384.

After those basic requirements are met, you must import your flex asset types into the
Content Server database on the management system in the following sequence:
Content Server 7.0 Developer’s Guide

Chapter 19. Importing Flex Assets

Overview
393
1. Attribute editors are optional, but if you plan to use them you must either import them
or create them before you import your flex attributes. The configuration file must
instruct XMLPost to call the RemoteContentPost element. For information, see
“Attribute Editors” on page 395.

2. Flex attributes. The configuration file must instruct XMLPost to call the
RemoteContentPost element. For information, see “Flex Attributes” on page 397.

3. Flex parent definitions. The configuration file must instruct XMLPost to call the
RemoteContentPost element. For information, see “Flex Definitions and Flex
Parent Definitions” on page 401.

Flex definitions. The configuration file must instruct XMLPost to call the
RemoteContentPost element. For information, see “Flex Definitions and Flex
Parent Definitions” on page 401.

4. Flex parent assets. Do one of the following:

- If you are going to use XMLPost to import the flex assets, you can either import
the flex parents individually or you can import them as part of the flex family tree
for a flex assets.

- If you are going to use the BulkLoader utility to import the flex assets, you must
first use XMLPost to import the flex parent assets. The configuration file must
instruct XMLPost to call the RemoteContentPost element. The file cannot
specify the addData element because you are importing the parents without the
entire family tree for the flex assets.

For information, see “Flex Parents” on page 405.

5. (Optional) If you plan to use the BulkLoader utility to import flex assets into both the
management system and the delivery system, you must first approve and publish all of
the structural assets (attribute editors, flex attributes, flex definitions, parent
definitions, and flex parents) from the management system to the delivery system.

6. Flex assets. Do one of the following:

- Use the BulkLoader utility. See Chapter 20, “Importing Flex Assets with the
BulkLoader Utility.”

- Use XMLPost. See “Importing Flex Assets with XMLPost” on page 406.

You must follow the sequence outlined in the preceding steps because there are
dependencies built in to the data structure of a flex asset family. Additionally, note the
following dependencies:

• If you have attributes of type asset and a flex parent or flex asset has such an
attribute, the asset that you designate as the value of that attribute field must have
already been created or imported.

Note

You must import the flex parent definitions in the proper order. That is, if a
parent definition refers to another parent definition asset, the referenced asset
must already exist in the database.

It is typical to import parent definitions one hierarchical level at a time,
starting with the top level definitions.
Content Server 7.0 Developer’s Guide

Chapter 19. Importing Flex Assets

XMLPost and the Flex Asset Model
394
• An asset that you set as the value for an attribute of type asset must be of the correct
asset type.

XMLPost and the Flex Asset Model
The XMLPost utility works the same no matter which asset model or Content Server
product you are using. However, CS-Direct Advantage provides additional processing
logic in some of its standard elements for the flex asset types to support XMLPost because
flex assets store their data in more than one database table (unlike basic asset types, which
have one database table).

Additionally, CS-Direct Advantage provides both a posting element that enables you to
use XMLPost to edit flex assets (modifyData) and a posting element that enables you to
use XMLPost to delete assets of any type (deleteData).

This chapter provides additional information about creating configuration and source files
specifically for the asset types in a flex family (and attribute editors). Be sure to also read
Chapter 18, “Importing Assets of Any Type” for basic information that pertains to all
XMLPost configuration and source files.

In the flex asset model, you specify a different posting element based on the following
categories of asset types:

• Structural asset types that give the flex asset type and flex parent asset type their data
structure. That is, attribute editors, attributes, flex definitions, and flex parent
definitions.

Use the standard CS-Direct posting element RemoteContentPost to import the
structural asset types. (You cannot use the addData element with assets of these
types.)

• Flex and flex parent asset type (for example, the product and product parent types in
the GE Lighting sample site).

Depending on the situation, you can use either the CS-Direct Advantage posting
element addData to import the flex and flex parent asset types or the CS-Direct
posting element RemoteContentPost. (See “Flex Parents” on page 405 and
“Importing Flex Assets with XMLPost” on page 406 for information about which
posting element to use.)

In both cases, you create configuration files and source files (as described in “Overview”
on page 392 and supplemented in this chapter), and then invoke the XMLPost utility (as
described in “Using the XMLPost Utility” on page 384).

Note

For reference, sample XMLPost code is provided on the Content Server
installation medium, in the “Samples” folder. The same folder contains the
readme.txt file that describes the sample files.
Content Server 7.0 Developer’s Guide

Chapter 19. Importing Flex Assets

Importing the Structural Asset Types in the Flex Model
395
Internal Names vs. External Names
When you create your flex family of asset types (see “Step 1: Create a Flex Family or a
New Flex Family Member” on page 325), you specify both an internal and an external
name for your asset types.

The internal name is used for the primary storage table in the database. The external name
is used in the CS-Direct Advantage “New,” “Edit,” and “Inspect” forms, in search results
list, and so on. For example, the internal name for the attribute editor asset type is AttrTypes
but that name is not used in the user interface. And the internal name for the GE Lighting
sample site’s article asset type is AArticles but that name is not used in the user
interface.

Because XMLPost communicates with the database, you must always use the internal
name of the asset type in the configuration files and source files. For example, in a
configuration file for attribute editors, you would specify the following:

postargname2: AssetType
postargvalue2: AttrTypes

Importing the Structural Asset Types in the Flex
Model

All of the information about configuration and source files for basic assets that is
presented in Chapter 18, “Importing Assets of Any Type” applies to the configuration and
source files for the flex asset types.

Additionally, this section provides example configuration and source files for the
structural flex asset types.

Attribute Editors
Attribute editors store their data in one table, named AttrTypes. AttrTypes is the internal
name of the attribute editor asset type. Be sure to use this name in your configuration file
for attribute editors.

The following table describes the configuration file properties and source file tags that you
use with attribute editors:

Attribute editor tag and
property

Description

tag:

<name>

property:

postname

Required.

Name of the attribute editor asset; this is a required value
for all asset types. Attribute names are limited to 64
characters and cannot contain spaces.

tag:

<description>

property:

postdescription

Optional.

Description of the use or function of the attribute.
Content Server 7.0 Developer’s Guide

Chapter 19. Importing Flex Assets

Importing the Structural Asset Types in the Flex Model
396
Sample Configuration File: Attribute Editor
This is a sample configuration file for the attribute editor asset type. It works with the
sample source file immediately following this example.

xmlpost.xmlfilenamefilter: .xml
xmlpost.url: http://izod19/servlet/ContentServer
xmlpost.numargs: 6
xmlpost.argname1: pagename
xmlpost.argvalue1: OpenMarket/Xcelerate/Actions/RemoteContentPost
xmlpost.argname2: AssetType
xmlpost.argvalue2: AttrTypes
notice that you use the internal name of the asset type

xmlpost.argname3: authusername
xmlpost.argvalue3: user_editor
xmlpost.argname4: authpassword
xmlpost.argvalue4: user
xmlpost.argname5: inifile
xmlpost.argvalue5: futuretense.ini
xmlpost.argname6: startmenu
xmlpost.argvalue6: New Attribute Editor

xmlpost.success: Success
xmlpost.failure: Error
xmlpost.logfile: attreditorpostlog.txt

xmlpost.deletefile: y

postpublication: y

postname: y
postdescription: y
postAttrTypeText: y

Sample Source File: Attribute Editor
The following source file is tagged for importing a check box attribute editor, or
presentation object, for the GE Lighting sample catalog. It works with the preceding
sample configuration file.

<document>
<publication>GE Lighting</publication>

tag: <AttrTypeText>

property:
postAttrTypeText

Required.

Either the name of the file with the attribute editor XML
code, or the actual code.

This tag corresponds to the XML in file field and Browse
button and the XML field in the New and Edit attribute
editor forms in the Content Server interface.

Attribute editor tag and
property

Description
Content Server 7.0 Developer’s Guide

Chapter 19. Importing Flex Assets

Importing the Structural Asset Types in the Flex Model
397
<name>Editor4-CheckBoxes</name>
<description>Attribute Type Four Check Box</description>
<AttrTypeText>
<![CDATA[
<?XML VERSION="1.0"?>
<!DOCTYPE PRESENTATIONOBJECT SYSTEM "presentationobject.dtd">

<PRESENTATIONOBJECT NAME="CheckBoxTest">
 <CHECKBOXES LAYOUT="VERTICAL">
 <ITEM>Red</ITEM>
 <ITEM>Green</ITEM>

<ITEM>Blue</ITEM>
 </CHECKBOXES>
</PRESENTATIONOBJECT>
]]>
</AttrTypeText>
</document>

Flex Attributes
Flex attributes have several tables but XMLPost writes to only two of them: the main
storage table (for example, the PAttributes table for the GE Lighting sample site) and
the attribute asset type’s _Extension table (PAttributes_Extension, for example).

This means that the source file section of the configuration file must specify and the
source file itself must use tags that represent columns in both tables. Those source file tags
and configuration file properties are as follows:

Flex attribute tag and
property

Description

tag:

<name>

property:

postname

Required.

Name of the attribute; this is a required value for all asset
types. Attribute names are limited to 64 characters and
cannot contain spaces.

tag:

<description>

property:

postdescription

Optional.

Description of the use or function of the attribute.

tag:

<valuestyle>

property:
postvaluestyle

Optional.

Whether the attribute can hold a single value (S) or multiple
values (M). If no this tag is not used, the attribute is set to
hold a single value by default.

The attribute data type of url has been deprecated and
replaced with the blob type in the 4.0 version of CS-Direct
Advantage. If you are still using the url data type, note that
you cannot specify M if the data type is url.
Content Server 7.0 Developer’s Guide

Chapter 19. Importing Flex Assets

Importing the Structural Asset Types in the Flex Model
398
tag:

<type>

property:

posttype

Required.

The data type of the attribute. Valid options are asset,
date, float, int, money, string, text, or
blob. For definitions of these data types, see “Data Types
for Attributes” on page 210.

tag: <assettypename>

property:
postassettypename

Required if <type> is set to asset.

The name of the asset type that the attribute holds.

tag:

<upload>

property:

postupload

Required if <type> is set to blob (or url, which is
deprecated in 4.0).

The path to the directory that you want to store the attribute
values in. Note that the value that you enter in this field is
appended to the value set as the default storage directory
(defdir) for the attribute table by the cc.urlattrpath
property in the gator.ini file (which is FutureTense/
futuretense_cs/ccurl/ by default).

tag: <attributetype>

property:

postattributetype

Optional.

The name of the attribute editor to use, if applicable.

tag:

<enginename>

property:

postenginename

Optional.

If you are using a search engine on your management
system, the name of the search engine.

tag:

<charsetname>

property:

postcharsetname

Optional.

The search engine character set to use. By default, it is set to
ISO 8859-1.

tag:

<editing>

property:

postediting

Foreign attributes only.

Whether a foreign attribute can be edited through the CS-
Direct Advantage forms (L), or edited externally using a
third-party tool (R). L is the default.

tag:

<storage>

property:

poststorage

Foreign attributes only.

Whether the values for a foreign attribute are to be stored in
a _Mungo table in the Content Server database (L) or in a
foreign table (R). L is the default.

tag:

<externalid>

property:

postexternalid

Foreign attributes only.

The name of the column that serves as the primary key for
the table that holds this foreign attribute; that is, the column
that uniquely identifies the attribute.

Flex attribute tag and
property

Description
Content Server 7.0 Developer’s Guide

Chapter 19. Importing Flex Assets

Importing the Structural Asset Types in the Flex Model
399
Sample Configuration File: Flex Attribute
This is sample configuration file for the product attribute asset type from the GE Lighting
sample site. It works with the sample source file immediately following this example.

xmlpost.xmlfilenamefilter: .xml

xmlpost.url: http://izod19/servlet/ContentServer
xmlpost.numargs: 6
xmlpost.argname1: pagename
xmlpost.argvalue1: OpenMarket/Xcelerate/Actions/RemoteContentPost
xmlpost.argname2: AssetType
xmlpost.argvalue2: PAttributes
Notice that this is the internal name of the asset
type. The external name of this asset type is
Product Attribute.

xmlpost.argname3: authusername
xmlpost.argvalue3: user_editor
xmlpost.argname4: authpassword
xmlpost.argvalue4: user
xmlpost.argname5: inifile
xmlpost.argvalue5: futuretense.ini
xmlpost.argname6: startmenu
xmlpost.argvalue6: New Product Attribute

xmlpost.success: Success
xmlpost.failure: Error
xmlpost.logfile: attributespostlog.txt

xmlpost.deletefile: y

tag:

<externalcolumn>

property:

postexternalcolumn

Foreign attributes only.

The name of the column in the foreign table that holds the
values for this attribute.

tag:

<externaltable>

property:

postexternaltable

Foreign attributes only.

The name of the foreign table that contains the columns
identified by externalid and external column.

tag:

<publication>

property:

postpublication

Optional.

The names of all the sites that can use this attribute.

Flex attribute tag and
property

Description
Content Server 7.0 Developer’s Guide

Chapter 19. Importing Flex Assets

Importing the Structural Asset Types in the Flex Model
400
postpublication: y
postname: y
postattributetype: y
postdescription: y
postvaluestyle: y
posttype: y
postediting: y
poststorage: y
postenginename: y
poststatus: y
postassettypename: y
postupload: y
postexternalid: y
postexternalcolumn: y
postexternaltable: y
postcharsetname: y

Sample Source File: Attribute
This is a sample source file for importing a product attribute named footnotes for the
GE Lighting sample site. It works with the preceding sample configuration file.

<document>
<publication>GE Lighting</publication>
<name>footnotes</name>
<description>Footnotes</description>
<valuestyle>S</valuestyle>
<type>URL</type>
<editing>L</editing>
<storage>L</storage>
</document>

Note

Remember that all the dependencies and restrictions concerning the data type of a
flex attribute apply whether you are creating an attribute through the Content
Server interface (the New or Edit flex attribute forms) or through XMLPost. For
information, read “Step 3: Create Flex Attributes” on page 329.
Content Server 7.0 Developer’s Guide

Chapter 19. Importing Flex Assets

Importing the Structural Asset Types in the Flex Model
401
Flex Definitions and Flex Parent Definitions
The flex definition and flex parent definition asset types are very similar and you code
their configuration and source files in nearly the same way. They require several of the
same tags in their source files and the same properties in their configuration files. Each has
one additional property/tag.

The source file tags and configuration file properties for flex definitions and flex parent
definitions are listed in the following table. Note that they are case-sensitive.

Flex definition and flex parent
definition tag and property

Description

tag:

<internalname>

property:

postinternalname

Required.

The name of the asset; this is a required
value for all asset types. Flex definition
and flex parent definition names are
limited to 64 characters and they cannot
contain spaces.

tag:

<internaldescription>

property:

postinternaldescription

Optional.

The description of the use or function of
the asset.

tag:

<renderid>

property:

postrenderid

Optional. For flex definitions only.

The ID of the Template asset that is to be
assigned to all the flex assets that are
created with this flex definition.

tag:

<parentselectstyle>

property:

postparentselectstyle

Optional. For flex parent definitions only.

Defines how flex parents are to be
selected when a user creates a flex asset
using the definition.

This property/tag represents the Parent
Select Style field in the New and Edit
parent definition forms.

When using the tag in the source file, the
options are treepick and
selectboxes.

The next four tags and properties perform the same function as the buttons and fields in
the Product Parent Definition section on the New and Edit forms for parent definitions
and flex definitions. See “Step 4: (Optional) Create Flex Filter Assets” on page 333 and
“Step 5: Create Flex Definition Assets” on page 337.

tag:

<OptionalSingleParentList>

property:

postOptionalSingleParentList

Use this tag to specify any single optional
parent definition.
Content Server 7.0 Developer’s Guide

Chapter 19. Importing Flex Assets

Importing the Structural Asset Types in the Flex Model
402
A configuration file must include all the properties that could be used by any one of the
assets of the type that the configuration file works with. The individual source files
include only the tags that are needed to define those individual assets.

tag:

<RequiredSingleParentList>

property:

postRequiredSingleParentList

Use this tag to specify any single required
parent definition.

tag:

<RequiredMultipleParentList>

property:

postRequiredMultipleParentList

Use this tag to specify more than one
required parent definitions.

tag:

<OptionalMultipleParentList>

property:

postOptionalMultipleParentList

Use this tag to specify more than one
optional parent definition.

The next three tags and properties perform the same functions as the buttons and fields in
the Attributes section on the New and Edit forms for flex definitions and flex parent
definitions. See “Step 4: (Optional) Create Flex Filter Assets” on page 333 and “Step 5:
Create Flex Definition Assets” on page 337.

tag:

<RequiredAttrList>

property:

postRequiredAttrList

The list of attributes that are required for
the flex parents or the flex assets that use
the definition.

tag:

<OptionalAttrList>

property:

postOptionalAttrList

The list of attributes that are optional for
the flex parents or the flex assets that use
the definition.

tag:

<OrderedAttrList>

property:

postOrderedAttrList

The order in which all attributes, be they
required or optional, should appear in the
“New,” “Edit,” “Inspect,” and similar
forms.

If you use this tag, it replaces the other
attribute tags. The example source file in
this section shows an example of how to
use this tag in a source file.

Flex definition and flex parent
definition tag and property

Description
Content Server 7.0 Developer’s Guide

Chapter 19. Importing Flex Assets

Importing the Structural Asset Types in the Flex Model
403
Sample Configuration File: Flex Definition
The following example is a configuration file used to import product definitions for the
GE Lighting sample site. It works with the sample source file immediately following this
example.

xmlpost.url: http://izod19/servlet/ContentServer
xmlpost.numargs: 6
xmlpost.argname1: pagename
xmlpost.argvalue1: OpenMarket/Xcelerate/Actions/RemoteContentPost
xmlpost.argname2: AssetType
xmlpost.argvalue2: ProductTmpls
Notice that this is the internal name of the asset type.
The external name of this asset type is
Product Definition.

xmlpost.argname3: authusername
xmlpost.argvalue3: user_editor
xmlpost.argname4: authpassword
xmlpost.argvalue4: user
xmlpost.argname5: inifile
xmlpost.argvalue5: futuretense.ini
xmlpost.argname6: startmenu
xmlpost.argvalue6: New Product Definition

xmlpost.success: Success
xmlpost.failure: Error
xmlpost.logfile: productdefpostlog.txt
xmlpost.deletefile: y

postpublication: y
postinternalname: y
postinternaldescription: y

postparentselectstyle: y

postOptionalSingleParentList: y
postRequiredSingleParentList: y
postRequiredMultipleParentList: y
postOptionalMultipleParentList: y

postRequiredAttrList: y
postOptionalAttrList: y
postOrderedAttrList: y

postrenderid: y
Content Server 7.0 Developer’s Guide

Chapter 19. Importing Flex Assets

Importing the Structural Asset Types in the Flex Model
404
Sample Source File: Flex Definition
The following source file, lighting.xml, is the source for a product definition named
Lighting for the GE Lighting sample site. It works with the preceding sample
configuration file.

<document>
<publication>GE Lighting</publication>
<internalname>Lighting</internalname>
<internaldescription>Generic Lighting Template</
internaldescription>
<RequiredAttrList>sku</RequiredAttrList>
<OptionalAttrList>
productdesc;caseqty;bulbshape;bulbsize;basetype;
colortemp;meanlength;lightcenterlength;reducedwattage;beamspread;
fixturetype;ballasttype;colorrenderingindex;minstarttemp;powerfact
or;
totalharmonicdist;spreadbeam10h;spreadbeam10v;spreadbeam50h;
spreadbeam50v;halogen;operatingposition;filamenttype;bulbimage;
baseimage;filamentimage;footnotes;price;life;voltage;wattage
</OptionalAttrList>
<parentselectstyle>treepick</parentselectstyle>
<OptionalMultipleParentList>SubCategory</
OptionalMultipleParentList>
</document>

Examine the list of attributes, above. When you include multiple values in a tag, separate
them from each other with a semicolon (;).

Note that while GE Lighting uses the optional/multiple parent model, there are these other
possible configurations:

<OptionalSingleParentList>flexparentdefinition
</OptionalSingleParentList>
<RequiredSingleParentList>flexparentdefinition
</RequiredSingleParentList>
<RequiredMultipleParentList>flexparentdefinition
</RequiredMultipleParentList>

Supplying a List of Ordered Attributes
If you want to use the <OrderedAttrList> tag because the attributes need to be
displayed in a specific order, do not also include the <RequiredAttrList> and
<OptionalAttrList> tags. In the string contained in the <OrderedAttrList> tag,
specify which attributes are required and which are optional, as follows:

• For required attributes, precede the attribute name with R (required)

• For optional attributes, precede the attribute name with or O (optional)

• Be sure to list the attributes in the desired order.

• Be sure to use a semicolon (;) to separate the values.

For example:

<OrderedAttrList>Rsku;Oproductdesc;Ocaseqty;Obulbshape;
Obulbsize;Obasetype;Ocolortemp;Omeanlength;Olightcenterlength;
Oreducedwattage;<OrderedAttrList>
Content Server 7.0 Developer’s Guide

Chapter 19. Importing Flex Assets

Importing the Structural Asset Types in the Flex Model
405
Flex Parents
You can use XMLPost to import flex parent assets in two ways:

• Individually. You code a separate XMLPost source file for each flex parent and an
XMLPost configuration file that identifies the asset type and the pagename for the
standard RemoteContentPost posting element. If you plan to use the BulkLoader
utility, you must first import the flex parent assets with XMLPost in this way.

• As part of the flex family tree for a flex asset. If you are using XMLPost to import
your flex assets (rather than the BulkLoader), you can combine the flex parents with
the flex assets and import the flex parents as a part of a flex family tree, within the
context of a specific flex asset. You code a separate XMLPost source file for each flex
asset and identify all the parents for that flex asset in that source file. XMLPost then
creates the variables for one flex asset and multiple flex parents (if they do not yet
exist) when it parses the source file.

This section describes the source and configuration file for importing them individually.
For information about importing them with the flex assets, see “Importing Flex Assets
with XMLPost” on page 406.

Sample Configuration File: Individual Flex Parent
The following example is a configuration file used to import product parents for the GE
Lighting sample site. It works with the sample source file immediately following this
example.

xmlpost.xmlfilenamefilter: .xml

xmlpost.url: http://izod19/servlet/ContentServer
xmlpost.numargs: 6
xmlpost.argname1: pagename
xmlpost.argvalue1: OpenMarket/Xcelerate/Actions/RemoteContentPost
xmlpost.argname2: AssetType
xmlpost.argvalue2: ProductGroups
notice that you use the internal name of the asset type

xmlpost.argname3: authusername
xmlpost.argvalue3: user_editor
xmlpost.argname4: authpassword
xmlpost.argvalue4: user
xmlpost.argname5: inifile
xmlpost.argvalue5: futuretense.ini
xmlpost.argname6: startmenu
xmlpost.argvalue6: New Product Parent

xmlpost.success: Success
xmlpost.failure: Error
xmlpost.logfile: productdefpostlog.txt
xmlpost.deletefile: y

postpublication: y
postinternalname: y
postinternaldescription: y
postflexgrouptemplateid: y
Content Server 7.0 Developer’s Guide

Chapter 19. Importing Flex Assets

Importing Flex Assets with XMLPost
406
postfgrouptemplatename: y
postParentList: y
postcat1: y
postcat2: y

Sample Source File: Individual Flex Parent
The following source file creates a product parent (flex parent) named Halogen for the GE
Lighting sample. It works with the preceding sample configuration file.

<document>
<publication>GE Lighting</publication>
<internalname>Halogen</internalname>
<fgrouptemplatename>Category</fgrouptemplatename>
<cat1>Halogen</cat1>
</document>

Remember that when you use the RemoteContentPost posting element, you must
provide one source file for each parent asset.

Importing Flex Assets with XMLPost
Before you can use XMLPost to import flex assets, you must have already imported the
structural asset types (attributes, flex definitions, and flex parent definitions).

There are two posting elements that you can use for flex assets, RemoteContentPost or
addData:

• The addData posting element creates parent assets for the flex asset if they do not yet
exist. For example, if you are not using the BulkLoader utility, you use this posting
element for the initial import of your flex assets.

When you use the addData posting element, the source file must specify the entire
family tree for the flex asset. You need a separate source file for each flex asset, but
you can specify any number of parents for that flex asset in that source file and
XMLPost creates the flex asset and its parents (if they do not yet exist).

• The RemoteContentPost element creates flex assets and sets values for their
parents. Those parents must already exist. For example, if you plan to use BulkLoader
once, just for the initial import and will use XMLPost from then on, you might want to
use this posting element.

When you use RemoteContentPost to import a flex asset, the source file must
specify only the asset’s immediate parents (which requires you to include fewer lines
of code). However, if you need to create a new flex parent for the new flex asset, you
must use the addData posting element and specify the entire family tree in the source
file.
Content Server 7.0 Developer’s Guide

Chapter 19. Importing Flex Assets

Importing Flex Assets with XMLPost
407
Configuration File Properties and Source File Tags for Flex
Assets

As with the structural asset types, you must use the internal name of the flex and flex
parent asset types in your configuration and source files.

However, unlike the structural asset types, you do not need to include an argument for the
asset type in the configuration file. Source files for flex assets have a required tag that
identifies the asset type so you do not have to repeat this information in the configuration
file.

For the addData Posting Element
The following table lists the source file tags and configuration file properties for flex
assets (and their flex parents) when you are using the addData posting element. Note that
they are case-sensitive.

Tag and property Description

tag:

<_ASSET_>

property:

post_ASSET_

Required.

The internal name of the asset type.
For example, the internal asset type
names of the GE Lighting sample site
flex assets are Products,
AArticles, and AImages.

tag:

<_TYPE_>

property:

post_TYPE_

Required.

The name of the flex definition that
this flex asset is using.

tag:

<_ITEMNAME_>

property:

post_ITEMNAME_

Required.

The name of the asset.

tag:

<_ITEMDESCRIPTION_>

property:

post_ITEMDESCRIPTION_

Optional.

The description of the asset.
Content Server 7.0 Developer’s Guide

Chapter 19. Importing Flex Assets

Importing Flex Assets with XMLPost
408
tag:

<_GROUP_parentDefinitionName>

property:

post_GROUP_parentDefinitionName

Optional.

The flex asset’s parents. The
configuration file must include a tag
for each possible parent definition. For
example, if your flex assets could have
parents that use either of two parent
definitions named Division and
Department, the configuration file
needs two properties that define a tag
for each:

post_Group_Department

post_Group_Division

See “Specifying the Parents of a Flex
Asset” on page 414 for more
information about using this tag and
property.

tag:

<_GROUPDESCRIPTIONS_>

property:

post_GROUPDESCRIPTIONS_

Optional.

If the parent that you are designating
is new, you can also include the
description of the parent definition.

tag:

<displaytype>

property:

postdisplaytype

Optional.

The name of the Template asset for the
flex asset.

tag:

<AttributeName>

property:

postAttributeName

Include a property in the configuration
file for each attribute that assets of the
type can have (both required and
optional). The source files then need
to supply a value for each required
attribute and any optional ones that
apply to that asset.

For example, if there were an attribute
named SKU, you would include a
property called postSKU and in the
source files, would include lines of
code like this:

<SKU>123445</SKU>.

Tag and property Description
Content Server 7.0 Developer’s Guide

Chapter 19. Importing Flex Assets

Importing Flex Assets with XMLPost
409
For the RemoteContentPost Posting Element
The following table lists the source file tags and configuration file properties for flex
assets (and their flex parents) when you are using the RemoteContentPost posting
element. Note that they are case-sensitive.

Tag and property Description

tag:

<_DEFINITION_>

property:

post_DEFINITION_

Required.

The name of the flex definition that this flex asset is
using.

(Note that post_TYPE will also work.)

tag:

<_ITEMNAME_>

property:

post_ITEMNAME_

Required.

The name of the asset.

tag:

<_ITEMDESCRIPTION_>

property:

post_ITEMDESCRIPTION_

Optional.

The description of the asset.

tag:

<ParentList>

property:

post_ParentList

Optional.

The flex asset’s immediate parents.

tag:

<template>

property:

posttemplate

Optional.

The name of the Template asset for the flex asset.

(Note that postdisplaytype will also work.)

tag:

<AttributeName>

property:

postAttributeName

Include a property in the configuration file for each
attribute that assets of the type can have (both
required and optional). The source files then need to
supply a value for each required attribute and any
optional ones that apply to that asset.

For example, if there were an attribute named SKU,
you would include a property called postSKU and in
the source files, would include lines of code like this:

<SKU>123445</SKU>.
Content Server 7.0 Developer’s Guide

Chapter 19. Importing Flex Assets

Importing Flex Assets with XMLPost
410
Sample Flex Asset Configuration File for addData
This is a sample configuration file for the product asset type from the GE Lighting sample
site. It invokes the addData posting element and works with the source file example
immediately following this example file.

xmlpost.xmlfilenamefilter: .xml

#xmlpost.proxyhost: Future
#xmlpost.proxyport: 80

xmlpost.url: http://wally9:80/servlet/ContentServer

notice that it uses addData
rather than RemoteContentPost
xmlpost.numargs: 5

xmlpost.argname1: pagename
xmlpost.argvalue1: OpenMarket/Gator/XMLPost/addData

Notice that you do not need to provide
the name of the asset type because that information
is required in the source files for flex assets.

xmlpost.argname2: inifile
xmlpost.argvalue2: futuretense.ini
xmlpost.argname3: authusername
xmlpost.argvalue3: editor
xmlpost.argname4: authpassword
xmlpost.argvalue4: xceleditor
xmlpost.argname5: startmenu
xmlpost.argvalue5: New Product

xmlpost.success: Success
xmlpost.failure: Error
xmlpost.logfile: productdatalog.txt

xmlpost.postdeletefile: y

post_ASSET_: y
post_ITEMNAME_: y
post_TYPE_: y
post_GROUP_Category: y
post_GROUP_SubCategory: y
postpublication: y
postsku: y
postproductdesc: y
postcaseqty: y
postbulbshape: y
postbulbsize: y
postbasetype: y
postcolortemp: y
postmeanlength: y
Content Server 7.0 Developer’s Guide

Chapter 19. Importing Flex Assets

Importing Flex Assets with XMLPost
411
postlightcenterlength: y
postreducedwattage: y
postbeamspread: y
postfixturetype: y
postballasttype: y
postcolorrenderingindex: y
postminstarttemp: y
postpowerfactor: y
posttotalharmonicdist: y
postspreadbeam10h: y
postspreadbeam10v: y
postspreadbeam50h: y
postspreadbeam50v: y
posthalogen: y
postoperatingposition: y
postfilamenttype: y
postbulbimage: y
postbaseimage: y
postfilamentimage: y
postfootnotes: y
postcat1: y
postcat2: y
postprice: y
postvoltage: y
postwattage: y
postlife: y

Configuration File Properties and Attributes of Type Blob
(or URL)
If the asset type has an attribute of type blob (or url), the configuration file needs two
entries for the tag that references the attribute: one to identify the attribute and one to
identify the file name of either a) the file that holds the content for the attribute (an upload
field) or b) the name that you want Content Server to give the file that it creates from text
entered directly into a text field (a text field of type blob or URL).

Attribute of Type Blob (or URL) as an Upload Field
There are no attributes of type blob in the GE Lighting sample site. However, lets say that
there is an attribute of type blob named footnotes. It is an upload field with a Browse
button for finding the file rather than a text field that you enter text in to. Therefore it has
two properties:

• posttag, which in this scenario is postfootnotes: y

• filetag, which in this scenario is filefootnotes: y

When you include a value for this attribute in a source file, you use the following
convention:

<footnotes>FileName.txt</footnotes>

Note that when you are importing an asset that has this kind of field (attribute), the file that
holds the text that you want to store as the attribute value for the flex asset must be located
in the same directory as the source file for the asset.
Content Server 7.0 Developer’s Guide

Chapter 19. Importing Flex Assets

Importing Flex Assets with XMLPost
412
Attribute of Type Blob (or URL) as a Text Field
If the fictitious footnotes attribute is a field that takes text directly rather than a file, the
configuration file requires the following properties:

• postfootnotes: y

• postfootnotes_file: y

Then, when you include a value for the attribute in the source file, you use the following
convention:

<footnotes>lots and lots of text</footnotes>
<footnotes_file>FileNameYouWantUsed.txt</footnotes_file>

Sample Flex Asset Source File for addData
This following source file works with the example flex asset configuration file preceding
this section. This source file creates a lightbulb product named 10004 from the product
definition named Lighting:

<document>

the first three tags are required
<_ASSET_>Products</_ASSET_>
<_ITEMNAME_>10004</_ITEMNAME_>
<_TYPE_>Lighting</_TYPE_>

This tag is required because the publication is
not set in the configuration file
<publication>GE Lighting</publication>

This tag assigns a Template asset to the product
<displaytype>Lighting Detail</displaytype>

The rest of these tags set flex attribute values for the product
<price>5</price>
<sku>10004</sku>
<productdesc>F4T5/CW</productdesc>
<caseqty>24</caseqty>
<bulbshape>T</bulbshape>
<bulbsize>5</bulbsize>
<basetype>Miniature Bipin (G5)</basetype>
<colortemp>4100</colortemp>
<meanlength></meanlength>
<lightcenterlength></lightcenterlength>
<reducedwattage></reducedwattage>
<beamspread></beamspread>
<fixturetype></fixturetype>
<ballasttype></ballasttype>
<colorrenderingindex>60</colorrenderingindex>
<minstarttemp></minstarttemp>
<powerfactor></powerfactor>
<totalharmonicdist></totalharmonicdist>
<spreadbeam10h></spreadbeam10h>
<spreadbeam10v></spreadbeam10v>
Content Server 7.0 Developer’s Guide

Chapter 19. Importing Flex Assets

Importing Flex Assets with XMLPost
413
<spreadbeam50h></spreadbeam50h>
<spreadbeam50v></spreadbeam50v>
<halogen></halogen>
<operatingposition></operatingposition>
<filamenttype></filamenttype>
<bulbimage>BLB-260.gif</bulbimage>
<baseimage>BLB-250.gif</baseimage>
<filamentimage></filamentimage>
<footnotes>
</footnotes>
<life>6000</life>
<voltage></voltage>
<wattage>4</wattage>
<cat1>Fluorescent</cat1>
<cat2>Preheat Lamps</cat2>

<!-- GROUP tags that specify the parents. Remember that you have
to
specify the entire family tree for the flex asset when using the
addData posting element-->

<_GROUP_Category>Fluorescent</_GROUP_Category>
<_GROUP_SubCategory>Preheat Lamps</_GROUP_SubCategory>
</document>

The preceding source file set the product’s parent to Preheat Lamps and the parent of
Preheat Lamps to Fluorescent.

Handling Special Characters
XMLPost uses the HTTP POST protocol, which means that it sends data in an HTTP
stream. Therefore, certain characters are considered to be special characters and must be
encoded because they are included in URLs.

If your source file includes attribute values that contains any of the special characters
listed in the following table, be sure to replace all instances of that character with its
corresponding URL encoding sequence, found in the Values for Special Characters section
of this guide.

Flex Assets and Their Parents
The GROUP tags specify the parents in the family tree. When XMLPost uses the addData
posting element and parses the GROUP section of the source file, it does the following:

1. Determines which parent definitions are legal for an asset using this flex definition.

2. For each legal parent definition, it verifies whether the source file specifies a parent of
that definition:

- If yes, it sets the parent and if the parent does not yet exist, it creates the parent.
- If no, it does not set the parent. However, if a parent of that definition is required,

it returns an error.
Content Server 7.0 Developer’s Guide

Chapter 19. Importing Flex Assets

Importing Flex Assets with XMLPost
414
Specifying the Parents of a Flex Asset
To specify the parents of a flex asset, you provide the name of the parents nested in the
<_GROUP_parentDefinitionName> tag. For example:

<_GROUP_subcategory>Blacklights</_GROUP_subcategory>

Where subcategory is the name of the parent definition for the Blacklights parent
(product parent).

Remember that you must specify the entire family tree for the flex asset. In the GE
Lighting sample site, a product asset has a parent and a grandparent. In addition to
specifying the parent for the lightbulb (Blacklight), you need to specify the grandparent.
For example:

<_GROUP_subcategory>Blacklights</_GROUP_subcategory>

<_GROUP_category>Fluorescent</_GROUP_category>

Setting Attribute Values for Parents
How does XMLPost know which parent the attribute values belong to? It does not. If an
attribute can belong to more than one parent, you must specify which parent it belongs to.
For example, let’s say that the bulbshape attribute is assigned to parents rather than
products. In this case, you would include a line of code such as this:

<bulbshape>Halogen=T</bulbshape>

Setting Multiple Values in a Flex Source File
All of the tags that configure parents and the tags that specify attributes (as long as the
attribute is configured to accept multiple values) can handle multiple values. Those tags
are as follows:

• _GROUP_parentDefinitionName

• _GROUPDESCRIPTIONS_

• the attribute tags

When you have multiple parents from the same definition for a flex asset, you provide all
of the names of the parents in the same _GROUP_parentDefinitionName tag and you
use a semicolon (;) to separate the parent names.

For example:

<_GROUP_Cateogry>Incandescent;Halogen</_GROUP_Category>

When XMLPost imports this asset, it sets its parents as Incandescent and Halogen, which
are both of the Category parent definition. If Incandescent and Halogen do not exist yet,
XMLPost creates them.

You use a similar syntax when you want to set multiple attribute values for the multiple
parents. Once again, let’s say that the Category definition requires that parents of that
definition have a value for the bulbshape attribute. You can set the value of the bulbshape
attribute for both of the parents that were specified by the <_GROUP_Category> tag as
follows:

<bulbshape>Incandescent=E;K:Halogen=T</bulbshape>

Note the following about this syntax:

• You use parentName=attributeValue pairs to set the attribute value
(Halogen=T).
Content Server 7.0 Developer’s Guide

Chapter 19. Importing Flex Assets

Importing Flex Assets with XMLPost
415
• You use a colon to separate the parents from each other
(Incandescent=S:Halogen=T).

• You use a semicolon to separate the attribute values for a parent when that parent has
more than one value for the attribute (Incandescent=E;K:Halogen=T).

And, as mentioned, you can specify descriptions for the parents that you identify in the
same tag, too. For example:

<_GROUPDESCRIPTIONS>
Incandescent=From Detroit:Halogen=From Chicago
</_GROUPDESCRIPTIONS>

Sample Flex Asset Configuration File for RemoteContentPost
This is a sample configuration file for the product asset type from the GE Lighting sample
site. It works with the source file example immediately following this example file.

xmlpost.xmlfilenamefilter: .xml

#xmlpost.proxyhost: Future
#xmlpost.proxyport: 80

xmlpost.url: http://wally9:80/servlet/ContentServer
xmlpost.numargs: 5

xmlpost.argname1: pagename
xmlpost.argvalue1: OpenMarket/Xcelerate/Actions/RemoteContentPost

Notice that you do not need to provide
the name of the asset type because that information
is required in the source files for flex assets.

xmlpost.argname2: inifile
xmlpost.argvalue2: futuretense.ini
xmlpost.argname3: authusername
xmlpost.argvalue3: editor
xmlpost.argname4: authpassword
xmlpost.argvalue4: xceleditor
xmlpost.argname5: startmenu
xmlpost.argvalue5: New Product

xmlpost.success: Success
xmlpost.failure: Error
xmlpost.logfile: productdatalog.txt

xmlpost.postdeletefile: y

postpublication: y

post_ASSET_: y
post_ITEMNAME_: y
post_DEFINITION_: y
posttemplate: y
Content Server 7.0 Developer’s Guide

Chapter 19. Importing Flex Assets

Importing Flex Assets with XMLPost
416
postsku: y
postproductdesc: y
postcaseqty: y
postbulbshape: y
postbulbsize: y
postbasetype: y
postcolortemp: y
postmeanlength: y
postlightcenterlength: y
postreducedwattage: y
postbeamspread: y
postfixturetype: y
postballasttype: y
postcolorrenderingindex: y
postminstarttemp: y
postpowerfactor: y
posttotalharmonicdist: y
postspreadbeam10h: y
postspreadbeam10v: y
postspreadbeam50h: y
postspreadbeam50v: y
posthalogen: y
postoperatingposition: y
postfilamenttype: y
postbulbimage: y
postbaseimage: y
postfilamentimage: y
postfootnotes: y
postcat1: y
postcat2: y
postprice: y
postvoltage: y
postwattage: y
postlife: y

postParentList: y

Sample Flex Asset Source File for RemoteContentPost
This following source file works with the example configuration file immediately
preceding this section. This source file creates a lightbulb product named 10004 from the
product definition named Lighting:

<document>

the first three tags are required
<_ASSET_>Products</_ASSET_>
<_ITEMNAME_>10004</_ITEMNAME_>
<_DEFINITION_>Lighting</_DEFINITION_>

This tag is required because the publication is
not set in the configuration file
<publication>GE Lighting</publication>
Content Server 7.0 Developer’s Guide

Chapter 19. Importing Flex Assets

Importing Flex Assets with XMLPost
417
This tag assigns a Template asset to the product
<template>Lighting_Detail</template>

The rest of these tags set flex attribute values for the product
<price>5</price>
<sku>10004</sku>
<productdesc>F4T5/CW</productdesc>
<caseqty>24</caseqty>
<bulbshape>T</bulbshape>
<bulbsize>5</bulbsize>
<basetype>Miniature Bipin (G5)</basetype>
<colortemp>4100</colortemp>
<colorrenderingindex>60</colorrenderingindex>
<bulbimage>BLB-260.gif</bulbimage>
<baseimage>BLB-250.gif</baseimage>
<filamentimage></filamentimage>
<life>6000</life>
<voltage></voltage>
<wattage>4</wattage>
<cat1>Fluorescent</cat1>
<cat2>Preheat Lamps</cat2>

this tag sets the immediate parents only
<ParentList>Preheat Lamps</ParentList>

</document>

The preceding source file sets several attribute values for the product and sets its
immediate parent to Preheat Lamps. This parent must already exist.
Content Server 7.0 Developer’s Guide

Chapter 19. Importing Flex Assets

Editing Flex Assets with XMLPost
418
Editing Flex Assets with XMLPost
You can edit the following information for flex assets and flex parent assets with
XMLPost:

• The value of an attribute

• The asset’s parents (either the flex asset’s parents or the parent’s parents)

You cannot edit attribute assets, flex definition assets, or flex parent definition assets with
XMLPost.

To edit the attribute value for a flex asset, the source file needs to include only the name of
the asset and the attribute that you want to change.

To edit the attribute value for a flex parent, you must provide the context of a flex asset.
The source file must name the flex asset and can then reference just parent and the parent
attribute that you want to change. But you must specify a flex asset for XMLPost to start
with so that it can work its way through the family tree.

Configuration Files for Editing Flex Assets
There are two differences in the configuration file for editing a flex asset: the pagename
argument and an additional tag and property.

Pagename Argument
The pagename argument must be set to: OpenMarket/Gator/XMLPost/modifyData.

For example:

xmlpost.argname1: pagename
xmlpost.argvalue1: OpenMarket/Gator/XMLPost/modifyData

You invoke XMLPost from the command line as usual, identifying the configuration file
and the source files.

Additional Tag/Property
You can use the following optional tag and property when you are editing a flex asset:

• tag: <_REMOVE_parentDefinitionName>

• property: post_REMOVE_parentDefinitionName

It removes a parent from the flex asset.

Source Files for Editing Flex Assets
The source file for an edited flex asset does not need to include all the information for that
asset—you only need to provide the information that you want to change. Any attributes
that you do not specify are not modified in any way.

Changing the Value of an Attribute
To change the value of an attribute, you specify the new attribute value in the source file.
When XMLPost runs the import, it writes over the old value with the value provided in the
source file.
Content Server 7.0 Developer’s Guide

Chapter 19. Importing Flex Assets

Editing Flex Assets with XMLPost
419
The following sample source file changes two attribute values (bulbshape and bulbsize)
for the GE Lighting product named 10004 that was defined in “Sample Flex Asset Source
File for addData” on page 412.

<document>
<!-- predefined xml tags (required) -->

<_ASSET_>Products</_ASSET_>
<_ITEMNAME_>10004</_ITEMNAME_>
<_TYPE_>Lighting</_TYPE_>

<!-- attribute xml tags -->
<bulbshape>E</bulbshape>
<bulbsize>9</bulbsize>

</document>

Removing an Attribute Value
To remove an attribute value and leave it blank, code a line that names the attribute but
does not specify a value for it.

For example:

<bulbsize></bulbsize>

You can also edit attribute values for parents. Let’s say that the bulbsize attribute is set at
the parent level. If that were the case, the following lines of code would set two parents
and provide a value for bulbsize for each:

<_GROUP_SubCategory>All-Weather Lamps;Appliance Lamps
</GROUP_SubCategory>
<bulbsize>All-Weather Lamps=10:Appliance Lamps=8</bulbsize>

Option 1
This line of code clears the bulbsize for the All-Weather Lamps parent:

<bulbsize>All-Weather Lamps=:Appliance Lamps=8</bulbsize>

Option 2
Alternatively, you could just use this line of code, without repeating the value for
Appliance Lamps:

<bulbsize>All-Weather Lamps=</bulbsize>

Editing Parent Relationships
You can use XMLPost to make the following edits to the parent relationships for a flex
asset:

• Add another parent to the existing parents.

• Change a parent from one parent to another.

The GROUP_parentDefinitionName tag works differently than do the attribute tags.

• When you use an attribute tag, XMLPost writes the new value over the old value.

• When you use a GROUP_parentDefinitionName tag, XMLPost does not overwrite
an old parent with a new parent, even when the parent definition name is the same—it
adds the new parent to the list of parents that the asset has, which may not be what you
want.
Content Server 7.0 Developer’s Guide

Chapter 19. Importing Flex Assets

Deleting Assets with XMLPost
420
To add another parent to the list of existing parents, include the line of code in the source
file. For example:

<_GROUP_SubCategory>Blacklights</_GROUP_SubCategory>

If you want to remove a parent, use the <_REMOVE _> tag. Note that you must be careful
not to remove a required parent unless you are replacing it.

<_REMOVE_Processor>Appliance Lamps</_REMOVE_Processor>

Deleting Assets with XMLPost
If you have CS-Direct Advantage, you can use XMLPost to delete any asset of any type.
There are two requirements:

• Your configuration file must instruct XMLPost to call the deleteData element.

For example:

xmlpost.argname1: pagename
xmlpost.argvalue1: OpenMarket/Gator/XMLPost/deleteData

• There are two required source file tags and configuration file properties:

<_ASSET_>/post_ASSET_ which identifies the asset type of the asset you want to
delete.

<_ITEMNAME>/post_ITEMNAME_ which identifies the asset you want to delete.

When XMLPost uses this posting element, it changes the value in the Status column for
that asset to VO for void. (It does not physically remove it from the database).

Configuration Files for Deleting Assets
Here is an example configuration file:

xmlpost.xmlfilenamefilter: .xml

xmlpost.url: http://izod19/servlet/ContentServer
xmlpost.numargs: 4
xmlpost.argname1: pagename
xmlpost.argvalue1: OpenMarket/Gator/XMLPost/deleteData
xmlpost.argname2: authusername
xmlpost.argvalue2: user_editor
xmlpost.argname3: authpassword
xmlpost.argvalue3: user
xmlpost.argname4: inifile
xmlpost.argvalue4: futuretense.ini

xmlpost.success: Success
xmlpost.failure: Error
xmlpost.logfile: productdefpostlog.txt
xmlpost.deletefile: y

postpublication: y
post_ASSET_: y
post_ITEMNAME_: y

You invoke XMLPost from the command line as usual.
Content Server 7.0 Developer’s Guide

Chapter 19. Importing Flex Assets

Deleting Assets with XMLPost
421
Source Files for Deleting Assets
The source files for deleting assets are short and simple. For example:

<document>
<_ASSET_>Products</_ASSET_>
<_ITEMNAME_>Pentium 90</_ITEMNAME_>
<publication>my publication</publication>

</document>

This code instructs XMLPost to delete a product asset named Pentium 90 (it changes the
status of Pentium 90 to VO, for void).
Content Server 7.0 Developer’s Guide

Chapter 19. Importing Flex Assets

Deleting Assets with XMLPost
422
Content Server 7.0 Developer’s Guide

423
Chapter 20

Importing Flex Assets with the BulkLoader
Utility
This chapter describes the BulkLoader utility, which you use to import flex assets during
the during the initial setup of your Content Server system.

It contains the following sections:

• Overview of BulkLoader

• Importing Flex Assets from Flat Tables

• Importing Flex Assets Using a Custom Extraction Mechanism

• Approving Flex Assets with the BulkApprover Utility
Content Server 7.0 Developer’s Guide

Chapter 20. Importing Flex Assets with the BulkLoader Utility

Overview of BulkLoader
424
Overview of BulkLoader
The BulkLoader utility enables you to quickly extract large amounts of flex asset data in a
user-defined way from your own data sources and import that data into the Content Server
database on any of your systems (development, management, testing, or delivery).

The extraction mechanism is abstracted away using a Java interface that customers can
implement. BulkLoader invokes methods on this interface to extract input data from your
data sources. For backward functional and data compatibility, Content Server also
includes an implementation of this Java interface so that BulkLoader will still be able to
extract data from an external JDBC-compliant data source.

BulkLoader Features
Features in BulkLoader include the following:

• Support for a user-defined extraction mechanism, using a Java API. Users can provide
a custom implementation of this extraction interface or use the built-in support for
extracting from a JDBC data source.

• Support for inserts, voids, and updates of flex asset and group data.

• Support for incremental inserts, voids and updates.

• Performance improvements for higher throughput, using concurrent multi-threaded
import operations while data extraction is in progress.

• Support for chunk (slice) processing of input data.

• Support for importing asset data that belongs to multiple flex families.

• Backward functional and data compatibility. Supports importing asset data from an
external JDBC source.

How BulkLoader Works
The BulkLoader has been redesigned for higher performance, throughput, and scalability.
Instead of reading all input data and then generating output SQL files, BulkLoader reads
input data in chunks. As soon as each chunk is read, it is handed over to an import thread
while the main BulkLoader thread goes back to read the next chunk. The import thread
uses a direct JDBC connection to the Content Server database. In this way, reading and
importing are done in parallel, thereby achieving higher throughput. For scalability, users
can increase the number of BulkLoader import threads if the database machine’s hardware
has additional CPUs and an I/O configuration that supports higher concurrency.

The BulkLoader utility requires a configuration file containing parameters that specify the
number of processing threads, the name of the Java class that implements the data
extraction interface, commit frequency, the starting unique ID to be used as the asset ID,
and more.

The following diagrams show a client-specific implementation and the built-in “out of the
box” implementation supplied by FatWire:
Content Server 7.0 Developer’s Guide

Chapter 20. Importing Flex Assets with the BulkLoader Utility

Overview of BulkLoader
425
Figure 6: Client-specific implementation of BulkLoader

Figure 7: Built-in OOTB (“out of the box”) implementation of BulkLoader

Using the BulkLoader Utility
There are two ways to use the BulkLoader depending on how you supply input data to
import into the Content Server database.

• If you want BulkLoader to import input data from an external JDBC data source, you
provide input data in a flat table or view.

• If you want to provide your own way of supplying input data to the BulkLoader, you
use a Java object that implements the extraction interface, IDataExtract.

Note

For reference, sample BulkLoader code is provided on the Content Server
installation medium, in the “Samples” folder. The same folder contains the
readme.txt file that describes the sample files.

Content Server
Database

BulkLoader
Utility

Client
Extraction

Object

(IDataExtract)

XML
Documents

Legacy
Database

Input Data
Source

Read Data

Feedback

Import Thread 4

Import Thread 1

Import Thread 3

Import Thread 2

Content Server
Database

BulkLoader
Utility

OOTB
Object

(IDataExtract)

Read Data

Feedback

Import Thread 4

Import Thread 1

Import Thread 3

Import Thread 2

Input
Database
Content Server 7.0 Developer’s Guide

Chapter 20. Importing Flex Assets with the BulkLoader Utility

Importing Flex Assets from Flat Tables
426
Importing Flex Assets from Flat Tables
This section describes the general procedure that you use to import flex assets with
BulkLoader, followed by subsequent sections that describe each step in detail. Using this
model, you can import new flex assets and parents, as well as void assets that were
previously imported. This model also supports changing and deleting attribute values for
existing assets.

The Basic Steps
The basic process of importing flex assets with the BulkLoader utility is as follows:

1. Use XMLPost to import the structural assets into the Content Server database on the
management system. The structural flex assets are as follows: attribute editors, flex
attributes, flex parent definitions, flex definitions, and flex parent assets.

2. Write a view or a stored procedure that gives you a view of the source database that
you want to import into the Content Server database as a flat table. This flat table is
your source table.

3. In the same source database, create a mapping table with two columns: one column
that lists the names of the columns in the source file and the other column that lists the
names that are used for those attributes in the Content Server database.

4. Code a configuration file that identifies the source table and the mapping table.

5. Put the configuration file on a system from which you have access to both the Content
Server database on the management system, and to your source database.

6. Stop the application server on the management system.

7. Run the BulkLoader utility. BulkLoader will import the flex asset data and gives the
feedback in a table named bulk_feedback, that has been created at the input data
source.

8. Restart the application server on the management system.

9. Use the BulkApprover utility to approve all of the assets that were loaded

Driver Requirements
The BulkLoader requires JDBC (or Java DataBase Connectivity) drivers, which are not
provided by FatWire Corporation You must obtain JDBC drivers for both the source
database and the destination database, that is, the Content Server database, even if your
Content Server database is MS SQL2000.

If you have a source database that is ODBC-compliant, you can use a JDBC-ODBC
bridge, which is included as part of the Java SDK from Sun. For MS SQL2000, however,
that is not recommended—use JNet Direct, instead.

Note

Because the BulkLoader utility is designed for speed, it does not check for the
existence of the attributes or flex parent definitions or flex definitions. You must
import all of the structural asset types before you run the BulkLoader utility.
Content Server 7.0 Developer’s Guide

Chapter 20. Importing Flex Assets with the BulkLoader Utility

Importing Flex Assets from Flat Tables
427
Requirement for DB2
If you are using the DB2 database with your Content Server system, you must run the
usejdbc2.bat file on the client machine before you can use BulkLoader. You only need
to run the batch file once; then you can run BulkLoader as usual.

Step 1: Use XMLPost to Import Structural Assets
Use XMLPost and the RemoteContentPost posting element to import the structural
assets into the Content Server database on the management system. Import assets of the
following types:

• attribute editors

• flex attributes

• flex parent definitions

• flex definitions

• flex parent assets

For information about this step, see “Importing the Structural Asset Types in the Flex
Model” on page 395.

Step 2: Create the Input Table (Data Source)
You must create input flat tables (data sources) for holding all new asset data and for
holding update data. These are flat tables/views in which each row corresponds to a single
CS-Direct Advantage flex asset item and each column corresponds to a CS-Direct
Advantage flex attribute asset for the BulkLoader utility.

There is no requirement regarding the names of columns in the data source, but you must
supply a separate mapping table, described in “Step 3: Create the Mapping Table” on page
429.

Inserts
The name of the data source table is specified by the inputTable parameter in the
configuration file.

The source table must also include the names of the following four columns, which you
specify in the configuration file with the following properties:

• inputTableTemplateColumn – The name of the column in the source table that
holds the names of the flex definitions.

• inputTableNameColumn – The name of the column in the source table that holds
the names of the flex assets. The name of this column cannot exceed 64 characters.

• inputTableDescriptionColumn – The name of the column in the source table
that holds the description of the flex assets.

• inputTableGroupsColumn – The name of the column in the source table that holds
the names of the parent definitions. Each value in this column can include multiple
flex parent definition names, separated by the multivalueDelimeter character,
which is defined in the configuration file.

Note that you can optionally specify the name of the column that serves as a unique
identifier for each input item, using the following parameter in the configuration file:
inputTableUniqueIdColumn. If there is no value assigned for this parameter,
Content Server 7.0 Developer’s Guide

Chapter 20. Importing Flex Assets with the BulkLoader Utility

Importing Flex Assets from Flat Tables
428
BulkLoader will generate a unique identifier for each input item and store it in a mapping
table (bulkloader_ids) in the Content Server database.

This is an example of a source table (input table):

Based on the column names in this source table, the source table properties in the
corresponding configuration file would be set as follows:

inputTableTemplateColumn=SNSTEMPLATE
inputTableNameColumn=SNSNAME
inputTableDescriptionColumn=SNSDESCRIPTION
inputTableGroupsColumn=SNSGROUPS

Updates
If you want to update attribute data for existing assets, to add new parents or delete
existing parents for existing assets, then you need to use the update parameter.

Use the inputTableForUpdates parameter in the configuration file to specify the name
of the data source table. The source table must also include the names of the following
three columns, which you specify in the configuration file with the following properties:

• inputTableForUpdatesUniqueIdColumn – The name of the column in the
source table that uniquely identifies the flex asset or parent in the Content Server
database.

• inputTableForUpdatesDeleteGroupsColumn – The name of the column in the
source table that specifies a list of parents to be deleted for the current flex asset.

• inputTableForUpdatesAddGroupsColumn – The name of the column in the
source table that specifies a list of parents to be added for the current flex asset.
Content Server 7.0 Developer’s Guide

Chapter 20. Importing Flex Assets with the BulkLoader Utility

Importing Flex Assets from Flat Tables
429
BulkLoader interprets column values as follows when applying updates to the attributes:

• A null value in a specific attribute column indicates that the attribute for the current
flex asset should be deleted. For example, a null value in the deletegroups column
indicates that no parents need to be deleted. A null value in the addgroups column
indicates that no parents need to be added.

• A non-null value indicates that the existing attribute value should be replaced with the
given value. For example, a non-null value in the deletegroups column specifies a
list of parents to be deleted. A non-null value for addgroups denotes the addition of
new parents to a given flex asset.

Step 3: Create the Mapping Table
You must also create a mapping table for the BulkLoader utility, and it must have the
following two columns:

• A column that holds the names of the flex attribute columns in your flat data source

• A column that holds their corresponding names in the Content Server database

The mapping table provides a one-to-one correspondence between these two columns. For
example, your source table might have a column of vendor names with an automatically
generated name like A96714328445 that maps to a CS-Direct Advantage product
attribute asset named, simply, VENDOR_ID.

You include the following configuration file properties for the mapping table:

• inputAttributeMapTable – the name of the mapping table file

• inputAttributeMapTableKeyCol – the name of the column in the mapping table
that lists the attribute names in the source table

• inputAttributeMapTableValCol – the name of the column that lists the
corresponding attribute asset names in the Content Server database
Content Server 7.0 Developer’s Guide

Chapter 20. Importing Flex Assets with the BulkLoader Utility

Importing Flex Assets from Flat Tables
430
The following is an example of a mapping table:

Based on the column names in this source table, the source table properties in the
corresponding configuration file would be set as follows:

inputAttributeMapTable=93ATTR_MAP
inputAttributeMapTableKeyCol=SOURCENAME
inputAttributeMapTableValCol=ATTRIBUTENAME

Step 4: Create the BulkLoader Configuration File
You configure the BulkLoader utility by creating a configuration file for it that has the
properties described in this section. You can name the file anything you want.

You set the properties in the file according to the following syntax:

property=value

Note

All property names and values in the configuration file are case-sensitive.
Content Server 7.0 Developer’s Guide

Chapter 20. Importing Flex Assets with the BulkLoader Utility

Importing Flex Assets from Flat Tables
431
The following table describes properties in a BulkLoader configuration file:

Property Name Required/
Optional

Comments

maxThreads Required The maximum number of concurrent
processing threads. This can be the number
of database connections to the Content
Server database server. Use as many
threads as the number of CPUs on the
database host. For a single CPU database
host, set it to 2.

Example: 4

dataSliceSize Required Number of items retrieved in one read
request; this number will also be processed
by a single processing thread.

Example: 2000

dataExtractionImplClass Required User-specific Implementation class for
data extraction API. Needs a constructor
with (String configFilename) signature.
The one mentioned here is a reference
implementation class for backward
compatibility. Data in flat tables.

Default value (“out of the box”):
com.openmarket.gatorbulk.DataEx
tractImp

initId Required Starting Content Server ID used the very
first time BulkLoader operates;
subsequently will use the value from
idSyncFile.

Example: 800000000000

idSyncFile Required Next available Content Server ID is saved
in this file; updated during a BulkLoader
session

Example:
C:\FutureTense\BulkLoaderId.txt

idPoolSize Required Each time BulkLoader needs to generate
Content server IDs, it collects this many
IDs and caches in memory. A good
estimate is (number of assets * average
number of attributes *2).

Example: 1000

commitFrequency Required Number of flex asset groups to be part of a
database transaction.

Example: 100
Content Server 7.0 Developer’s Guide

Chapter 20. Importing Flex Assets with the BulkLoader Utility

Importing Flex Assets from Flat Tables
432
outputJdbcDriver Required The name of the JDBC driver class to
access the Content Server database. The
value here reflects the Oracle 9.0 driver.

Example:
oracle.jdbc.driver.OracleDriver

outputJdbcURL Required The JDBC URL. The following example
value is a typical type2 oracle JDBC driver
URL:

Jdbc:oracle:oci8:@foo

outputJdbcUsername Required Content Server database user name

outputJdbcPassword Required Content Server database user password

inputTable Required Name of the flat, input table from which
new asset data is inserted

inputAttributeMapTable Required Name of the mapping table that lists the
source table columns and the
corresponding attribute names.

inputAttributeMapTableKeyCol Required The name of the column in the mapping
table that lists the source table column
names.

For example:

inputAttributeMapTableKeyCol=SO
URCENAME

inputAttributeMapTableValCol Required The name of the column in the mapping
table that lists the corresponding attribute
names.

For example:

inputAttributeMapTableValCol=ATTRIB
UTENAME

inputTableDescriptionColumn Required The name of the column in the source table
that contains the descriptions of the flex
assets.

For example:

inputTableDescriptionColumn=SNSDESC
RIPTION

inputTableGroupsColumn Required Name of the column in the source table
that contains the names of parents.

Each value can include several parents,
separated by the multivalueDelimeter
character, which is defined in the
configuration file.

For example:

inputTableGroupsColumn=SNSGROUP

Property Name Required/
Optional

Comments
Content Server 7.0 Developer’s Guide

Chapter 20. Importing Flex Assets with the BulkLoader Utility

Importing Flex Assets from Flat Tables
433
inputTableNameColumn Required The name of the column in the source table
that contains the name of the product (or
advanced article or advanced image) for
each row.

For example:

inputTableNameColumn=SNSNAME

inputTableTemplateColumn Required The name of the column in the source table
that contains the flex definitions.

For example:

inputTableTemplateColumn=SNSTEM
PLATE

createdby Required The user name that you want to be entered
in the createdby field for your flex
assets.

For example:

createdby=editor

initId Required The seed value for the first asset ID of the
first flex asset that the BulkLoader utility
imports. It starts with this value,
incrementing for each asset ID that it
creates.

For more information, see ““Setting the
initID Parameter” on page 435.

multivalueDelimeter Required The delimiter that separates multiple
attribute values. The default character is
the semicolon (;).

For example:

multivalueDelimiter=;

siteName Required The name of the site. All products will
behave as if they were created under this
site.

For example:

siteName=GE Lighting

status Required The status code for all imported flex assets.
You should set this to PL for imported.

For example:

status=PL

tableProducts Required Name of the flex asset type as defined in
the Content server database.

Property Name Required/
Optional

Comments
Content Server 7.0 Developer’s Guide

Chapter 20. Importing Flex Assets with the BulkLoader Utility

Importing Flex Assets from Flat Tables
434
inputTableUniqueIdColumn Required Name of the column in the source table
that serves as a unique identifier when
importing a new flex asset. This will be
used for any subsequent updates and void
operations.

Leave this value empty, if you want the
BulkLoader to generate unique identifiers
for you

targetName Required Name of the publish target, as defined in
Content Server

renderTemplate Optional Name of the template used for rendering
flex assets - deprecated

inputFeedbackTable Required Name of the table that BulkLoader creates
and uses for recording the processing
feedback for every input item that was
processed. Note that this table is created in
the input data source.

inputTableForUpdates Optional Needed only if an update action is
specified when running the BulkLoader
utility. Otherwise, this can be an empty
value. This is the name of the source table
that contains attributes and parents that
need updates.

inputTableForUpdatesUniqueId

Column
Optional Needed only if an update action is

specified when running the BulkLoader
utility. This is the name of the column in
the source table that specifies a unique
identifier for the flex asset.

inputTableForUpdatesDeleteGr

oupsColumn
Optional Needed only if update action is specified

and you have one or more flex assets that
need one or more parents to be deleted.

This is the name of the column in the
source table that specifies the list of parents
to be deleted.

inputTableForUpdatesAddGroup

sColumn
Optional Needed only if an update action is

specified and you have one or more flex
assets that need one or more parents to be
added. This is the name of the column in
the source table that specifies a list of
parents to be added.

inputLimitRows Optional Needed only for testing. Limits the number
of input items processed for each action
(insert, void, or update).

updatedby Optional The user name that you want to be entered
in the createdby field for your flex
assets. For example: updateby=editor

Property Name Required/
Optional

Comments
Content Server 7.0 Developer’s Guide

Chapter 20. Importing Flex Assets with the BulkLoader Utility

Importing Flex Assets from Flat Tables
435
Setting the initID Parameter
The initID parameter is the seed value that the BulkLoader starts at and increments from
when creating a unique asset ID for each asset. You must choose a seed value number that
allows the BulkLoader to create a contiguous block of ID numbers that cannot cause ID
conflicts with existing (or future) asset ID numbers that are generated by Content Server.

Currently, Content Server starts at 1 trillion for the asset IDs that it creates. To be sure that
you won’t have conflicts, select a number low enough that when the BulkLoader utility is
done, the highest ID number is under 900,000,000,000.

The BulkLoader creates one asset for each row/column value in the data source table.
Each output table row requires its own unique asset ID.

Use these guidelines to determine the approximate number of asset IDs that are created by
the BulkLoader utility:

• Five rows for each flex asset, plus

• Two rows per attribute for each flex asset

For example, if your data source table contains the following:

• 10,000 product assets

• 20 attributes per product (as determined by the product definition)

• 10 inherited attributes per product (as determined by the product parent definitions)

Then you need to allow for the following number of IDs:

(5 x 10,000) + (2 x 30 x 10,000) = 50,000 + 600,000 = 650,000 asset IDs

If your initID value is 800,000,000,000, then the BulkLoader creates ID numbers
ranging from 800,000,000,000 to approximately 800,000,650,000.

Example Configuration File
The following is an example of the BulkLoader configuration file that you could use with
the GE Lighting sample site.

New BulkLoader configuration for backward compatibility
#
input datasource configuration
inputJdbcDriver=sun.jdbc.odbc.JdbcOdbcDriver
inputJdbcURL=jdbc:odbc:access-db-conn
inputJdbcUsername=
inputJdbcPassword=
#
Source tables
#
inputTable=PRD_FLAT_50000

updatedstatus Optional The status code for all updated flex assets.
This must be set to ED.

For example: updatestatus=ED

Property Name Required/
Optional

Comments
Content Server 7.0 Developer’s Guide

Chapter 20. Importing Flex Assets with the BulkLoader Utility

Importing Flex Assets from Flat Tables
436
inputAttributeMapTable=PRD_FLAT_ATTRIBUTE_MAP
inputAttributeMapTableKeyCol=SOURCENAME
inputAttributeMapTableValCol=ATTRIBUTENAME
#
input column names
#
inputTableTemplateColumn=CCTemplate
inputTableNameColumn=CCName
inputTableDescriptionColumn=CCDescription
inputTableGroupsColumn=CCGroups
#
Content Server database
#
This database is always used for looking up Attributes,
Product Types and Product Group Types.
Data is imported into this database.
#
outputJdbcDriver=oracle.jdbc.driver.OracleDriver
outputJdbcURL=jdbc:oracle:oci8:@foo
outputJdbcUsername=csuser
outputJdbcPassword=csuser
#
Data-specific settings
#
siteName=GE Lighting
targetName=Mirror Publish to burst37
initId=800000000000
createdby=user_designer
status=PL
renderTemplate=CLighting Detail
MAX_ATTRIBUTES=100
multivalueDelimiter=;
commitFrequency=50
#
The following denotes the flex asset type that we are importing.
tableProducts=Products
#
Additional information needed for BulkLoader
maxThreads=2
dataSliceSize 0 means read all input data in one slice.
dataSliceSize=500
dataExtractionImplClass=com.openmarket.gatorbulk.objects.DataExtra
ctImpl
idSyncFile=C:\\FutureTense50\\bulk_uniqueid.dat
idPoolSize=50000
For inserts
inputTableUniqueIdColumn=
inputFeedbackTable=bulk_feedback
For updates
inputTableForUpdates=prod_flat_2_upd
inputTableForUpdatesUniqueIdColumn=input_id
inputTableForUpdatesDeleteGroupsColumn=CCGroups
Content Server 7.0 Developer’s Guide

Chapter 20. Importing Flex Assets with the BulkLoader Utility

Importing Flex Assets from Flat Tables
437
inputTableForUpdatesAddGroupsColumn=
inputLimitRows=1000
##

Step 5: Run the BulkLoader Utility
Before you begin, be sure that you have the appropriate JDBC drivers for both your
source database and your target Content Server database.

Complete the following steps:

1. Put the configuration file on a system from which you have access to both the Content
Server database on the management system, and to your source database.

2. Stop the application server on the management system.

3. Enter the following command, all on a single line, with paths that are appropriate for
your installation:

For UNIX

java -ms16m -mx256m -cp <path to gatorbulk.jar>/gatorbulk.jar:
<path to commons-logging.jar>/commons-logging.jar:

<path to cs-core.jar>/cs-core.jar:
<path to source jdbc driver>/<source_jdbc_driver>:
<path to target jdbc driver>/<target_jdbc driver>: <path

to commons-codec-1.3.jar>/commons-codec-1.3.jar:<path to
commons-httpclient-3.0-rc2.jar>/commons-httpclient-3.0-
rc2.jar:<path to commons-lang-2.1.jar>/commons-lang-2.1.jar
com.openmarket.gatorbulk.objects.BulkLoader
config=<bulkloader_configfile>
action=<insert|void|update|all> validate=<yes|no>

For Windows

java -ms16m -mx256m -cp <path to gatorbulk.jar>\gatorbulk.jar;
<path to commons-logging.jar>\commons-logging.jar;

<path to cs-core.jar>\cs-core.jar;
<path to source jdbc driver>\<source_jdbc_driver>;
<path to target jdbc driver>\<target jdbc driver>;<path

to commons-codec-1.3.jar>/commons-codec-1.3.jar;<path to
commons-httpclient-3.0-rc2.jar>/commons-httpclient-3.0-
rc2.jar;<path to commons-lang-2.1.jar>/commons-lang-2.1.jar
com.openmarket.gatorbulk.objects.BulkLoader
config=<bulkloader_configfile> action=<insert|void|update>
validate=<yes|no>

Note that the action parameter specifies what BulkLoader needs to do: insert, void,
or update. Setting the validate parameter to yes makes BulkLoader do extra
validations during updates and voids. You may also need to increase the memory for
the Java VM, depending on the size of your input data.

4. Examine the screen output to be sure that the BulkLoader utility was able to connect
to the appropriate database.
Content Server 7.0 Developer’s Guide

Chapter 20. Importing Flex Assets with the BulkLoader Utility

Importing Flex Assets Using a Custom Extraction Mechanism
438
Step 6: Review Feedback Information
After the BulkLoader utility completes an operation, review the feedback information in
the bulk_feedback table that is located in your input data source. That table contains
information about all the input items that BulkLoader processed.

After reviewing that information, take any corrective actions that might be necessary. If
you modify any of your input data, you should run BulkLoader again to verify that the
errors were corrected.

Step 7: Approve and Publish the Assets to the Delivery System
Use the BulkApprover utility to approve the assets that you just loaded. For instructions
on how to use BulkApprover, see “Using BulkApprover” on page 450.

Importing Flex Assets Using a Custom Extraction
Mechanism

Sometimes users need alternative mechanisms to provide input asset data to BulkLoader.
In such cases, the data may have to be gathered from multiple types of sources, such as
XML documents, files, and legacy databases. To accomplish that, users can implement
their own mechanism to provide data to BulkLoader, using the Java interface
com.openmarket.bulkloader.interfaces.IDataExtract, which FatWire
provides with Content Server.

A user can implement a Java object supporting IDataExtract and specify the Java
object in the BulkLoader configuration file. BulkLoader will then invoke methods on this
interface to initialize a read request, to repetitively read chunks of input data and then
signal the end of the read request. This interface also has a method that provides import
feedback from the BulkLoader utility, which can be used by the input provider to know the
status of import and know any errors that may occur during import.

There are three Java interfaces that can help users with custom implementations of
IDataExtract:

• IDataExtract – Required for any custom extraction.

• IPopulateDataSlice – Provides data to the BulkLoader utility. A container object
supporting this interface is created by BulkLoader and passed into the client.

• IFeedback – Provides the status of each input item that has been processed by the
BulkLoader. A feedback object that is created and populated by BulkLoader import
thread is passed into the client.

These interfaces are described in the following sections.

Note

When you implement a custom extraction method, you use the same
previously described procedures to run BulkLoader.
Content Server 7.0 Developer’s Guide

Chapter 20. Importing Flex Assets with the BulkLoader Utility

Importing Flex Assets Using a Custom Extraction Mechanism
439
IDataExtract Interface
This interface is required for any custom extraction.

The following is sample code that implements this interface.

com.openmarket.gatorbulk.interfaces.IDataExtract

package com.openmarket.gatorbulk.interfaces;

import java.util.Iterator;

/**
* To be implemented by input data provider.
* Interface for extracting data from an input source
* for BulkLoader.
* BulkLoader loads an object supporting this interface and invokes
* the GetNextInputDataSet() method on this interface repeatedly to
* fetch data in batches.
*/
public interface IDataExtract {

 public final int HAS_DATA = 100;
 public final int NO_DATA = 101;

 public final int SUCCESS = 0;
 public final int ERROR = -1;

 public final int INSERT_ASSETS = 1000;
 public final int VOID_ASSETS = 1010;
 public final int UPDATE_ASSETS = 1020;
 public final int NONE_ASSETS = 1030;

 /**
 *Begin requesting input data; tells the client to
 *start the database query, get a cursor, etc.
 *@param requestType
 IDataExtract.INSERT_ASSETS,IDataExtract.VOID_ASSETS,
 IDataExtract.UPDATE_ASSETS
 *@param sliceOrNot true/false
 * true - if data will be requested in batches
 * false - data will be requested all in one attempt
 *@param sliceSize >0 number of rows to be
 *retrieved in one data set
 *@return none
 *@exception java.lang.Exception
 */
 public void InitRequestInputData(int requestType,
 boolean sliceOrNot, int sliceSize) throws Exception ;

 /**
 *Get a set/slice of input data records.
 *@param dataSlice object to be populated using the
Content Server 7.0 Developer’s Guide

Chapter 20. Importing Flex Assets with the BulkLoader Utility

Importing Flex Assets Using a Custom Extraction Mechanism
440
 *methods from IPopulateDataSlice
 *@return IDataExtract.HAS_DATA when dataSlice has some data,
 * IDataExtract.NO_DATA when there is no data,
 * IDataExtract.ERROR when there is an error
 *@exception java.lang.Exception
 */
 public int GetNextInputDataSet(IPopulateDataSlice dataSlice)
 throws Exception;

 /**
 * Signal the end of extracting data for given request type
 *@param requestType
 IDataExtract.INSERT_ASSETS,IDataExtract.VOID_ASSETS,
 IDataExtract.UPDATE_ASSETS
 *@return none
 *@exception java.lang.Exception
 */
 public void EndRequestInputData(int requestType)
 throws Exception;
 /**
 *Update the client as to what happened to input data
 *processing. Note that this method would be called by multiple
 *threads, with each thread passing its own IFeedback
 *handle. The implementor of this method should write
 *thread-safe code.
 *@param requestType
IDataExtract.InsertAsset,IDataExtract.VoidAsset,IDataExtract.Updat
eAsset
 *@param processingStatus - An object containing processing
 *status for all items in one dataset. The implementor of this
 *interface should invoke the IFeedback interface
 *methods on processingStatus to get status for individual
 *rows. This method will be invoked by multiple BulkLoader
 *threads, so make sure this method is implemented in a
 *thread-safe way.
 *@return none
 *@exception java.lang.Exception
 */
 void UpdateStatus(int requestType, IFeedback
processingStatus) throws Exception;

}

Content Server 7.0 Developer’s Guide

Chapter 20. Importing Flex Assets with the BulkLoader Utility

Importing Flex Assets Using a Custom Extraction Mechanism
441
Implementation Notes for IDataExtract
The Java object implementing IDataExtract needs to have a constructor with a string
parameter. BulkLoader will pass the name of its configuration file to the constructor when
instantiating this object.

The method UpdateStatus(..) is invoked by multiple BulkLoader threads, so the
implementation of this method should be thread-safe.

The following table lists and describes the configuration parameters for the BulkLoader
utility when using custom data extraction method:

Property Name Required/
Optional

Comments

maxThreads Required The maximum number of concurrent
processing threads. This can be the number
of database connections to the Content
Server database server. Use as many
threads as the number of CPUs on the
database host. For a single CPU database
host, set it to 2.

Example: 4

dataSliceSize Required Number of items retrieved in one read
request; this number will also be processed
by a single processing thread.

Example: 2000

dataExtractionImplClass Required User-specific Implementation class for
data extraction API. Needs a constructor
with (String configFilename) signature.
The one mentioned here is a reference
implementation class for backward
compatibility. Data in flat tables.

Default value (“out of the box”):
com.openmarket.gatorbulk.DataEx
tractImp

initId Required Starting Content Server ID used the very
first time BulkLoader operates;
subsequently will use the value from
idSyncFile.

Example: 800000000000

idSyncFile Required Next available Content Server ID is saved
in this file; updated during a BulkLoader
session

Example:
C:\FutureTense\BulkLoaderId.txt
Content Server 7.0 Developer’s Guide

Chapter 20. Importing Flex Assets with the BulkLoader Utility

Importing Flex Assets Using a Custom Extraction Mechanism
442
idPoolSize Required Each time BulkLoader needs to generate
Content server IDs, it collects this many
IDs and caches in memory. A good
estimate is (number of assets * average
number of attributes *2).

Example: 1000

commitFrequency Required Required.

Specifies when "COMMIT" statements will
be inserted into the generated SQL file. A
value of 0 means that "COMMIT" statements
will be inserted every 50 lines (the default);
any positive integer specifies the number
of lines between each "COMMIT" statement.

For example:

commitFrequency=5

(A "COMMIT" statement will be inserted for
every 5 lines of SQL code.)

outputJdbcDriver Required The name of the JDBC driver class to
access the Content Server database. The
value here reflects the Oracle 9.0 driver.

Example:
oracle.jdbc.driver.OracleDriver

outputJdbcURL Required The JDBC URL. The following example
value is a typical type2 oracle JDBC driver
URL:

Jdbc:oracle:oci8:@foo

outputJdbcUsername Required Content Server database user name

outputJdbcPassword Required Content Server database user password

Property Name Required/
Optional

Comments
Content Server 7.0 Developer’s Guide

Chapter 20. Importing Flex Assets with the BulkLoader Utility

Importing Flex Assets Using a Custom Extraction Mechanism
443
IPopulateDataSlice
The following is sample code that implements this interface:

com.openmarket.gatorbulk.interfaces.IPopulateDataSlice

package com.openmarket.gatorbulk.interfaces;

import java.sql.Timestamp;

/**
*To be implemented by FatWire Corporation
*Interface to populate a dataSlice by the client.
*BulkLoader creates an object implementing this interface and then
*hands it over to the client, which uses this interface’s methods
*to populate that object with input data records.
*/
public interface IPopulateDataSlice {

/**

*Creates a new input data object to hold all the data for a
*flex asset and makes it the current object. This method is
*invoked repetitively to populate this object with flex asset
*input data. Each invocation is to be followed by Set..()
*methods and AddAttribute..() methods to supply data for one
*flex asset.
*
*/
public void AddNewRow();
 /**
 *Specify a unique identifier for flex asset input data
 @param id user-specific unique identifier
 *@exception java.lang. Exception thrown if any unique-id

*validation is enabled.
 */
public void SetAssetUniqueId(String id) ;

 /**
 *Specify the name of the site with which the current flex
 *asset is created or to be created under.
 @param sitename name of the site
 */
public void SetSiteName(String sitename) ;
 /**
 *Set the asset type for the flex asset.
 @param flexAssetType asset type as defined in Content Server
system
 */
public void SetFlexAssetType(String flexAssetType) ;
 /**
 *Specify the name of the parent for the current flex asset.
Content Server 7.0 Developer’s Guide

Chapter 20. Importing Flex Assets with the BulkLoader Utility

Importing Flex Assets Using a Custom Extraction Mechanism
444
 *Use this method repeatedly to add a list of parent names.
 @param groupName name of a parent that the current asset

inherits some of its attributes from.
 */
public void AddParentGroup(String groupName) ;
 /**
 *Specify the name of the parent to be deleted for the current
 *flex asset.
 *Use this method repeatedly to add a list of parent names.
 *@param groupName - name of a parent that the current asset

*inherited some of its attributes from.
 */
public void AddParentGroupForDelete(String groupName);

 /**
 *Specify definition asset name for the current flex asset.
 @param definitionAssetName name of the flex definition asset
 */
public void SetDefinitionAssetName(String definitionAssetName)
;
 /**
 *Specify name of the flex asset.
 *@param name - name of the flex asset.Should be unique in
 *a flex asset family
 */
public void SetAssetName(String name) ;
 /**
 *Specify description for the flex asset
 @param description description
 */
public void SetAssetDescripiton(String description) ;
 /**
 *Specify Content Server username with which this flex asset is

being *processed
 @param username Content Server username
 */
public void SetCreatedByUserName(String userName) ;
 /**
 *Set Content Server status code for this asset
 *@param status
 */
public void SetAssetStatus(String status) ;
 /**
 * Set template name
 *@param template Content Server template name
 */
public void SetRenderTemplateName(String template) ;
 /**
 *Specify startMenu for workflow participation
 *@param startMenuName start menu name for this flex asset
 */
public void SetStartMenuName(String startMenuName) ;
Content Server 7.0 Developer’s Guide

Chapter 20. Importing Flex Assets with the BulkLoader Utility

Importing Flex Assets Using a Custom Extraction Mechanism
445
 /**
Content Server *Specify publish approval target name
 *@param targetName approval target name
 */
public void SetApprovalTargetName(String targetName) ;
 /**
 *Add a name/value pair to specify a Content Server attribute

of type ’text’ for the current input object.
 *Call this method more than once, if this is a
 *multi-valued attribute.
 *@param attrName attribute name as defined in the Content

Server
 *database for the flex asset being processed
 *@param value java.lang.String
 */
public void AddAttributeValueString(String attrName, String value)
;
 /**
 *Add a name/value pair to specify a Content Server attribute
of type
 *’date’ for the current input object.
 *Call this method more than once, if this is a
 *multi-valued attribute.
 *@param attrName attribute name as defined in the Content

Server *database for the flex asset being processed
 *@param value java.sql.Timestamp
 */
public void AddAttributeValueDate(String attrName, Timestamp
value) ;
 /**
 *Add a name/value pair to specify an attribute for the current

*input object.
 *Call this method more than once, if this is a multi-valued

*attribute
 *@param attrName attribute name as defined in Content Server

database *for the flex asset being processed
 *@param value java.lang.Double
 */
public void AddAttributeValueDouble(String attrName, Double
value) ;
 /**
 *Add a name/value pair to specify a Content Server attribute

of type *’money’ for the current input object
 *Call this method more than once if this is a
 *multi-valued attribute
 *@param attrName attribute name as defined in Content Server
database
 *for the flex asset being processed
 *@param value java.lang.Float
 */
public void AddAttributeValueFloat(String attrName, Float value) ;
 /**
Content Server 7.0 Developer’s Guide

Chapter 20. Importing Flex Assets with the BulkLoader Utility

Importing Flex Assets Using a Custom Extraction Mechanism
446
 *Add a name/value pair to specify a Content Server attribute
of type
 *’int’ for the current input object.
 *Call this method more than once, if this is a
 *multi-valued attribute.
 *@param attrName attribute name as defined in Content Server
 *database for the flex asset being processed
 *@param value java.lang.Integer
 */
public void AddAttributeValueInteger(String attrName, Integer
value) ;
 /**
 *Add a name/value pair to specify any Content Server attribute
for the
 *current input object.
 *Use the datatype-specific methods above instead of this
 *method, as this one is for
 *supporting any other new types in future.
 *Call this method more than once, if this is a
 *multi-valued attribute
 *@param attrName attribute name as defined in the Content
Server
 *database for the flex asset being processed.
 *@param value java.lang.Object
 */
public void AddAttributeValueObject(String attrName, Object
value) ;
}

Content Server 7.0 Developer’s Guide

Chapter 20. Importing Flex Assets with the BulkLoader Utility

Importing Flex Assets Using a Custom Extraction Mechanism
447
IFeedback Interface
The following is sample code that implements this interface:

com.openmarket.gatorbulk.interfaces.IFeedback

package com.openmarket.gatorbulk.interfaces;

import java.util.Iterator;

/**
*To be implemented by FatWire Corporation
*Interface for the BulkLoader client to get the status of
*processing request to insert/void/update flex assets.
*/
public interface IFeedback {
 public final int ERROR=-1;
 public final int SUCCESS=0;
 public final int NOT_PROCESSED=1;
 /**
 *Get a list of keys from input data slice that has
 *been processed
 *@return java.util.Iterator
 */
public Iterator GetInputDataKeyValList();
 /**
 * Get Content Server asset ID for given input identifier
 *@param inputDataKeyVal key value of the unique identifier
 *in the input data record
 *@return Get the associated asset ID from the Content Server
system.
 *null if missing.
 */
public String GetContent ServerAssetId(String inputDataKeyVal);
 /**
 *Get the processing status for the input data record
 *identified by a key
 *@param inputDataKeyVal key value of the unique identifier
 *column in the input data record
 *@return ERROR - processed but failed, SUCCESS - processed
 *successfully, NOT_PROCESSED - unknown item or not part of
 *the processing dataset.
 */
public int GetStatus(String inputDataKeyVal);
 /**
 *Get the associated error message for a given key,
 *unique identifier in input data
 *@param inputDataKeyVal unique identifier for input data
 *@return error message, if GetStatus() returned ERROR
 *or NOT_PROCESSED
 */
public String GetErrorDescription(String inputDataKeyVal);
}

Content Server 7.0 Developer’s Guide

Chapter 20. Importing Flex Assets with the BulkLoader Utility

Approving Flex Assets with the BulkApprover Utility
448
Approving Flex Assets with the BulkApprover
Utility

BulkApprover is a utility that quickly and easily approves large numbers of flex assets that
you have loaded into the system using BulkLoader.

BulkApprover can do the following tasks:

• Notify the approval system of all updates and deletions done during a previous
BulkLoader session.

• Approve all newly loaded flex assets for one or more publishing targets.

• Mark all newly loaded flex assets as “published” for a given publishing target, without
actually publishing them.

Note that only users with the xceladmin role can run BulkApprover.

Creating a Configuration File
Before you run BulkApprover for the first time, you must create a configuration file for
the utility. You can create a separate BulkApprover.ini file for this purpose, or you can
append the BulkApprover configuration information to one of BulkLoader’s .ini files.

The following table lists the configuration information that you must provide:

Parameter Description

bulkApprovalURL

(Required)
The URL on the host server that has the data
imported with BulkLoader.

The correct value is as follows:

http://myServer/cs/
ContentServer?pagename=OpenMarket/
Xcelerate/Actions/BulkApproval

where myServer is the name of the host server.

adminUserName

(Required)
The Content Server username of a user with the
xceladmin role.

adminUserPassword

(Required)
The password of a user with the xceladmin role
password.

approvalTargetList

(Required)
A list of the destinations that the assets are to be
approved for. Separate each destination with the
delimiter that you specify in the
multiValueDelimiter parameter.

For the names of destinations, see the Publish option
on the Admin tab, or the name column of the
pubtarget table.

The syntax is:

name1<multiValueDelimiter>name2
<multiValueDelimiter>name3
Content Server 7.0 Developer’s Guide

Chapter 20. Importing Flex Assets with the BulkLoader Utility

Approving Flex Assets with the BulkApprover Utility
449
Sample BulkApprover.ini File
The following sample shows the proper syntax of the BulkApprover configuration
parameters:

bulkApprovalURL=http://MyServer/cs/
ContentServer?pagename=OpenMarket/Xcelerate/Actions/BulkApproval
adminUserName=admin
adminUserPassword=xceladmin
approvalTargetList=Dynamic;;;;;;testdest
multiValueDelimiter=;;;;;;
assetIdSqlFilter=

multiValueDelimiter
(Required)

A delimiter that you select. You use this delimiter to
separate the approval targets that you specify in the
appovalTargetList parameter.

assetIdSqlFilter

(Optional)
A statement that can be appended to a SQL WHERE
clause in order to filter asset IDs.

For example:

asset_id%20=0

or

asset_id%20!=0

debug

(Optional)
Turns BulkApprover’s debugging on and off.

A value of true turns debugging on. Leave this
parameter blank for no debugging.

Debug messages are written to the file specified in
the output_file parameter of the command line.

assetschunksize

(Optional)
Specifies the number of assets that are approved in a
single transaction. For example, setting this property
to 20 means that the assets get approved in groups of
20.

Setting this property helps prevent session timeouts.

Default value: 25

outputJdbcDriver

(Required)
The name of the JDBC driver class to access the
Content Server database.

Example: oracle.jdbc.driver.OracleDriver

outputJdbcURL

(Required)
The JDBC URL. The following example value is a
typical type 2 oracle JDBC driver URL:

Jdbc:oracle:oci8:@foo

outputJdbcUsername

(Required)
Content Server database user name

outputJdbcPassword

(Required)
Content Server database user password.

Parameter Description
Content Server 7.0 Developer’s Guide

Chapter 20. Importing Flex Assets with the BulkLoader Utility

Approving Flex Assets with the BulkApprover Utility
450
assetsChunkSize=3
debug=true
outputJdbcDriver=oracle.jdbc.driver.OracleDriver
outputJdbcURL=jdbc:oracle:thin:@19zln:1521:MyServer
#outputJdbcUsername=izod10
outputJdbcUsername=ftuser3
outputJdbcPassword=ftuser3

Using BulkApprover
After you have configured and initialized the BulkApprover utility, you can use it to
approve assets that you imported into the database using the BulkLoader utility.

BulkApprover accepts several parameters, which are described in the following table:

Parameter Description

config The name of the file where your BulkApprover
configuration information is located; for example,
BulkApprover.ini.

action The action or actions that you want BulkApprover to
perform. When you want BulkApprover to perform multiple
actions, supply the values in a comma-separated list.

Note that none of these values are required.

Valid values are:

• notify - Notifies the approval system about all updates
and voids processed during a previous BulkLoader
session.

• approve - Tells BulkApprover to approve all of the
assets that it processes for a given publishing
destination(s).

• mark_publish - Marks all of the assets that it processes
as published on a given publishing destination(s), without
actually publishing them.

 You specify the publishing targets using the
approvalTargetList parameter found in the
BulkApprover configuration file.

If you do not want the assets marked as published, do not
include this parameter.

output_file The name of the log file that contains all output from the
server; for example, bulkapprover.txt.
Content Server 7.0 Developer’s Guide

Chapter 20. Importing Flex Assets with the BulkLoader Utility

Approving Flex Assets with the BulkApprover Utility
451
BulkApprover runs from the command line. To run the utility, set the paths as shown in the
following example:

java -ms16m -mx64m -cp Path_to_gatorbulk.jar;
Path_to_commons-logging.jar;Path_to_cs-core.jar;
Path_to_cs.jar;path to commons-codec-1.3.jar;path to commons-
httpclient-3.0-rc2.jar;path to commons-lang-2.1.jar
com.openmarket.gatorbulk.objects.BulkApprover
config=bulkapprove.ini action=notify,approve,mark_publish
output_file=bulkapprover.txt

When you use BulkApprover to approve flex assets that you have loaded using
BulkLoader, you must supply at least the notify or approve value for the action
parameter.
Content Server 7.0 Developer’s Guide

Chapter 20. Importing Flex Assets with the BulkLoader Utility

Approving Flex Assets with the BulkApprover Utility
452
Content Server 7.0 Developer’s Guide

453
Par t 4

Site Development
This part describes how to program your online site to deliver the data (assets) that you
have designed.

It contains the following chapters:

• Chapter 21, “Creating Template, CSElement, and SiteEntry Assets”

• Chapter 22, “Creating Templates to Support Graphical Page Design”

• Chapter 23, “Creating Collection, Query, Stylesheet, and Page Assets”

• Chapter 24, “Coding Elements for Templates and CSElements”

• Chapter 25, “Template Element Examples for Basic Assets”

• Chapter 26, “Configuring Sites for Multilingual Support”

• Chapter 27, “User Management on the Delivery System”

• Chapter 28, “The HelloAssetWorld Sample Site”

• Chapter 29, “The Burlington Financial Sample Site”
Content Server 7.0 Developer’s Guide

454
Content Server 7.0 Developer’s Guide

455
Chapter 21

Creating Template, CSElement, and SiteEntry
Assets
The CSElement, Template, and SiteEntry asset types provide the pagelets and elements
that build your online sites. They are asset representations of page names and elements,
the components that Content Server uses to generate pages.

When you create a CSElement asset, you code an element. When you create a SiteEntry
asset, you name a page. When you create a template, you do both: you code an element
and you name a page.

This chapter describes these three asset types and provides information about how to
create them. Additional information about coding templates and CSElements is included
in Chapter 24, “Coding Elements for Templates and CSElements.”

This chapter contains the following sections:

• What’s New in This Chapter

• Pages, Pagelets, and Elements

• CSElement, Template, and SiteEntry Assets

• Creating Template Assets

• Creating CSElement Assets

• Creating SiteEntry Assets

• Managing Template, CSElement, and SiteEntry Assets

• Using Content Server Explorer to Create and Edit Element Logic
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

What’s New in This Chapter
456
What’s New in This Chapter
This chapter contains updated procedures for creating Template, CSElement, and
SiteEntry assets. In version 6.3, major updates include the following:

• Template assets are classified as typed or typeless depending on whether they apply to
a single asset type or no asset type.

• If you are using SiteLauncher (to replicate sites or share Template and CSElement
assets), Content Server requires element logic to indirectly refer to assets, asset types,
attribute names, and template names. To this end, the CS interface introduces the Map
screen (for example, page 476); the API introduces the render:lookup tag.

Using the Map screen, you assign an alias to each value. You can then hard code the
aliases in the element logic and use the render:lookup tag to retrieve the actual
values from the aliases at runtime.

• The Cache Rules field has been simplified to reduce errors. Template developers can
now choose “cached,” “uncached,” or “advanced.” Selecting Advanced allows
developers to set caching rules individually for Content Server and Satellite Server.

• A new tag, calltemplate, was introduced to invoke templates in a way that
simplifies the template writing process.

• The PageCriteria field has been renamed to Cache Criteria. It accepts the following
reserved parameters:

- c

- cid

- context

- p

- rendermode

- site

- sitepfx

- ft_ss

Values are stored in the pagecriteria column of the SiteCatalog table (in
previous versions they were stored in the resargs columns of the SiteCatalog
table).

• Forms for creating Template and CSElement assets have been subdivided by tabs;
fields are organized by function on the tabs.
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Pages, Pagelets, and Elements
457
Pages, Pagelets, and Elements
In the Content Server context, an online page is the composition of several components
into a viewable, final output. Creating that output is called rendering. (Making either that
output or the content that is to be rendered available to the visitors on your public site is
called publishing.)

Content Server renders pages by executing the code associated with page names. The
name of a page is passed to Content Server from a browser and Content Server invokes the
code associated with that page name. The code is actually a named file, a separate chunk
of code called an element.

The code in your elements identify and then load assets to display in those pages or
pagelets, and pass other page names and element names to Content Server. When Content
Server invokes an element, all of the code in the element is executed. If there are calls to
other elements, those elements are invoked in turn. Then the results—the images, articles,
linksets, and so on, including any HTML tags—are rendered into HTML code (or some
other output format if your system is configured to do so).

Template, CSElement, and SiteEntry assets represent elements and pagelets as follows:

• A CSElement asset is an element.

• A SiteEntry asset is the name of a page or a pagelet.

• A Template asset is both an element and a page or pagelet that renders an asset.

Elements, Pagelets, and Caching
Pages and pagelets are cacheable. They have cache criteria set for them that determines
whether they are cached and, if so, for how long.

Elements do not have cache criteria. When your code calls an element directly by name,
without going through a page name, the output is displayed in the page that called the
element’s name and that output is cached as a part of that page.

If you want to cache the output from an element separately from the output of the page that
called it, you must provide a page name for it and call it by its page name. The code in a
Template asset has a page name by default. To provide a page name for a CSElement
asset, you create a SiteEntry asset and select the CSElement asset for it.

Calling Pages and Elements
To see a Content Server page, you provide a URL that includes the name of the page. A
Content Server URL looks like this:

• For WebLogic, WebSphere, and Sun ONE Application Server:

http://host:port/servlet_context_path/ContentServer?pagename
 =name_of_page

where

host is the name of the server that is hosting the Content Server system,
port is the port number of the web server,
servlet_context_path is the path that the application server gives to the
Content Server web application, and
name_of_page is the page name.
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Pages, Pagelets, and Elements
458
This syntax passes the name of a page to the ContentServer servlet, which then renders the
page.

For example, to see the home page of the Burlington Financial sample site, you enter:

http://127.0.0.1:7001/servlet/ContentServer?pagename=
 BurlingtonFinancial/Page/Home

When you code your elements, you use tags that programmatically call the pagelets and
elements that you want to display in your site. These tags pass the names of pages and
elements to the ContentServer servlet just as a URL entered in a browser passes a page
name to the ContentServer servlet.

To call a page name, use the render:satellitepage (RENDER.SATELLITEPAGE) tag.
For example:

<render:satellitepage pagename=“BurlingtonFinancial/Page/Home”/>

To call an element directly by name, use the render:callelement
(RENDER.CALLELEMENT) tag. For example:

<render:callelement elementname="BurlingtonFinancial/Common/
TextOnlyLink"/>

To call a template by name, use the render:calltemplate tag. For example:

 <render:calltemplate
 site='<%=ics.GetVar("site")%>'
 slotname="Head"
 tid='<%=ics.GetVar("tid")%>'
 c='<%=ics.GetVar("c")%>'
 cid='<%=ics.GetVar("cid")%>'
 tname='<%=ics.GetVar("HeadVar")%>'>
 <render:argument name="p" value='<%=ics.GetVar("p")%>' />
</render:calltemplate>

How does your code call template, CSElement, and SiteEntry assets? As follows:

• Because a SiteEntry is a pagelet, you use the render:satellitepage tag to call
SiteEntry assets from within your element code.

• Because a CSElement is an element, you use the render:callelement tag to call
CSElement assets from within your element code.

• Because a template is both an element and a page name, you can use either of the
above, although typically the render:calltemplate tag is designed to be used for
templates. It encapsulates the functionality of render:satellitepage and
render:calleelement as well as other features, such as parameter validation.

Note

When you use CS-Explorer to examine SiteCatalog and
ElementCatalog entries, they are presented as folders and subfolders that
visually organize the pages and pagelets.

However, these entries are simply rows in a database table—there is no actual
hierarchy. Therefore your code must always call a page entry or an element
entry by its entire name. You cannot use a relative path.
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

CSElement, Template, and SiteEntry Assets
459
Page vs. Pagelet
For the sake of clarity, the following table lists the various terms that include the word
“page” and defines them in the context of their usage in the documentation for Content
Server, the CS modules, and the products:

CSElement, Template, and SiteEntry Assets
As mentioned, CSElement assets are elements, SiteEntry assets are page names, and
Template assets include both.

Because page names and elements are assets, you can manage your code and page names
in the same way you manage your content: you can use workflow, revision tracking,
approval, and preview, as well as the Mirror to Server publishing method to move your
code and page names to the management and delivery systems.

Term Definition

pagelet The results of an HTTP request displayed in a browser as one piece
of a rendered page. It has an associated element file.

A pagelet can be cached in the Content Server and Satellite Server
page caches.

page The results of an HTTP request displayed in a browser window. A
page is created by compiling several parts of pages (pagelets) into
one final, displayed or rendered page. It has an associated element
file.

A page can be cached in the Content Server and Satellite Server
page caches.

page name The complete name of a page or pagelet. For example:
BurlingtonFinancial/Article/Full.

page asset Page assets do not represent page names. They represent logical
containers for content. These containers can be arranged into a tree
structure for navigation of site content.

You create page assets and then place them in position in the “Site
Plan” tree which is visible on the Site tab in the tree in the left pane
of the Content Server interface. You associate other content and site
design assets with them and then you publish them.

Caution

Revision tracking. Never use the revision tracking feature in the CS-Explorer
tool to enable revision tracking directly on the SiteCatalog or
ElementCatalog tables.

Mirror to Server. If templates or CSElements refer to elements that are not
associated with a template or CSElement asset, these elements are not
automatically mirrored to the publishing destination. You must move them
manually with the CatalogMover utility. For this reason, we do not recommend
using elements that are not wrapped by CSElements.
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

CSElement, Template, and SiteEntry Assets
460
When you create a CSElement or Template asset, you create an element. You can code the
element by using the asset form (Template or CSElement, depending on which type of
asset you are creating).

Template Assets
Templates render other assets into pages and pagelets. This in turn creates the look and
feel of your online site. You create a standard set of templates for each asset type—except
CSElement and SiteEntry assets—so that all assets of the same type are formatted in the
same way.

This process allows content providers to preview their content by selecting formatting
code for the content, but not requiring them to code themselves or allowing them to
change your standard, approved code.

When you save a Template asset, Content Server does the following:

• Creates a row in the Template table for the asset.

• Creates an element entry in the ElementCatalog table. The name of the entry uses
the following convention:

AssetTypeName/TemplateName

where:

- AssetTypeName is the asset type formatted by the Template asset and element.

- TemplateName is the name of the template.

• Creates a page entry in the SiteCatalog table. The name of the page entry uses the
following convention:

SiteName/AssetTypeName/TemplateName

where:

- SiteName is the name of the site that the template belongs to, which is the site
that you were working in when you created the template. CS-Direct obtains this
name from the Publication table. (In previous versions of the product, sites
were called “publications.”)

- AssetTypeName is the asset type formatted by the Template asset and element

- TemplateName is the name of the template.

Note

Elements for Template assets and CSElements can be coded in CS-Explorer.
However, the procedure is not recommended for reasons dealing mostly with
compositional dependencies and updates to the cache. Developers who prefer to
use CS-Explorer must follow the steps in “Using Content Server Explorer to
Create and Edit Element Logic” on page 502 in order to ensure the validity of the
Template or CSElement assets.

Note

Do not change the name of the page entry that CS-Direct creates.
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

CSElement, Template, and SiteEntry Assets
461
• Creates new rows in other tables that support the operation of the Template asset. The
tables start with the name: Template_

• Creates a new row in the AssetPublication table to associate your template with
your site.

CSElement Assets
You use CSElement assets for the following kinds of things:

• Code that is not for rendering an asset and that you want to reuse in more than one
place and/or call from more than one type of template. For example, you have six
templates that use the same top banner so you create a CSElement asset for the code in
the banner and call that element from each template. This way, if you decide to change
the way the banner works, you only have to change it in one place.

• Recommendations for Engage. If you create a dynamic list recommendation, you
must create a CSElement asset to build the dynamic list. For more information, see
Chapter 36, “Recommendation Assets.” These assets do not render content, but exist
for logic processing.

When you save a CSElement, Content Server does the following:

• Creates a row in the CSElement table for the asset.

• If you have coded the element in the “CSElement” form, creates an element entry in
the ElementCatalog table. The name of the entry is the name that you entered into
the ElementCatalog Entry Name field in the form.

• Creates a new row in the AssetPublication table to associate your template with
your site.

• Creates a new row in the AssetPublication table to associate your template with
your site.

SiteEntry Assets
You use SiteEntry assets for the following kinds of things:

• If you are using the CS-Designer tool, you use SiteEntry assets to represent code
snippets. In that interface, when you drag and drop a code snippet into a page, you are
dropping in a Content Server call to a page entry through a render:satellitepage
tag.

• When the code in a CSElement asset is rendered, the code is displayed in the page that
called it, and is cached as part of that page (if that page is cached, that is). If you want
the output from a CSElement to be cached as a separate pagelet and have its own
cache criteria set for it (timeout value, page criteria values, and so on), your code must
invoke that element through a page name. In such a case, you create a SiteEntry asset
to accompany your CSElement asset.

When you create and save a SiteEntry asset, you associate a CSElement asset with it. The
element in that CSElement asset becomes the root element for the SiteEntry’s page entry.

When you save a SiteEntry asset, Content Server does the following:

• Creates a row in the SiteEntry table for the asset.

• Creates a page entry in the SiteCatalog table. The root element of the page entry is
the element from the CSElement asset that you specified.
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Creating Template Assets
462
• Tracks an approval dependency between the SiteEntry asset and the CSElement asset.
Both the SiteEntry asset and its CSElement asset must be approved before the
SiteEntry asset can be published.

What About Non-Asset Elements?
If you code customizations for the Content Server interface on the management system,
you create elements that are not assets because you do not want them to be published to
your delivery system.

For example, when you create workflow elements that implement actions or conditions,
you do not create them as CSElement assets. Rather, you use the CS-Explorer tool to
manually create an entry in the ElementCatalog table.

Remember that if you create workflow or other custom elements on your delivery system,
you must use the CatalogMover utility to copy those elements to the ElementCatalog
on your management system.

Creating Template Assets
Templates render assets. When you create a Template asset, you create it as either

• a typed template, for rendering assets of a specific type, or

• a typeless template, which applies to assets of any type. A typeless template is
generally used to specify the layout of a page in which assets can then be rendered by
the typed templates.

To create a Template asset, you must first complete the section “Pre-requisites” (on this
page) to determine how you will set template properties (such as the template name) and

Note

Compositional dependencies are also tracked. The SiteEntry defines the page
criteria and the default arguments that contain the dependency information.
The CSElement records the id of the SiteEntry and CSElement assets into the
rendering engine using render:logdep tags that are added to the CSElement
code stub.

Note

You can write code to invoke the mirror engine to mirror your elements. The topic
is advanced and beyond the scope of this guide. For code samples, visit our web
site: http://developernet.fatwire.com

Note

The only field that makes a template typed or typeless is the For Asset Type
field (page 467). The purpose of distinguishing templates as typed or typeless
is to help developers manage the construction of pages and easily keep track of
which templates are responsible for page layout and which for asset rendering.
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Creating Template Assets
463
how you will code the template’s element logic. You will then complete the following
steps, using the Content Server interface:

• Step 1: Open the ‘Template’ Form

• Step 2: Name and Describe the Template Asset

• Step 3: Configure the Template’s Element—To specify its usage, file type, and logic

• Step 4: Configure SiteEntry—To specify page and pagelet caching parameters

• Step 5: Configure the Map—If you wish to support template sharing and site
replication

• Step 6: (Optional) Create a Thumbnail—To graphically represent the template in its
Inspect form

• Step 7: Inspect the Template

Information that you enter into the Template form will be written to database tables when
the template is saved. (For a mapping of the fields in the Template form to columns in the
database tables, as indicated in the procedures below.

Pre-requisites
Before you begin creating a Template asset, you need to determine several things:

• TemplateName (a name for your Template asset; the value of the Name field in the
Name screen, page 466).

• Whether the Template asset is to be typed or typeless.

• Whether the Template asset will be shared and whether the site you are working in
will be replicated. These considerations determine how you will code the template’s
element logic.

• Whether to code the Template’s element logic in CS-Explorer instead of the Template
form. (Coding in CS-Explorer, although practiced, is not recommended for the reasons
outlined in “Using Content Server Explorer to Create and Edit Element Logic” on
page 502.)

Naming a Template Asset
It is important to name the Template asset judiciously for several reasons:

• Once the Template asset is saved, its name cannot be changed.

• As the template name is appended (by CS-Direct) to the AssetTypeName and the
SiteName, it must make sense in relation to them. Content Server’s naming
conventions must not be overridden (that is, names that are created by CS-Direct must
not be changed). Table 1, on page 464 lists the conventions that use TemplateName.

Note

Do not create Template assets directly in the database tables. Doing so will require
you to write to several tables and can result in incorrect tracking of dependencies.
Instead, use the Template form and the procedures in this section to create
Template assets. For help with coding the template’s element logic (in typed
templates), see Chapter 24, “Coding Elements for Templates and CSElements.”
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Creating Template Assets
464

Tem

Type

ot

t

ou

/
:

late

e
3.

Type

ash

/
:

late

e
3.

 on

Table 1: Naming Conventions Using TemplateName

plate Convention Using TemplateName Description

d AssetTypeName/TemplateName Name of the root element for a typed template.

This value is written to the Rootelement field in
“Step 3: Configure the Template’s Element” on
page 469. This value must not be changed.

Note: Because the naming convention requires ro
element names to be unique, you should not make
two or more Template assets point to the same roo
element. You can, however, make two SiteEntry
assets point to the same element (for example, if y
wish to specify different default arguments, or
different cache criteria depending on the calling
scenario.

AssetTypeName/
TemplateName.xml_or_jsp_or_html

Path to the element file of a typed template.

This value is written to the ElementStorage Path
Filename when the file type is selected in “Step 3
Configure the Template’s Element” on page 469.

SiteName/AssetTypeName/
TemplateName

Name of the page that will be rendered if the temp
is typed.

This value is written to the SiteCatalog Pagenam
field, in “Step 4: Configure SiteEntry” on page 47

less /TemplateName Name of the root element for a typeless template.

This value is written to the Rootelement field in
“Step 3: Configure the Template’s Element” on
page 469. This value must not be changed.

Note: The AssetTypeName is omitted, as the
template applies to any asset type. The forward sl
is kept to identify the template as typeless.

See also: The note in the first row of this table.

Typeless/TemplateName.xml_
 or_jsp_or_html

Path to the element file of a typeless template.

This value is written to the ElementStorage Path
Filename when the file type is selected in “Step 3
Configure the Template’s Element” on page 469.

SiteName/TemplateName Name of the page that will be rendered if the temp
is typeless.

This value is written to the SiteCatalog Pagenam
field, in “Step 4: Configure SiteEntry” on page 47

Note: The AssetTypeName/ is omitted, as the
template applies to any asset type.

Note: AssetTypeName is the value of the For Asset Type field in the Name screen (step 6
page 468) when the template is typed (for typeless templates, the field is left blank).

SiteName is the name of the site that the template belongs to, which is the site that you are
working in as you are creating the template. CS-Direct obtains the SiteName from the
Publication table. (In previous versions of the product, sites were called “publications.”)
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Creating Template Assets
465
Designating a Template as Typed or Typeless
Before creating a Template asset, determine whether it is to be typed or typeless. Once the
template is saved, its status as typed or typeless cannot be changed.

Template Sharing and Site Replication
Before creating a template, it is critical to establish how the template and the site you are
working in will be used. Your decision determines how you will code the template’s
element logic (in “Step 3: Configure the Template’s Element” on page 469).

If you wish to share your Template asset or make the current site replicable, make sure that
the template’s element logic does not directly refer to assets, asset types, attribute names,
or template names. Instead, you must refer to them indirectly. Use the Map screen
(“Step 5: Configure the Map” on page 476) to assign an alias (“key”) to each value, then
hard code the aliases in your template. Use the render:lookup tag to retrieve the actual
values from the aliases at runtime.

During its execution, the render:lookup tag refers to the map to look up the keys and
returns the asset-specific information for use in the element logic. This dynamic lookup
allows the Template asset (but not the element logic alone) to refer directly to asset data
while enabling safe replication and template sharing.

For example, assume a template is named FSIILayout, and the site containing this
template has a site prefix of FSII. If the site is replicated such that

• the new site’s prefix is New, and

• the FSIILayout template is copied,

then the copy of the template is named NewLayout. Referring to the NewLayout template
by its hard-coded name (FSIILayout) would result in a failure when the template is
executed. Instead, the template name is looked up:

<%-- Look up the name of the layout template --%>
<render:lookup
 site=’<%=ics.GetVar("site")%>’
 varname="LayoutVar"
 key="Layout"
 tid=’<%=ics.GetVar("tid")%>’/>

<%-- Look up the name of the wrapper page’s site entry.
 Note we want the asset name only, so we must specify
 the match filter. --%>
<render:lookup
 site=’<%=ics.GetVar("site")%>’
 varname="WrapperVar"
 key="Wrapper"
 tid=’<%=ics.GetVar("tid")%>’

 match=":x"/>

To code the element logic, you must have a clear understanding of its design and the map
it will refer to. You will need to determine:

• Which keys to create and which name to assign to each key.

• The type of asset information to be looked up:

- Template Name
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Creating Template Assets
466
- Asset Type

- Asset (Type:Name)

- Asset (Type:ID)

• A value for each key.

• The site to which the map applies.

Additional information about usage of the render:lookup tag is given in the
Developer’s Tag Reference and in the FirstSiteII guide.

Procedures for Creating Template Assets
This section shows you how to create a Template asset, using the Content Server interface.

Step 1: Open the ‘Template’ Form
1. Log in to Content Server.

2. Select the site in which you want to work.

3. In the button bar, click New.

4. In the list of asset types, select New Template.

5. The Template form appears. Continue with “Step 2: Name and Describe the Template
Asset.”

Step 2: Name and Describe the Template Asset
The Name screen is used to identify the template as typed or typeless, assign the template
to a category, specify arguments that may be passed to the template, and name keywords
by which the template can be located in search routines.

When the Template asset is saved, field values that you specify in the Name screen (with
the exception of legal arguments), are written to the Template table, as indicated in the
procedures below.

Note

Before starting the procedures in this section, read “Pre-requisites” on page 463
for information about creating Template assets.

Note

For the New Template option to be displayed, the Template asset type must be
enabled for your site and a start menu item must be created for it.

Note

If you see a Choose Assignees screen instead of the Template form, it means
that the Template asset you will be creating is associated with a workflow.
Select a name (or names) from the “Users” column and click Set Assignees.
Continue with “Step 2: Name and Describe the Template Asset.”
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Creating Template Assets
467
To name and describe the Template asset

1. In the Name screen, fill in the fields as explained in the steps below section.

2. (Required). In the Name field, type a descriptive template name that is unique for the
template and for the type of asset(s) that the template renders. It is best to choose a
name that reflects the function or purpose of the template.

Valid entries:

- Up to 64 alphanumeric characters (the first character must be a letter)

- Underscores (_)

- Hyphens (-)

- Spaces (these will be converted to underscores when used in the SiteCatalog
pagename for the template)

Note

At any time in the process of creating a template, you can save the template.
Content Server will display the template’s Inspect form. To return to the
Template form, click the Edit link.

Note

Make sure you have chosen a name for your Template asset using the
guidelines in the section “Pre-requisites” on page 463.
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Creating Template Assets
468
3. In the Description field, type a brief description of the template. You can use up to
128 characters.

4. In the Source field, select an option from the drop-down list if your template is
derived from a source that you wish to note.

5. In the Category field, select an option from the drop-down list if you wish to place the
Template asset into a category.

6. (Required). In the For Asset Type field, identify your template as typed or typeless:

- If you are creating a typeless template (for example to dispatch to typed
templates), select Can apply to any asset type and skip to step 8.

- If you are creating a typed template (which renders assets of a certain type), select
an asset type. For example, if you are creating a template to render article assets,
select Article from the drop-down list.

7. (Required for typed templates). In the Applies to Subtypes field, select the
appropriate subtypes from the drop-down menu.

8. In the Legal Arguments field:

a. Enter an argument that may be passed to the template and click Add Argument.

b. In the fields that are displayed:

- Specify whether the argument is optional or required.

- Provide a description of the argument (to help you know the purpose of the
argument you are creating).

- Specify legal values (including descriptions) for the argument.

(You can specify as many arguments and legal values as you require by clicking the
Add Arguments and Add Legal Value buttons.)

9. In the Keywords field, enter keywords that you and others can use as search criteria in
the Advanced Search form when you search for this template in the future. For
information about searching for assets, see the Content Server User’s Guide.

10. Click Continue to open the next screen, Element.

Note

A typed template should be used only for specific subtypes of the asset type
that you selected in the preceding field (For Asset Type).

Note

If you chose to save the Template asset, you will notice that Content
Server adds two fields:

• The Status field, which is pre-populated with the editorial status of
the Template asset (“created,” “edited,” and so on). This field
identifies the latest operation that was performed on the Template
asset, regardless of whether the Template asset is associated with a
workflow.

• The ID field, which is pre-populated with a unique number that
Content Server generates and assigns to the Template asset as its ID.
(The ID field corresponds to the tid variable.)
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Creating Template Assets
469
Step 3: Configure the Template’s Element
The Element screen (page 470) is used to create the template’s element—define the
element file type (XML, JSP, or HTML), provide the element logic, and name the element.
For example:

• The Create Template field offers a choice of XML, JSP, or HTML file types for the
element logic, and is used to seed the Element Logic field with standard stub code
(which you need to include in any element that you create).

• When you use the Create Template field to create, for example, a .jsp file, CS-Direct
adds JSP taglib statements and the RENDER.LOGDEP tag to the Element Logic field
by default so that the compositional dependency between this Template asset and
pages that are rendered from this element is logged. For other file types, CS-Direct
adds code specific to the file type. You will add your own code to the Element Logic
field.

For information about dependencies, see “About Dependencies” on page 534. For
help with coding the element logic, see Chapter 24, “Coding Elements for Templates
and CSElements.”

• The Element Storage Path/Filename field names the file that holds the element logic
and specifies the path to the file.

When the Template asset is saved, field values in the Element screen are written to a row
(representing the element) in the ElementCatalog table, as indicated in the procedures
below.

Selecting an Existing Element

In the steps that follow, we assume you are creating a new element for the
Template asset. If, however, you are migrating assets from an earlier Content
Server release and wish to reuse an existing element, you need to identify the
element correctly so that CS-Direct can find it and associate it with this Template
asset.

To select an existing element

1. (Optional). In the ElementCatalog Description field, type a description of the
element.

2. In the Element Storage Path/Filename field, enter a value according to the
naming convention in Table 1, on page 464.

3. In the Element parameters field, specify the variables or arguments that can
be passed to the element. For more information, see step 8 on page 472.

4. Save and re-open the Template asset.

CS-Direct checks for the presence of the named element:

- If the element has been correctly named, CS-Direct recognizes the
element and displays its code in the Element Logic field.

- If the named element does not exist (or is incorrectly named), CS-Direct
does nothing. When you inspect or edit the Template asset, CS-Direct
displays a message stating that there is no root element in the form. As
soon as you code the element and give it the correct name, CS-Direct
detects it and associates it with the template.
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Creating Template Assets
470
To configure a new element

1. In the Element screen, fill in the fields as explained in this section.

Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Creating Template Assets
471
2. In the Usage field, specify the intended usage of this template, using the table below
as a guideline.

3. In the Called Templates field, select the template(s) that this template will call (if
they exist).

4. In the Create Template Element field, do one of the following:

- To create an .xml file, click XML. The code that is pasted in comes from the
OpenMarket\Xcelerate\AssetType\Template\modelXML.xml element
and can be modified to use custom default logic.

- To create a .jsp file, click JSP. The code that is pasted in comes from the
OpenMarket\Xcelerate\AssetType\Template\modelJSP.xml element
and can be modified to use custom default logic.

- To create an .html file, click HTML. The code that is pasted in comes from the
OpenMarket\Xcelerate\AssetType\Template\modelHTML.xml element
and can be modified to use custom default logic.

CS-Direct populates the following fields:

- Element Logic field with a header and other auto-generated code.

For example, if you clicked the JSP button, CS-Direct enters a tag library
directive for each of the CS-Direct JSP tag libraries. Content Server also sets a
RENDER.LOGDEP (render:logdep) tag to mark a compositional dependency
between the Template asset and any page or pagelet rendered with the template.

- Element Storage Path/Filename field. Do not change the value of this field.

This field displays the element file name, preceded by the path to the element file.
The naming convention is given in Table 1, on page 464.
When you save the Template asset, the value in the Element Storage Path/
Filename field is written to the url column of the ElementCatalog table, for
the row that represents the element.

5. The Rootelement field is pre-populated with the value given in Table 1, on page 464.
Do not change the value of this field.

Usage Option Description

Usage unspecified Specifies a template that generates HTML. It
is unknown whether the template is a
“Body” template (see row 2 of this table) or
a “url” template (see row 3 of this table).

Element is used within an HTML page Specifies a template that is used inside the
<BODY>...</BODY> tags of an HTML
page. This option characterizes the template
as a “Body” template.

Element defines a whole HTML page
and can be called externally

Specifies a template that generates a
complete HTML page and can be used in a
url. This option characterizes the template as
a “url” template.

Element is streamed as raw data Specifies a template that generates raw
binary data of an unknown type that is not
HTML.
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Creating Template Assets
472
6. (Optional). In the ElementCatalog Description field, type a description of the
element. When you save the Template asset, information in this field is written to the
description column for the element entry in the ElementCatalog table.

7. (Required). In the Element Logic field, code your element. Be sure to enter all of your
code between the two cs:ftcs tags.

If you are using JSP, be sure to remove the comments from the taglib directives that
describe the tag libraries you are using.

For help with this step, see Chapter 24, “Coding Elements for Templates and
CSElements.”

8. (Optional). The Element Parameters field and Additional Element Parameters
field are used to enter variables or arguments that can be passed to the element, if the
site design requires them.

- The Element Parameters field corresponds to the resdetails1 column in the
ElementCatalog. When you save the template, CS-Direct writes the template
ID (tid) to this field (i.e., to the resdetails1 column).

- The Additional Element Parameters field corresponds to the resdetails2
column in the ElementCatalog. CS-Direct leaves this field blank.

If your site design requires you to use variables in addition to tid in your template
element, enter the variables into one of the fields above. Enter them as name=value
pairs with multiple arguments separated by the ampersand (&) character. For example:

MyArgument=value1&YourArgument=value2

Each field supports up to 255 characters.

For more information about using variables, see Chapter 4, “Programming with
Content Server.”

9. Click Continue to open the next screen, SiteEntry.

Note

Ensuring Template Sharing or a Replicable Site
If you wish to share your Template asset or make the current site replicable,
make sure that the template’s element logic does not directly refer to assets,
asset types, attribute names, or template names. Instead, use the
render:lookup tag and prescribed keys as explained in “Template Sharing
and Site Replication” on page 465. In “Step 5: Configure the Map” on
page 476, you will map the same keys to the asset information that must be
accessed for use in the element logic.

Calling a Template
Templates should always be called by the render:calltemplate tag, and
never the render:callelement tag or render:satellitepage tag.
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Creating Template Assets
473
Step 4: Configure SiteEntry
The SiteEntry screen is used to specify caching and pagelet parameters for the page to be
rendered by this Template asset.

When the Template asset is saved, field values that you specify in the SiteEntry screen are
written to the SiteCatalog table, as indicated in the procedures below.

To configure the SiteEntry

1. In the SiteEntry screen, fill in the fields as explained in this section.

2. In the Cache Criteria field:

a. CS-Direct names the following reserved variables as Cache Criteria:

c,cid,context,p,rendermode,site,sitepfx,ft_ss

Note

The reserved Cache Criteria variables should not be removed. For
information about the reserved variables, see Chapter 4, “Programming
with Content Server.”
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Creating Template Assets
474
b. If you need to include your own variables as Cache Criteria (for example, foo),
add them to the existing list. For example:

c,cid,context,foo,p,rendermode,site,sitepfx,ft_ss

When the Template is saved, the Cache Criteria variables and their values are written
to the pagecriteria column in the SiteCatalog table.

3. (Optional). The Access Control Lists field corresponds to the acl column in the
SiteCatalog table. If you want to allow only certain visitors to request this page,
select the ACLs that the visitors must have in order to see the page. (For more
information about ACLs, see Chapter 27, “User Management on the Delivery
System.”)

4. The Rootelement field is pre-populated with a value that is shown in Table 1, on
page 464.

5. The Cache Rules field corresponds to the cscacheinfo and sscacheinfo columns
in the SiteCatalog table. Do one of the following:

- Select Cached if the pagelet to be rendered by this template’s element must be
cached. The pagelet is set to be cached forever. The cache will be flushed by
CacheManager’s active cache management logic. This option sets both Content
Server and Satellite Server caching conditions.

- Select Uncached if you wish to turn off caching for the pagelet to be rendered by
this template’s element. This option sets both Content Server and Satellite Server
caching conditions.

- Select Advanced if you wish to set caching rules individually for Content Server
and Satellite Server. Selecting Advanced displays two additional fields: one for
Content Server caching and one for Satellite Server caching.

Note

The Cache Criteria field names the variables which, in conjunction with
SiteCatalog Pagename, define a pagelet as being unique. The variables are
used to identify cached pages, which means that the variables are used in
the page’s cache key.

Only those variables that are specified as Cache Criteria are used by the
caching system to create the cache key for cached pages. Therefore, if
your site design requires you to use page-level variables in addition to the
reserved variables, be sure to designate them as Cache Criteria variables,
as shown in this step.
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Creating Template Assets
475

For more information about page caching settings, see Chapter 5, “Page Design and
Caching.”

6. SiteCatalog Pagename field. Do not change the value of this field. This field is pre-
populated with the name of the page entry. The page naming convention is given in
Table 1, on page 464.

7. In the Pagelet parameters section, you can enter pagelet parameters (name-value
pairs), which will be passed into the template each time it is executed. (The Pagelet
parameters section supports a total of 510 characters.)

When the Template asset is saved, the name-value pairs that are specified as Pagelet
parameters are written to either the resargs1 or resargs2 column of the
SiteCatalog table. The column to which they are written is not important and is
managed automatically. (Each column supports up to 255 characters.)

8. Click Continue to open the next screen, Thumbnails.

9. Click Continue to open the next screen, Map.

Note

CacheManager is designed to manage the lifecycle for cached pages on
both Content Server and Satellite Server. It is designed to operate with
pages that are set to be cached forever. If the cache expires on Content
Server before it expires on Satellite Server, CacheManager will fail to
flush the cache properly and invalid pages may be served from cache.
Only advanced users should configure these settings manually.

For more information about page caching settings, see Chapter 5, “Page

Design and Caching.”

Note

• The Pagelet parameters section is pre-populated with the following
default pagelet parameters (reserved variables that were named in step 2a
on page 473), including their values:

site, sitepfx, rendermode

The default parameter values will be overwritten if they are explicitly
specified when the template is called.

• If you are specifying a pagelet parameter in this step, make sure to list its
name as a Cache Criteria variable (see step 2 on page 473).

• If you named your own Cache Criteria variables (in step 2 on page 473),
the variables are listed in the Page parameters section. If you do not
specify values for these parameters, Content Server ignores the
parameters.

Note

You will return to the Thumbnail screen after you have completed creating
the Template asset and saved the Template asset.
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Creating Template Assets
476
Step 5: Configure the Map
The purpose of mapping is to enable site replication and the sharing of Template assets, as
explained in “Template Sharing and Site Replication” on page 465.

Using the Map screen, you will:

• Map each key in the render:lookup tags of the template’s element logic to a value
that will be used by the element logic.

• Map each key’s value to the asset information that must be used in the element logic:
asset, asset type, attribute name, or template name.

When the Template asset is saved, the map is written to the Template_Map table.

To configure a map

1. In the Map screen, fill in the fields as explained in this section.

2. The Key field represents a value that the element logic will look up. Enter the key that
is named in a render:lookup tag of the element logic.

3. The Type field identifies the type of asset information to be accessed. Select one of
the following options:

- Template Name—Maps a template name to the key value (which you will
specify in the Value field, in the next step). The information that will be accessed
is a template name that matches the value that you will specify in the next step.
(For an example, see Figure 8.)

- Asset Type—Maps an asset type to the key value. The information that will be
accessed is an asset type, equal to the value that you will specify in the next step.

- Asset (Type:Name)—Maps an attribute type:name to the key value. The
information that will be accessed is an asset whose type and name match the value
that you will specify in the next step.

- Asset (Type:ID)—Maps an attribute type:ID to the key value. The information
that will be accessed is an asset whose type and name match the value that you
will specify in the next step.

Note

Skip this section if you are designing a non-replicable site.
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Creating Template Assets
477
Figure 8: Template Asset: Sample Map

4. In the Value field, enter a value for the key. This value will be looked up by the
element logic when the Template is executed.

5. In the siteid field, select the name of the site to which the mapping applies.

6. To add a key, click Add Another and repeat the steps in this section.

7. When you have completed creating your template, save the template (click Save
Changes).

Content Server displays the template’s Inspect form.

8. If you wish to create a thumbnail for your template, continue with “Step 6: (Optional)
Create a Thumbnail.” Otherwise, skip to “Step 7: Inspect the Template” on page 478.

Step 6: (Optional) Create a Thumbnail
A thumbnail graphically assists template users in determining how your Template asset
lays out pages or renders content. The thumbnail that you create will be displayed in the
Template’s Inspect form.

When the Template asset is saved, the name of the thumbnail file is written to the
urlthumbnail column of the Template_Thumb table.

To create a thumbnail

1. Preview your Template asset. (For instructions, see “Templates and Preview” on
page 501.)

2. Capture the preview as an image file and save it to a file system.

3. Open the Template form and click Thumbnail at the top of the screen.
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Creating Template Assets
478
4. In the Thumbnail Image field, enter (or browse for) the path to the image file that
you created above (in step 2).

5. To display the thumbnail in the Inspect form:

a. Save the template (click Save Changes).

Content Server uploads the image file to the Content Server database and displays
template’s Inspect form.

b. In the Inspect form, scroll down to the Thumbnail Image section. If the
displayed image is too large or too small, resize the image in its source file and
repeat steps 4 and 5.

6. To operate in the image in the Thumbnail screen:

a. Scroll to the top of the Inspect form, and click the Edit link.

b. At the top of the Template form, click Thumbnail.

7. To copy, send, and perform other operations on the thumbnail, right-click on the
thumbnail and select an option.

8. If you wish to delete the thumbnail, select Delete thumbnail image? and click Save
Changes.

Content Server displays the template’s Inspect form.

Step 7: Inspect the Template
When you have finished creating the Template asset and clicked Save, CS-Direct does the
following:

• Writes to the database tables:

- Creates a template entry in the Template table.

- Creates an element entry in the ElementCatalog table, using the
AssetTypeName/TemplateName naming convention. If the element was coded
in the template form (rather than CS-Explorer), CS-Direct also creates the element
file.

- Determines the name of the site that the template belongs to and creates a page
entry in the SiteCatalog table using the SiteName/AssetTypeName/
TemplateName naming convention.

- Sets the name of the root element of the new SiteCatalog page entry to the
name of the ElementCatalog entry.

- Creates a thumbnail entry in the Template_Thumb table.
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Creating Template Assets
479
- Creates a map entry in the Template_Map table.

• Displays the Inspect form (Figure 9, on page 480), which provides the following
kinds of information:

- Information in the Name screen (standard summary information, such as asset
name, description, status, source, and ID, for assets of all types).

- Information in the Element screen (root element, element logic, path to the
element file, and tid).

- Information in the SiteEntry screen (SiteCatalog pagename, pagelet parameters,
cache criteria, and the ACLs of users who are authorized to view the page).

- Information in the Thumbnail screen (a thumbnail image, if one was chosen).

- Information in the Map screen (a map of key-value-asset information, if the site
was designed to be replicable, or the template is sharable).

- If you have shared the Template asset, the Inspect form also lists all of the
additional page entries in the SiteCatalog for this Template asset—there is a
page entry for each site that the template is shared with.
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Creating Template Assets
480
Figure 9: Template Asset: Sample Inspect form
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Creating CSElement Assets
481
Creating CSElement Assets
When you create a CSElement asset, you do three things: you create an asset, you code an
element for the asset, and you configure a key-value-asset information map (similar to the
map for a Template asset).

To create a CSElement asset, you must first complete the section “Pre-requisites” (on this
page) to determine how you will set CSElement properties that cannot (or must not) be
changed once the CSElement is saved, and how you will code the CSElement’s element
logic. You will then complete the following steps, using the Content Server interface:

Step 1: Open the ‘CSElement’ Form

Step 2: Name and Describe the CSElement Asset

Step 3: Configure the Element – To specify its file type and logic

Step 4: Configure the Map – If you wish to support CSElement sharing and site
replication

Step 5: Save and Inspect the CSElement

Step 6: Add the CSElement to the Active List—If you plan to use the CSElement as a
root element for a Site Entry asset (see “Creating SiteEntry Assets” on
page 493)

Information that you enter into the CSElement form will be written to database tables
when the CSElement asset is saved, as indicated in the procedures below.

Pre-requisites
Before you begin creating a CSElement asset, you must determine several things:
• A name for your CSElement asset.

• Whether your CSElement will be sharable and the site replicable. These
considerations determine how you will code the CSElement’s element logic.

• Whether you plan to code the CSElement’s element logic in CS-Explorer instead of
the CSElement form. (This approach is not recommended for the reasons outlined in
“Using Content Server Explorer to Create and Edit Element Logic” on page 502.)

Naming the CSElement
It is important to name the CSElement judiciously for several reasons:

• Once the CSElement asset is saved, its name cannot be changed.
• The CSElement logic file takes the name of the CSElement (followed by the file

extension:
CSElementName.xml_or_jsp_or_html

The name of the CSElement logic file must not be changed.

Note

Do not create CSElement assets directly in the database tables. Doing so will
require you to write to several tables and can result in incorrect tracking of
dependencies. Instead, use the CSElement form and the procedures in this section
to create CSElement assets. For help with coding the CSElement logic, see
Chapter 24, “Coding Elements for Templates and CSElements.”
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Creating CSElement Assets
482
CSElement Sharing and Site Replication
Before creating a CSElement, decide whether the CSElement must be shared or the site
you are working in must be replicable. If so, the CSElement logic will be coded in the
same way. If sharing and replication are not required, you will skip key-value mapping
(“Step 4: Configure the Map,” on page 488).

For information about coding element logic to support CSElement sharing and site
replication, see “Template Sharing and Site Replication” on page 465. The information
applies without exception to CSElement assets.

Procedures for Creating CSElement Assets
This section shows you how to create a CSElement asset, using the Content Server
interface.

Step 1: Open the ‘CSElement’ Form
1. Log in to the Content Server interface.

2. Select the site in which you want to work.

3. In the button bar, click New.

4. In the list of asset types, select New CSElement.

5. The CSElement form appears. Continue with “Step 2: Name and Describe the
CSElement Asset.”

Step 2: Name and Describe the CSElement Asset
The Name screen is used to define metadata about the CSElement. From this metadata, a
developer will be able to identify what the CSElement does and the arguments it uses to
perform its function.

Note

Before starting the procedures in this section, read “Pre-requisites” on page 481
for information about creating CSElement assets.

Note

For the New CSElement option to be displayed, the CSElement asset type
must be enabled for your site and a start menu item must be created for it.

Note

If you see a Choose Assignees screen instead of the CSElement form, it
means that the CSElement you will be creating is associated with a workflow.
Select a name (or names) from the “Users” column and click Set Assignees.
Continue with “Step 2: Name and Describe the CSElement Asset.”
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Creating CSElement Assets
483
To name and describe the CSElement

1. In the Name screen, fill in the fields as explained in this section.

2. (Required). In the Name field, type a unique, descriptive name for the CSElement
asset. It’s best to use a name that describes what the CSElement does.

Valid entries:

- Up to 64 alphanumeric characters (the first character must be a letter)

- Underscores (_)

- Hyphens (-)

- Spaces (these will be converted to underscores when used in the SiteCatalog
pagename for the template)

3. In the Description field, type a brief description of the CSElement asset. You can
enter up to 128 characters.

4. In the Legal Arguments field:

a. Enter an argument that may be passed to the CSElement and click Add
Argument.

b. In the fields that are displayed:

- Specify whether the argument is optional or required.

Note

At any time in the process of creating a CSElement, you can save the
CSElement. Content Server will display the CSElement’s Inspect form. To
return to the CSElement form, click the Edit link.

Note

Make sure you have chosen a name for your CSElement asset using the
guidelines in the section “Pre-requisites” on page 493.
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Creating CSElement Assets
484
- Provide a description of the argument (to help you know the purpose of the
argument you are creating).

- Specify legal values (including descriptions) for the argument.

(You can specify as many arguments and legal values as you require by clicking the
Add Arguments and Add Legal Value buttons.)

5. Click Continue to open the next screen, Element.

Step 3: Configure the Element
The Element screen (page 486) is used to create the CSElement’s element—define the
element file type (XML, JSP, or HTML), provide the element logic, and name the element.
For example:

• The Create Element field offers a choice of XML, JSP, or HTML file types for the
element logic, and is used to seed the Element Logic field with standard stub code
(which you need to include in any element that you create).

• When you use the Create Element field to create, for example, a .jsp file, CS-Direct
adds JSP taglib statements and the render.logdep tag to the Element Logic field
by default so that the compositional dependency between this CSElement asset and
pages that are rendered from this element is logged. For other file types, CS-Direct
adds code specific to the file type. You will add your own code to the Element Logic
field.

For information about dependencies, see “About Dependencies” on page 534. For
help with coding the element logic, see Chapter 24, “Coding Elements for Templates
and CSElements.”

• The Element Storage Path/Filename field names the file that holds the element logic
and specifies the path to the file.

When the CSElement is saved, field values in the Element screen are written to a row
(representing the element) in the ElementCatalog table, as indicated in the procedures
below.
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Creating CSElement Assets
485
Selecting an Existing Element

In the steps that follow, we assume you are creating a new element for the
CSElement asset. If, however, you are migrating assets from an earlier
Content Server release and wish to reuse an existing element, you need to
identify the element correctly so that CS-Direct can find it and associate it
with the CSElement asset.

To select an existing element

1. (Optional). In the ElementCatalog Description field, type a description
of the element.

2. In the Element Storage Path/Filename field, enter a value according to
the convention in “Naming the CSElement,” on page 481.

3. If your site design requires it, enter the appropriate arguments in the
element parameter fields. For instructions, see step 6 on page 488.

4. Save and re-open the CSElement asset.

CS-Direct checks for the presence of an element with the correct
name:

- If the element has been correctly named, CS-Direct recognizes the
element and displays its code in the Element Logic field.

- If the named element does not exist (or is incorrectly named), CS-
Direct does nothing. When you inspect or edit the CSElement asset,
CS-Direct displays a message stating that there is no root element in
the form. As soon as you code the element and give it the correct
name, CS-Direct detects it and associates it with the CSElement asset.
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Creating CSElement Assets
486
 To configure a new element

1. In the Element screen, fill in the fields as explained in this section.

2. In the Create Element field, do one of the following:

- To create an .xml file, click XML. The code that is pasted in comes from the
OpenMarket\Xcelerate\AssetType\CSElement\modelXML.xml element
and can be modified to use custom default logic.

- To create a .jsp file, click JSP. The code that is pasted in comes from the
OpenMarket\Xcelerate\AssetType\CSElement\modelJSP.xml element
and can be modified to use custom default logic.

- To create an .html file, click HTML. The code that is pasted in comes from the
OpenMarket\Xcelerate\AssetType\CSElement\modelHTML.xml
element and can be modified to use custom default logic.
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Creating CSElement Assets
487
CS-Direct populates the following fields:

- Element Storage Path/Filename field. Do not change the value of this field.

This field displays the element file name preceded by the path to the element file.
By default, the file takes the name of the CSElement asset (entered in step 2 on
page 483) followed by the file extension:

CSElementName.xml_or_jsp_or_html
When you save the CSElement asset, the value in this field is written to the url
column of the ElementCatalog table, for the row that represents the element.

- Element Logic field with a header and other information.

For example, if you clicked the JSP button, CS-Direct sets a tag library directive
for some common CS-Direct JSP tag libraries (asset, siteplan, render). CS-
Direct also sets the beginning and ending cs:ftcs tags, and a RENDER.LOGDEP
(render:logdep) tag to mark a compositional dependency between the
CSElement asset and any page or pagelet rendered by the element.

3. The Rootelement field is pre-populated with the name of the element file
(CSElementName.xml_or_jsp_or_html). Do not change the value of this field.

The root element is listed by this name in the ElementCatalog table. When you
create code that calls this element (RENDER.CALLELEMENT), this is the name you
should use. It uses the name of the CSElement asset by default.

4. (Optional). In the ElementCatalogDescription field, type a description of the
element.

When you save the CSElement asset, information in this field is written to the
description column for the element entry in the ElementCatalog table.

5. (Required). In the Element Logic field, code your element. Be sure to enter all of your
code before the ending cs:ftcs tag.

If you are using JSP, remove the comments from the taglib directives that describe
the tag families you are using.

For help with this step, see Chapter 24, “Coding Elements for Templates and
CSElements.”

Note

Ensuring Template Sharing or a Replicable Site
If you wish to share your CSElement or make the current site replicable, make
sure that the CSElement’s element logic does not directly refer to assets, asset
types, attribute names, or template names. Instead, use the render:lookup
tag and prescribed keys as explained in “Template Sharing and Site
Replication” on page 465. In “Step 4: Configure the Map” on page 488, you
will map the keys to the asset information that must be accessed for use in the
element logic.

Calling a Template
Templates should always be called by the render:calltemplate tag, and
never the render:callelement tag or render:satellitepage tag.
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Creating CSElement Assets
488
6. (Optional). The Element Parameters field and Additional Element Parameters
field are used to enter variables or arguments that can be passed to the element, if the
site design requires them.

- Element parameters field. CS-Direct populates this field with the CSElement ID
(eid), generated by Content Server as a unique identifier of the CSElement asset.
Do not change or delete this value.

This field corresponds to the resdetails1 column of the ElementCatalog
table. When you save the CSElement, CS-Direct writes the CSElement ID to the
resdetails1 column, in the row that represents the CSElement.

- Additional element parameters field. CS-Direct leaves this field blank.

This field corresponds to the resdetails2 column of the ElementCatalog.

If your site design requires you to use variables in addition to eid, enter the variables
into one of the fields above. Enter them as name=value pairs with multiple
arguments separated by the ampersand (&) character. For example:

MyArgument=value1&YourArgument=value2

Each field supports up to 255 characters.

For more information about Content Server variables, including scope and
precedence, see Chapter 4, “Programming with Content Server.”

7. Click Continue to open the next screen, Map.

Step 4: Configure the Map
The purpose of mapping is to enable site replication and sharing of CSElement assets. The
concepts behind mapping are identical to those for Template assets. They are explained in
“Template Sharing and Site Replication” on page 465.

Using the Map screen, you will:

• Map each key in the render:lookup tag of the element logic to the value that must
be used in the element logic.

• Map each key’s value to the asset information that must be used in the element logic:
asset, asset type, attribute name, or template name.

When the CSElement asset is saved, the map is written to the CSElement_Map table.

Note

Skip this section if you are designing a non-replicable site or a CSElement asset
that will not be shared.
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Creating CSElement Assets
489
To configure a map

1. In the Map screen, fill in the fields as explained in this section.

2. The Key field represents the value that the element logic will look up. In this field,
enter the key that is named in a render:lookup tag of the element logic.

3. The Type field identifies the type of asset information to be accessed. Select one of
the following options:

- Template Name—Maps a template name to the key value (which you will
specify in the Value field, in the next step). The information that will be accessed
is a template name that matches the value you will specify in the next step. (For an
example, see Figure 10, on page 489.)

- Asset Type—Maps an asset type to the key value. The information that will be
accessed is an asset type, equal to the value that you will specify in the next step.

- Asset (Type:Name)—Maps an attribute type:name to the key value. The
information that will be accessed is an asset whose type and name match the value
that you will specify in the next step.

- Asset (Type:ID)—Maps an attribute type:ID to the key value. The information
that will be accessed is an asset whose type and name match the value that you
will specify in the next step.

Figure 10: CSElement Asset: Sample Map
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Creating CSElement Assets
490
4. In the Value field, enter a value for the key. This value will be looked up by the
element logic when the CSElement asset is invoked.

5. In the siteid field, select the name of the site to which the mapping applies.

6. To add a key, click Add Another and repeat the steps in this section.

Step 5: Save and Inspect the CSElement
When you have finished creating the CSElement asset, click Save.

CS-Direct does the following:

• Writes to the database tables:

- Creates a row in the CSElement table for the CSElement asset, where it enters the
CSElement name and description that you specified in the steps above.

- Creates an element entry in the ElementCatalog table using values specified in
the Element screen:

- The value of the Rootelement field is used to position the element file in the
appropriate folder.

- The value of the Element Storage Path/Filename field is written to the url
column.

- The value of the eid variable is set to the ID of the CSElement asset in the
resdetails1 column.

• Flushes the pagecache of any pagelets that call this element.

• Displays the Inspect form (Figure 9, on page 480), which provides the following
kinds of information:

- Information in the Name screen (standard summary information, such as asset
name, description, status, and ID, for assets of all types).

- Information in the Element screen (root element, element logic, path to the
element file, and the element’s eid).

- Information in the Map screen (a map of key-value-asset information, if the site
was designed to be replicable, or the template is sharable).

- Preview with Arguments button, enabling you to preview the page(s) rendered
by the SiteEntry asset.

Step 6: Add the CSElement to the Active List

To add the CSElement to the Active List

1. Run a search on the CSElement asset you created.

Note

Complete the steps in this section if you are planning to use your CSElement to
create a SiteEntry asset. This step makes the CSElement available for selection in
Content Server’s tree by adding it to your active list.

If you are not planning to create the SiteEntry asset in this session, you might want
to add the CSElement to your active list so that you can easily find it later.
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Creating CSElement Assets
491
2. In the results list, select the checkbox in the right-hand column to add the CSElement
to the Active List.

This CSElement is listed in Content Server’s tree, in the Active List tab, where it is a
selectable option for SiteEntry assets.

3. Create the SiteEntry asset. For instructions, see “Creating SiteEntry Assets” on
page 493.
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Creating CSElement Assets
492
Figure 11: CSElement Asset: Sample Inspect Form
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Creating SiteEntry Assets
493
Creating SiteEntry Assets
When you create a SiteEntry asset, you are creating both an asset and a page entry in the
SiteCatalog table. The fields in the first part of the SiteEntry form define the page
entry as an asset. The rest of the fields provide information about the page entry as a
Content Server page, information that is written to the SiteCatalog table.

To create a SiteEntry asset, you must first complete the section “Pre-requisites” (on this
page) to create its root element and determine how you will set SiteEntry properties (such
as SiteEntry name). You will then complete the following steps, using the Content Server
interface:

Step 1: Open the ‘SiteEntry’ Form

Step 2: Create the SiteEntry Asset

Step 3. Save and Inspect the SiteEntry Asset

Information that you enter into the SiteEntry form will be written to database tables when
the CSElement asset is saved, as indicated in the procedures below.

Pre-requisites
Before you begin creating a SiteEntry asset, complete the following steps:

• Create a root element for the page entry:

1. Create a CSElement asset. For instructions, see “Creating CSElement Assets” on
page 481.

(A root element is required for any page entry. The root element is the element of
the CSElement, which you will select for the SiteEntry asset.)

2. Make the CSElement available. For instructions, see “Step 6: Add the CSElement
to the Active List” on page 490.

(To specify a CSElement for your SiteEntry asset, you will select the CSElement
from the Active List tab in Content Server’s tree, or the History tab if you created
the CSElement in the current session).

• Determine a name for your SiteEntry asset. The same name will be assigned to the
page. Neither the SiteEntry name nor the page name can be changed once the
SiteEntry asset is saved.

Note

Do not create SiteEntry assets directly in the database tables. Doing so will require
you to write to several tables and can result in incorrect tracking of dependencies.
Instead, use the SiteEntry form and the procedures in this section to create
SiteEntry assets.
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Creating SiteEntry Assets
494
Procedures for Creating SiteEntry Assets
This section shows you how to create a SiteEntry asset, using the Content Server interface.

Step 1: Open the ‘SiteEntry’ Form
1. Log in to the Content Server interface.

2. Select the site in which you want to work.

3. In the button bar, click New.

4. In the list of asset types, select New SiteEntry.

5. The SiteEntry form appears. Continue with “Step 2: Name and Describe the
CSElement Asset.”

Note

Before starting the procedures in this section, read “Pre-requisites” on page 493
for information about creating SiteEntry assets.

Note

For the New SiteEntry option to be displayed, the SiteEntry asset type must
be enabled for your site and there must be a start menu item created for it.

Note

If you see a Choose Assignees screen instead of the SiteEntry form, it means
that the SiteEntry you will be creating is associated with a workflow. Select a
name (or names) from the “Users” column and click Set Assignees. Continue
with “Step 2: Name and Describe the CSElement Asset.”
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Creating SiteEntry Assets
495
Step 2: Create the SiteEntry Asset
1. In the SiteEntry form, fill in the fields as explained in this section.

2. (Required). In the Name field, type a descriptive name for the SiteEntry asset. It’s best
to use a name that describes the purpose of the page.

Valid entries:

- Up to 64 alphanumeric characters (the first character must be a letter)

- Underscores (_)

- Hyphens (-)

- Spaces (these will be converted to underscores when used in the SiteCatalog
pagename for the template).

3. In the Description field, type a brief description of the SiteEntry asset. You can enter
up to 128 characters.
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Creating SiteEntry Assets
496
4. (Required). Click in the Pagename field to automatically populate it with name of the
page entry and the path to the page entry (for example: FSIICommon/SideNav/
ProductView). Do not change the value of this field.

5. If you wish to use the row of a pre-existing page entry in the SiteCatalog table,
select the Map to existing SiteCatalog entry checkbox.

6. (Required). In the Rootelement field, select the appropriate CSElement asset from the
tree and click Add Selected Items.

7. In the Wrapper page field, select one of the radio boxes to specify whether the asset
you are creating is a wrapper page. The No radio box specifies the asset to be a
pagelet.

8. In the Pagelet parameters section, you can enter pagelet parameters (name-value
pairs), which will be passed into the page or pagelet each time it is executed. (The
Pagelet parameters section supports a total of 510 characters).

When the SiteEntry asset is saved, the name-value pairs that are specified as Pagelet
parameters are written to either the resargs1 or resargs2 column of the
SiteCatalog table. The column to which they are written is not important and is
managed automatically. (Each column supports up to 255 characters.)

9. In the Cache Criteria field:

a. CS-Direct names the following reserved variables as Cache Criteria:

rendermode,seid,site,sitepfx,ft_ss

Note

The value in this field is the name of the page entry (which will be stored in
the SiteCatalog table when the SiteEntry is saved). When you create code
that calls this SiteEntry asset (RENDER.SATELLITEPAGE), this is the name
you should use.

Note

Only one CSElement can be added.

Note

• The Pagelet parameters section is pre-populated with the following
default parameters (reserved variables that are named by default in the
Cache Criteria field (next step), including their values:

site, seid, sitepfx, rendermode

The default values will be overwritten if they are explicitly specified
when the page or pagelet is called.

• If you are specifying a pagelet parameter in this step, make sure to list its
name as a Cache Criteria variable in the next step.
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Creating SiteEntry Assets
497
b. If you need to include your own variables as Cache Criteria (for example, foo),
add them to the existing list. For example:

foo,rendermode,seid,site,sitepfx,ft_ss

When the SiteEntry asset is saved, Cache Criteria variables and their values are
written to the pagecriteria column in the SiteCatalog table.

10. The Cache Rules field corresponds to the cscacheinfo and sscacheinfo columns
in the SiteCatalog table. Do one of the following:

- Select Cached if the pagelet to be rendered by this SiteEntry’s CSElement must
be cached. The pagelet is set to be cached forever. The cache will be flushed by
CacheManager’s active cache management logic. This option sets both Content
Server and Satellite Server caching conditions.

- Select Uncached if you wish to turn off caching for the pagelet to be rendered by
this SiteEntry’s CSElement. This option sets both Content Server and Satellite
Server caching conditions.

- Select Advanced if you wish to set caching rules individually for Content Server
and Satellite Server. Selecting Advanced displays two additional fields: one for
Content Server caching and one for Satellite Server caching.

Note

The reserved Cache Criteria variables should not be removed. For
information about the reserved variables, see Chapter 4, “Programming
with Content Server.”

Note

The Cache Criteria field names the variables which, in conjunction with
Pagename, define a pagelet as being unique. The variables are used to
identify cached pages, which means that the variables are used in the
page’s cache key.

Only those variables that are specified as Cache Criteria are used by the
caching system to create the cache key for cached pages. Therefore, if
your site design requires you to use page-level variables in addition to the
reserved variables, be sure to designate them as Cache Criteria variables,
as shown in this step.
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Creating SiteEntry Assets
498

11. The Access Control Lists field corresponds to the acl column in the SiteCatalog
table. If you want to allow only certain visitors to request this page, enter the ACLs
that visitors must have in order to see the page. (For more information about ACLs,
see Chapter 27, “User Management on the Delivery System.”)

Step 3. Save and Inspect the SiteEntry Asset
When you have finished creating the SiteEntry asset, click Save. CS-Direct does the
following:

• Writes to the database tables:

- Creates a row in the SiteCatalog table for the SiteEntry asset, where it enters
the values that you specified in the steps above.

• Displays the Inspect form, which provides the following information:

- Standard summary information (asset name, description, status, ID) and the page
entry criteria you specified in the steps above.

- Preview with Arguments button, enabling you to preview the page(s) rendered
by the SiteEntry asset.

Note

CacheManager is designed to manage the lifecycle for cached pages on
both Content Server and Satellite Server. It is designed to operate with
pages that are set to be cached forever. If the cache expires on Content
Server before it expires on Satellite Server, CacheManager will fail to
flush the cache properly and invalid pages may be served from cache.
Only advanced users should configure these settings manually.

For more information about page caching settings, see Chapter 5, “Page

Design and Caching.”
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Managing Template, CSElement, and SiteEntry Assets
499
Managing Template, CSElement, and SiteEntry
Assets

This section presents additional procedures for working with template, CSElement, and
SiteEntry assets:

• Designating Default Approval Templates (Export to Disk Only)

• Editing Template, CSElement, and SiteEntry Assets

• Sharing Template, CSElement, and SiteEntry Assets

• Deleting Template, CSElement, and SiteEntry Assets

• Previewing Template, CSElement, and SiteEntry Assets

Designating Default Approval Templates (Export to Disk Only)
When assets are approved for a publishing destination that uses the Export to Disk
publishing method, the approval system examines the template assigned to the asset to
determine its dependencies.

If you design your online site to render assets with more than one template (a text-only
version and a summary version and a full version for the same type of asset, for example),
you should create a template that contains a representative set of approval dependencies
for all of the templates, and then specify that template as the Default Approval Template
for the asset type.

For more information about approval templates, see “Approval Templates for Export to
Disk” on page 537. For an example of a template that could be used as a default approval
template, see the Burlington Financial template for article assets named Full.

To designate that a template is the default approval template

1. On the Admin tab, select Publishing > Destinations > Static.

2. Under the name of a static destination, select Set Default Templates.

3. In the “Default Templates” form, click Edit.

4. In the edit form, select a default template for each asset type. If you are using the
Subtype feature for any of your asset types, you can designate a default approval
template for each subtype of that asset type. (For information about subtypes, see
“Step 9: (Optional) Configure Subtypes” on page 308.)

5. When you have finished, click Save.

Editing Template, CSElement, and SiteEntry Assets
Creating a template, CSElement, and SiteEntry assets also creates entries in the
SiteCatalog and/or ElementCatalog tables. The names of those entries are based on the
asset’s name, and for Template assets, the asset type, and the site the template belongs to.
Because these naming dependencies exist, the following restrictions apply when you edit
templates, CSElements, or SiteEntry assets:

• You cannot rename a template, CSElement, or SiteEntry asset after it has been saved.

• For templates, you cannot change the asset type selected in the Asset Type field after
the Template asset has been saved.
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Managing Template, CSElement, and SiteEntry Assets
500
• For templates and CSElements, you cannot change the name of the root element.

• For SiteEntries, you cannot change the name of the page entry.

For the basic procedure for editing assets, see the Content Server User’s Guide.

Sharing Template, CSElement, and SiteEntry Assets
When you share a CSElement, template, or SiteEntry asset, Content Server creates a row
in the AssetPublication table for each site that you share the asset with.

Additionally, for Template assets only, CS-Direct does the following:

• Creates a new SiteCatalog page entry for each site that you share the asset with. It
uses the name of the site in the name of the page entry. All of the new page entries
point to the same root element, the template element.

• Lists all the other page entries for the shared template that share this root element in
the Inspect form.

For the basic procedure for sharing assets, see the Content Server User’s Guide.

Deleting Template, CSElement, and SiteEntry Assets
CS-Direct does not allow you to delete an asset if there is another asset using it. However,
it does not check to see whether a template or CSElement is referenced by the code in
other template or CSElement elements.

Before you delete a template or SiteEntry asset, be sure to remove any page calls to that
asset’s page entry from your elements. Before you delete a CSElement asset, be sure to
remove any element calls to that asset’s root element from your other elements.

When you delete an asset, CS-Direct does the following:

• Changes the value of the asset’s name column in the Template, CSElement, or
SiteEntry table (depending on the asset type) to its object ID.

• Changes the value of the asset’s status column in the Template table to VO, for
“void”.

• For templates, deletes all the SiteCatalog table entries (if the template is shared,
there are as many page entries as there are sites that the template is shared with) and
the ElementCatalog table entry for the template.

Note

Do not change the root elements of these page entries. All page entries for a
shared template must point to the same root element.

Note

For templates and CSElements to be sharable, their element logic must not be
hard-coded with asset type names, attribute names, template names, or IDs.
Instead, use the render:lookup tag and hard-code the keys for which you have
created a map that the render:lookup tag can refer to in order to look up asset
information for use in the element logic.
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Managing Template, CSElement, and SiteEntry Assets
501
• For CSElements, deletes the ElementCatalog table entry for the asset.

For the basic procedure for deleting assets, see the Content Server User’s Guide.

Previewing Template, CSElement, and SiteEntry Assets
Because template, CSElement, and SiteEntry assets provide logic and code for formatting
other assets, you preview assets of these types differently from the way you preview your
content assets.

Templates and Preview
You preview a template by previewing an asset and selecting the template that you want to
use to render the asset. Content Server invokes the code in the template and renders a page
with the asset as the content.

CSElement and SiteEntry Assets and Preview
You preview CSElement and SiteEntry assets directly. If the element that will be called
has self-contained context—a banner that does not expect variables or arguments, for
example—you can simply click the Preview icon. But when the results of the rendered
element depend on values that are passed to it, you must manually set those values in the
CSElement or SiteEntry form in order to preview that asset.

For example, the Burlington Financial CSElement asset named
BurlingtonFinancial/Query/ShowHotTopics expects a value for the p variable. If
it doesn’t receive one, the value of p defaults to the object ID of the Home page asset. If
you want to preview this CSElement for a page asset other than the Home page, you must
pass in the ID of that page asset as the value of the p variable with the argument fields in
the “New” or “Edit” form for that CSElement asset.

To specify argument values for previewing CSElement or SiteEntry assets

1. Find the asset and inspect it (click the icon with the letter “i”).

2. Scroll to the bottom of the Inspect form. Next to Preview with Arguments, click
View.

This is the form that appears for a CSElement asset:
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Using Content Server Explorer to Create and Edit Element Logic
502
3. Enter values for the arguments. You can also select values by double-clicking in the
fields and selecting from the drop-down list.

4. Click Preview.

5. Click the links that are displayed to preview the pages that are rendered by this
SiteEntry asset.

Using Content Server Explorer to Create and Edit
Element Logic

When a Template (CSElement) asset is created and saved in the Content Server interface
(Template or CSElement form), several important steps are taken that are not taken when
you use CS-Explorer:

• The interface seeds your element with stub code that sets compositional dependencies
and, if you are using JSP, drops in the appropriate tag library directives for you.
(Compositional dependencies are described in the section “About Dependencies” on
page 534.)

• When you save the Template (CSElement) in the Content Server interface:

- The approval system receives information that the asset was changed and can
therefore change its approval status.

- Most importantly, the CacheManager servlet can update the cache (that is, flush
pages and pagelets from the Content Server and Satellite Server caches).

If you choose to work with the CSElement asset in CS-Explorer, be sure that you do not
alter the value of the eid variable or accidentally delete it.

A practical reason for using the Content Server interface is to avoid switching between
Content Server and CS-Explorer, especially if you are mapping asset information (to
support template sharing and site replication). Mapping is supported only in the Content
Server interface (in the Map screen of the Template form and in the Map screen of the
CSElement form).

Creating Templates and CSElements
If you prefer to use CS-Explorer to code your element logic, follow the steps below:

1. Start creating your Template (or CSElement) asset using the Template form (or
CSElement form). Start with “Step 1: Open the ‘Template’ Form” on page 466 (or
“Step 1: Open the ‘CSElement’ Form” on page 482) and continue sequentially.

Note

FatWire does not recommend creating or editing element logic directly from
CS-Explorer. However, should you prefer to do so, you will need to ensure the
validity of your Template and CSElement assets. Take note of the information in
this section and follow the instructions that are included.
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Using Content Server Explorer to Create and Edit Element Logic
503
2. In “Step 3: Configure the Template’s Element” on page 469 (or “Step 3: Configure the
Element” on page 484), select your element type (JSP, XML, or HTML). Do not
change the element logic that is auto-generated for you. Also, be sure that you do not
alter the value of the tid variable or accidentally delete it.

3. Continue through the form you have chosen until you finish. If you know which keys
and asset values you must map, add them to the Map form (in “Step 5: Configure the
Map” on page 476. The same step applies to the CSElement asset).

4. Save the asset.

5. Open CS-Explorer and edit your element. Save your changes.

6. The final—and most important—step: Re-save your asset in the Template form (or
CSElement form). You do not have to change any data in the form, but you must re-
save it. This will ensure that no functionality is bypassed.

Editing Templates and CSElements
Any time that you edit an element’s logic in the CS-Explorer tool, open and save the
template (or CSElement) in the Content Server interface so that (1) the approval system
knows the asset was changed and can change its approval status, and (2) the
CacheManager servlet can update the cache.
Content Server 7.0 Developer’s Guide

Chapter 21. Creating Template, CSElement, and SiteEntry Assets

Using Content Server Explorer to Create and Edit Element Logic
504
Content Server 7.0 Developer’s Guide

505
Chapter 22

Creating Templates to Support Graphical
Page Design
Content Server’s InSite interface hosts the Page Layout utility for graphically creating and
redesigning web pages. Page Layout complements the InSite Editing utility; whereas
InSite Editing enables users to edit content directly on the rendered page, Page Layout is
used to provide and position that content.

Using Page Layout requires developers to code templates that support graphical page
design. This chapter outlines the concepts that are used by Page Layout and describes the
implementation. This chapter contains the following sections:

• Overview

• Implementation

• Template Context

• Tracking Changes to Master Pages
Content Server 7.0 Developer’s Guide

Chapter 22. Creating Templates to Support Graphical Page Design

Overview
506
Overview
Content Server’s InSite interface hosts the Page Layout utility for graphically creating and
redesigning web pages. Enabling Page Layout requires a template that displays slots into
which content providers can then drag and drop rendered assets of their own choice.

Placed assets can be dragged from
one slot into another, they can be
replaced with other assets, or they
can be deleted, without the user ever
having to manipulate the underlying
template code. Slots, however,
cannot be repositioned on the page,
except through template code.

Templates for the Page Layout
utility are not out-of-the-box
constructs. They must be coded to
support slots in specified places on
the pages they render.

Implementation
For developers, creating slots means coding a JSP or XML template with as many
<insite:calltemplate> tags as there are slots. The template is called a master
template and the slotted pages it renders are called master pages.

The process of coding and using a master template is summarized in the steps below. (For
detailed instructions on using the Page Layout utility, see the Content Server User’s Guide,
for either the advanced or dashboard interface).

Note

Master templates are indistinguishable from other templates. We call them “master
templates” to indicate that they render pages with slots, and the slots are reusable
— content which is dropped into a slot is not permanently fixed in the slot. As a
result, a master template can be reused in multiple places on a site such that its
slots simultaneously display different pieces of content. For a more detailed
description of reusability, see “Template Context,” on page 510.

rendered asset

Slots
Content Server 7.0 Developer’s Guide

Chapter 22. Creating Templates to Support Graphical Page Design

Implementation
507
1. A developer codes a master template. In this example, the developer creates two slots,
using the insite.tld in line 5 and the <insite:calltemplate> tag in
lines 18–24 and 27–33:

1 <%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld"%>
2 <%@ taglib prefix="ics" uri="futuretense_cs/ics.tld"%>
3 <%@ taglib prefix="render" uri="futuretense_cs/render.tld"%>
4 <%@ taglib prefix="string" uri="futuretense_cs/string.tld"%>
5 <%@ taglib prefix="asset" uri="futuretense_cs/asset.tld"%>
6 <%@ taglib prefix="insite" uri="futuretense_cs/insite.tld"%>
7 <cs:ftcs>
8 <div id="StandardDetailView">
9 <ics:if condition=’<%=ics.GetVar("tid")!=null%>’><ics:then>

<render:logdep cid=’<%=ics.GetVar("tid")%>’ c="Template"/>
</ics:then></ics:if>

10
11 <%-- load the page, display the title --%>
12
13 <asset:load name="page" type="Page"

objectid=’<%=ics.GetVar("cid")%>’/>
14 <asset:get name="page" field="description" output="description"/>
15 <h2><string:stream variable="description"/></h2>
16
17 <%-- create the first slot --%>
18 <insite:calltemplate
19 slotname="Slot01"
20 site=’<%=ics.GetVar("site")%>’
21 tid=’<%=ics.GetVar("tid")%>’>
22 <insite:argument name="p" value=’<%=ics.GetVar("p")%>’/>
23 <insite:argument name="locale"

value=’<%=ics.GetVar("locale")%>’/>
24 </insite:calltemplate>
25
26 <%-- create the second slot --%>
27 <insite:calltemplate
28 slotname="Slot02"
29 site=’<%=ics.GetVar("site")%>’
30 tid=’<%=ics.GetVar("tid")%>’>
31 <insite:argument name="p" value=’<%=ics.GetVar("p")%>’/>
32 <insite:argument name="locale"

value=’<%=ics.GetVar("locale")%>’/>
33 </insite:calltemplate>
34
35 </div>
36 </cs:ftcs>

Note

The sample code above was used in the FirstSiteII sample site to replace the element
logic of the FSIIStandardDetailView Page template. Because this template is
called by FSIILayout to render the main area of the “Home,” “Articles,” and “About”
pages, the main area now displays two slots. The remaining areas are rendered by
FSIILayout.
Content Server 7.0 Developer’s Guide

Chapter 22. Creating Templates to Support Graphical Page Design

Implementation
508

e slots
he

etail
e rest
dered
late

ote on
2. To use (and test) the master page:

a. The user previews an asset that is rendered by the master template (either directly
or via a caller template). At this point, the user is operating within the InSite
interface.

(In this example, the user previews an asset of type “Content” in the “Articles”
page on the FirstSiteII sample site.)

b. The user clicks the Page Layout bar to display the master page (similar to the
page in the figure below).

3. To select content for a slot:

a. The user sets up a search for asset-template pairs (that is, the user searches for
assets of a given type and names the template that will render the assets in the
desired format).

slot defined by lines 27 –33

slot defined by lines 18 – 24

In this example, th
are rendered by t
template
FSIIStandardD
View, whereas th
of the page is ren
by the caller temp
FSIILayout, as
explained in the n
page 507.
Content Server 7.0 Developer’s Guide

Chapter 22. Creating Templates to Support Graphical Page Design

Implementation
509
b. From the search results list, the user selects an asset. Using the named template,
Content Server renders the asset as a floating object.

4. The user drags the object into a slot, creating the page shown below. The master
template is automatically edited to reflect the change to the slot.
Content Server 7.0 Developer’s Guide

Chapter 22. Creating Templates to Support Graphical Page Design

Template Context
510
Template Context
“Context” refers to the reusability of a master template, meaning that a master template
can be used in many places on a site at any one time; any given slot can hold a different
asset-template pair, depending on the page (i.e., context) in which the slot is used. Starting
with Content Server 7.0, context is active by default.

For example, consider the FSIIStandardDetailView template that contains the code
sample on page 507. When three pages (“Home,” “Articles,” and “About”) are first
previewed in the Page Layout utility, the main part of each page initially displays two
empty slots (slot 01 and slot 02), as shown on page 508. The slots, regardless of which
page is previewed, are rendered by the same FSIIStandardDetailView template. On
the different pages, however, the same slot (for example, slot02) can be populated with a
different asset-template pair, each pair unique to its page (context).

Slots can be made context-independent, by overriding the context attribute in the
<insite:calltemplate> tag with a constant value (for example, context=“all”, or
context=“ ”). In our example, slot02 would then display the same content, regardless of
the page (context). For the user of the master template, this means having to drag and drop
an asset-template pair only once into a given slot.

Guidelines for Creating Master Templates
A master template must be either a JSP or XML template. It is like any other template that
can be created in Content Server, except for the slots it contains.

To create a master template, follow instructions in Chapter 21, “Creating Template,
CSElement, and SiteEntry Assets” and adjust your procedure, using the guidelines below:

1. In the “Name” screen of the Template form:

a. Name the template in a way that will identify it as an InSite master template, so
that users will be able to distinguish it from templates of other types.

b. Make sure the field “For Asset Type” correctly identifies the template as typed or
typeless. (Slots can be created in both typed and typeless JSP templates.)

- If you are creating a typeless template, select can apply to various asset
types.

- If you are creating a typed template, select the asset type you require.

2. In the “Element” screen of the Template form:

a. Set the Usage field to either Usage unspecified or Element defines a whole
HTML page.

b. In the Create Template Element field, select JSP.

3. When coding the element logic (in the “Element” screen of the Template form):

- Insert the following line into the header:

<%@ taglib prefix="insite" uri="futuretense_cs/insite.tld"%>

(This line imports the library that enables you to use the
<insite:calltemplate> tag.)
Content Server 7.0 Developer’s Guide

Chapter 22. Creating Templates to Support Graphical Page Design

Tracking Changes to Master Pages
511
- Create slots in the template by using the following tag for each slot:

<insite:calltemplate
site="site name"
slotname="name of slot" (the name must be unique)
tid="caller template or CSElement id"
[ttype="Template or CSElement"]
[c="asset type"]
[cid="asset id"]
[tname="target template or CSElement name"]
[context="context override"]
[style="pagelet or element"]
[packedargs="packed arguments"]

 <insite:argument name="" value=""/>
 <insite:argument name="" value=""/>

</insite:calltemplate>

For an example of how the <insite:calltemplate> tag is used in context, see
page 507. For more information about the <insite:calltemplate> tag, see the
Content Server Developer’s Tag Reference.

4. When you finish creating the master template, test it by using it in the same way that a
content provider would. For instructions, see “Managing Page Content Using the
InSite Interface,” in the Content Server User’s Guide (for either the advanced or
dashboard interface).

When testing the template, bear in mind that changes to a slot result in automatic
changes to the underlying template code.

5. If you need instructions on sharing or otherwise managing the template, see
“Managing Template, CSElement, and SiteEntry Assets,” on page 499 in this guide.

Tracking Changes to Master Pages
When a master page is saved, Content Server records the final changes (if any) to the slots
in the Template_Composition table (one row per slot). For example, an initially empty
slot in a master template named “IST_Template” is filled with an asset of type Content

Note

• Slots must be named uniquely within the template code (otherwise, the
master template cannot be saved).

• Slots can be nested.

• Slots can be formatted. For example, slots in the context of a table can
be formatted to display borders of a specific width and color. (Note also
that best practices advises against using tables to specify page layout, as
their function is to tabulate data.)

• When the user graphically makes changes to the content of a slot, the
template code is automatically updated to reflect the changes.
Content Server 7.0 Developer’s Guide

Chapter 22. Creating Templates to Support Graphical Page Design

Tracking Changes to Master Pages
512
(rendered by a template named “Detail”). When the master template is saved, the
following information about the slot is recorded in the Template_Composition table.

Data Description

id Arbitrary number that is assigned to a row of data to identify the
data.

cs_ownerid ID of the master template (which holds the slot). In this example, the
name is IST_Template.

cs_slotname Name of the slot.

cs_site Site that was affected by the change.

cs_assettype Type of asset that fills the slot (the c parameter. Content, in this
example).

cs_assetid ID of the asset that fills the slot (the cid parameter).

cs_tname Name of the template that renders the asset (Detail template, in
this example). The names of typeless templates begin with a forward
slash (/).

Note that cs_assetid and cs_tname form an asset-template pair,
which defines the rendered asset.
Content Server 7.0 Developer’s Guide

513
Chapter 23

Creating Collection, Query, Stylesheet, and
Page Assets
The core asset types delivered with CS-Direct provide basic site design logic. This chapter
describes how to create the page, query, and collection assets that implement the
functionality of your online site. It also includes a section for the stylesheet asset type, a
sample asset type delivered with the Burlington Financial sample site.

The preceding chapter describes how to create Template assets. Because you assign
Template assets to your other assets, it is typical to create your templates before you create
your site design asset types.

The procedures for working with assets of any type are very similar and are described
thoroughly in the Content Server User’s Guide. This chapter presents procedures that are
unique for the collection, query, stylesheet, and page asset types. It contains the following
sections:

• Previewing Assets

• Approving Assets

• Sharing Assets

• Deleting Assets

• Collection Assets

• Query Assets

• Stylesheet Assets

• Page Assets
Content Server 7.0 Developer’s Guide

Chapter 23. Creating Collection, Query, Stylesheet, and Page Assets

Previewing Assets
514
Previewing Assets
You can preview any asset that has a Template asset selected in its Template field. The
preview feature also lets you select other templates to use to preview the same asset.

To preview an asset

• Right-click on the asset in the tree view on the Site Plan tab, and select Preview from
the pop-up menu.

• Inspect or edit the asset in the work area, and click the Preview icon.

• Search for a list of assets, and click the Preview button next to an asset in the list of
search results.

CS-Direct renders the asset and displays it in a new browser window, using the template
you have assigned as the default format. To preview the asset with a template other than its
default template, select the template that you want to use from the drop-down list of
templates displayed in the browser, as shown here:

Approving Assets
The publishing process that either copies assets from one system to another system
(Mirror to Server) or renders assets into static files (Export to Disk) is a background
process that is typically configured to run at regularly scheduled times. The publishing
process publishes only those assets that have been approved.

When you approve an asset, the approval system examines the asset to determine if it has
any dependencies on other assets. For example, if the assets in an approved collection are
not approved, the collection cannot be published.

Depending on how your development and management systems are set up, approving
assets for publish might be a workflow step—typically the last workflow step in a
workflow process. For more information about approvals and publishing, see the Content
Server Administrator’s Guide.

Note

Depending on how your templates are written, some of them may not display your
asset correctly in the context of the management system.
Content Server 7.0 Developer’s Guide

Chapter 23. Creating Collection, Query, Stylesheet, and Page Assets

Sharing Assets
515
To approve an asset for publish, you select Approve for Publish from the drop-down list
in the “Inspect” or “Status” form for the asset, as shown here:

If there is more than one publishing destination set up, you then must select which
publishing destination the asset is approved for.

Sharing Assets
If you want to use your assets in more than one site, you can share them so you do not
have to create and maintain the same asset more than once.

Before you share an asset, consider the following tips:

• You can share an asset only to sites that you have access to. If you have access to only
one site, the Share Assets function is not available to you.

• You cannot share page assets.

• Share an asset only if it must be identical on all sites it is shared with; that is, do not
share an asset if you need to make any modifications for one of the sites it is shared
with. In that case, create a new asset for the site that needs the modifications.

• Be sure that the Template assets assigned to shared assets are appropriate. The
Template assets themselves must be shared. Otherwise, you will be unable to preview
the asset on the site you share it with.

• If the shared asset has a workflow assigned to it, you and others can change its
workflow status only when you are working in the asset’s original site.

• It is good practice to share the asset only when you are ready to publish it; that is, to
not share the asset until it has been approved. There is a workflow privilege called
Share Assets, which means that your site administrator can set up a workflow that
enforces this practice.

For the basic procedure for sharing assets, see the Content Server User’s Guide.

Deleting Assets
The Delete function does not actually remove an asset from the database. A better
description is that it marks it as deleted.

When you delete an asset, CS-Direct does the following:
Content Server 7.0 Developer’s Guide

Chapter 23. Creating Collection, Query, Stylesheet, and Page Assets

Collection Assets
516
• Changes the value of the asset’s Name column in its main storage table to its object
ID.

• Changes the value of the asset’s Status column to VO, for “void.”

• Approves the asset for publishing to any destination it has ever been published to.

The following restrictions are enforced when you delete assets:

• You can delete an asset only if you have the privileges to do so.

• Even if you have the ability to delete assets, you cannot delete an asset that is assigned
to someone other than you if you are using the workflow feature.

• You cannot delete an asset if it has associations with other assets. For example, you
cannot delete an article if it is included in a collection. You must remove the article
from the collection before you can delete the article. (CS-Direct displays information
about an asset’s associations when this situation occurs.)

For the basic procedure for deleting assets, see the Content Server User’s Guide.

Collection Assets
A collection asset stores an ordered list of assets of one type. You create (or design) a
collection asset by naming it and selecting query assets for it. By default, you can select up
to three query assets. If your site design requires more queries for collection assets, you
can create additional named associations for the additional queries. For information about
creating associations, see “Step 10: (Optional) Configure Association Fields” on page 309.

A collection uses a query asset to obtain a list of possible assets for the collection. You
build (or populate) a collection by running its queries, selecting assets from the results of
the queries, and then ranking and ordering the assets that you selected. This ranked,
ordered list is the collection.

Using collections is one way to keep the content displayed on rendered pages current and
up-to-date. The Burlington Financial sample site uses several collections. For example,
you can select a collection in the Top Stories field for a Burlington Financial page asset. A
publisher or content provider can then change the content identified by that association by
doing one of the following:

• Selecting a different collection from the tree

• Building the assigned collection and selecting different assets in it

Before You Begin
 Before you create collection assets, note the following:

• A collection must have at least one query, so be sure that you create the queries before
you try to create your collections.

• Because you assign templates to collections, you should also create the Template
assets before you create your collection assets.

Before you build the collection, you should determine how the Template asset assigned to
it is coded. For example, if you select 100 assets for a collection but the template is coded
to display only five of them, the following occurs:

• The rendered page that displays those assets displays only the first five.
Content Server 7.0 Developer’s Guide

Chapter 23. Creating Collection, Query, Stylesheet, and Page Assets

Collection Assets
517
• The page takes longer to render than necessary because CS-Direct has to sort through
all 100 assets even though it displays only the first five.

For more information about building a collection, see the Content Server User’s Guide.

Creating Collection Assets

To create a collection asset

1. If necessary, log in to the Content Server interface.

2. Make sure that you have completed the steps in section “Before You Begin” on page
516.

3. Click New on the button bar.

4. Select New Collection from the list of asset types. (If Collection asset types are not
enabled, the option is not displayed.)

The “Collection” form appears:

5. (Required) In the Name field, type a unique, descriptive name for the page. You can
enter up to 64 alphanumeric characters, but the first character must be a letter.
Underscores (_) and hyphens (-) are acceptable, but tab and space characters are not.

The name must be unique for collection assets you are creating for this site.

6. In the Description field, type a brief description of the collection. You can enter up to
128 characters.

Note

To use this procedure, you must have Collection asset types enabled for
the site you are working in. Step 4 indicates whether they are enabled.
Content Server 7.0 Developer’s Guide

Chapter 23. Creating Collection, Query, Stylesheet, and Page Assets

Query Assets
518
7. In the Template field, select a Template asset from the drop-down list.

8. In the Category field, select a category from the drop-down list. (If you do not select
a category, the first item on the list is selected by default.)

9. In the Keywords field, enter keywords that you and others can use as search criteria in
the “Advanced Search” form when you search for this collection in the future. For
information about searching for assets, see the Content Server User’s Guide.

10. In the Associated queries section, select up to three queries. All of the queries that
you select for this collection must return assets of the same type.

11. Click Save.

Sharing Collection Assets
Before you share a collection asset, consider the following:

• Building a collection in one site builds it in all of the sites that it is shared with. You
cannot build a collection to include different assets for different sites.

• The query assets used in the shared collection must be coded to return only assets that
are shared to all the sites that the collection is shared with.

• As with any shared asset, be sure that the template assigned to the collection is also
shared to the other site.

For the basic procedure for sharing assets, see the Content Server User’s Guide.

Query Assets
A query asset stores a database query that retrieves a list of other assets from the database.
However, if the query is to be used for a collection, it can return assets of one type only.

Query Assets and Other Assets
CS-Direct uses queries differently in collection assets than it does for other assets:

• When you build (or populate) a collection, you run one or more query assets and then
select and order the assets that you want from the resulting list. The collection is a
static list of assets selected from the query resultsets.

• You can select queries for a page asset either through informal relationships or
through named associations. You can select queries for other asset types (article, for
example) through named associations.

When the asset is rendered, it does not invoke the query directly. Either the template
element that formats the asset or a template element that formats the query is coded to
invoke a standard CS-Direct element called:

OpenMarket/Xcelerate/AssetType/Query/ExecuteQuery

This element runs the query asset when the asset it is associated with is rendered,
which means the resultset is dynamic.
Content Server 7.0 Developer’s Guide

Chapter 23. Creating Collection, Query, Stylesheet, and Page Assets

Query Assets
519
How the Query Is Stored
A query asset can store its database query in one of two ways:

• Directly. You can write the query directly into the SQL query field of the “Query”
form. You can either use standard SQL for the query, or, if your CS-Direct systems use
the Verity search engine, you can use an appropriate search engine query.

• Indirectly. You can write the query in an element and then store the location of that
element in the query asset by identifying it in the Element name field in the “Query”
form. An element for a query is like any other element: you can use XML, JSP,
JavaScript, HTML, and so on.

Most of the Burlington Financial queries store the query directly; that is, the SQL query is
written directly into the SQL query field in the “Query” form. For example, the following
code is from the News Wire Feed Query:

SELECT DISTINCT Article.id, Article.name, Article.updateddate,
Article.subheadline, Article.abstract, Article.description,
Category.description AS category, StatusCode.description AS
statusdesc FROM Article, Category, AssetPublication, StatusCode
WHERE Article.status!=’VO’ AND Article.category=Category.category
AND Article.status=StatusCode.statuscode AND
Category.assettype=’Article’ AND Article.source=’WireFeed’ AND
Article.category=’n’ AND Article.id = AssetPublication.assetid AND
AssetPublication.pubid = 968251170475 ORDER BY Article.updateddate
DESC

Commonly Used Fields for Queries
There are several CS-Direct fields, four of which are used in the preceding News Wire
Feed query example, that you are likely to use in your queries:

• status

• updateddate

• source

• category

• pubid

• startdate

• enddate

The rest of this section defines the fields in this list.

status
All assets have a status. When an asset is created, CS-Direct adds a row to the table that
holds assets of that type and sets its status to PL, which means “created.”

The following table lists and defines the status codes that CS-Direct uses:

Status Code Definition

PL created

ED edited
Content Server 7.0 Developer’s Guide

Chapter 23. Creating Collection, Query, Stylesheet, and Page Assets

Query Assets
520
These codes are listed in the StatusCode table in the database.

When an asset is deleted, CS-Direct changes its status to VO and renames the string in its
Name field to its object ID.

Write your queries to exclude assets whose status is VO. For example: WHERE
Article.status!=‘VO’

updateddate
The information in the updateddate field represents the date on which the information in
the status field was changed to its current state. Depending on the design of your site, you
might want a query to return assets based on this date.

source
The source field is a default CS-Direct field that can identify where an asset originated. It
is not required.

For example, the Burlington Financial sample site has sources named WireFeed, Asia
Pulse, UPI, and so on. (You add sources for your sites on the Admin tab in the tree. See
“Step 12: (Optional) Configure Sources” on page 312.)

If you use source with your assets, you can write your queries to use source as a parameter.
In the previously mentioned News Wire Feed query example, the AND
Article.source=’WireFeed’ statement ensures that only articles with WireFeed in
their Source fields are selected by this query.

category
The category is a default CS-Direct field that can categorize assets according to a
convention that works for your sites. It is not required.

For example, the Burlington Financial sample site has categories named Personal Finance,
Banking and Loans, Rates and Bonds, News, and so on. (You add categories for your sites
on the Admin tab in the tree. See “Step 11: (Optional) Configure Categories” on page
311.)

If you use category with your assets, you can write your queries to use category as a
parameter. In the previously mentioned News Wire Feed query example, the
Article.category=’n’ statement includes article assets from the News category.

pubid
A pubid is a unique value that identifies a site (or, in old terminology, a publication).
When an asset is created, CS-Direct writes information about that asset to several database
tables, one of which is the AssetPublication table.

An asset’s row in the AssetPublication table includes the pubid of the site the asset
was created for. If the asset is shared, the AssetPublication table has a row for each

RF received (from XMLPost, for example)

UP upgraded from Xcelerate 2.2

VO deleted (void)

Status Code Definition
Content Server 7.0 Developer’s Guide

Chapter 23. Creating Collection, Query, Stylesheet, and Page Assets

Query Assets
521
site that the asset is shared with. For example, if an article asset is available in two sites,
there are two rows for that article in the AssetPublication table.

If you have only one CS-Direct site on your system or if your query results do not need to
be site-specific, you do not need to code your queries to consider pubid. The Burlington
Financial queries, however, are coded to restrict assets based on the pubid of Burlington
Financial (AssetPublication.pubid = 968251170475) so that they do not return
assets from another site.

startdate and enddate
Neither of the sample sites use the startdate and enddate fields but the CS-Direct
database has columns to store this information. These fields exist so that you can assign
time limits to assets.

If your asset types use the startdate and enddate fields, you can create queries that select
assets based on the dates stored in those fields.

Before You Begin
Before you begin creating query assets, consider the following:

• Query assets that are used on assets other than collections are not required to have
templates. You can either create template elements specifically for your query assets
that identify, run, and display the results, or you can code the template elements for
your page assets to do that.

• When you write a query for a collection, be sure to code it to select the fields that are
required for that asset type. CS-Direct is programmed to expect information from an
asset type’s required fields so that it can display that information in the “Build
Collection” form.

For example, the Name and Description fields are required fields for a Burlington
Financial article. (The Description field is renamed and displayed as Headline in the
form.) Therefore, the queries for Burlington Financial collections that hold Burlington
Financial articles select the Name and Description fields. Those queries also select
several other fields, but CS-Direct requires at least the Name and Description fields
to present the assets returned by the queries in the Build Collection forms correctly.

• Query assets that are used only for collections have no need for templates. The
template element assigned to the collection formats the assets in a collection’s list of
assets.

• For performance reasons, be sure to create efficient queries. For example:

- Include as much logic as possible in the query rather than in the element that runs
and displays the results of the query. For example, if you want to filter or constrain
a list of articles, be sure the query performs the filtering or constraining step so
that the list returned to the element is complete rather than coding the query to
return the entire list and using the element code to constrain the list.

- Be sure your queries return only the information that the element displays.

• Query assets that are for collections must return assets of one type only.
Content Server 7.0 Developer’s Guide

Chapter 23. Creating Collection, Query, Stylesheet, and Page Assets

Query Assets
522
Creating Query Assets

To create a query asset

1. If necessary, log in to the Content Server interface.

2. Click New on the button bar.

3. Select Query from the list of asset types. (Query asset types must be enabled for your
site.)

The “Query” form appears:

4. (Required) In the Name field, type a unique, descriptive name for the query asset. You
can enter up to 64 alphanumeric characters, but the first character must be a letter.
Underscores (_) and hyphens (-) are acceptable, but tab and space characters are not.

5. In the Description field, type a brief description of the query. You can enter up to 128
characters.

6. In the Template field, select a Template asset from the drop-down list.

7. In the Category field, select a category from the drop-down list. (If you do not select
a category, the first item on the list is selected by default.)

8. In the Result of query field, select the type of asset that this query returns. (The query
can return assets of one type only if this asset is to be used by a collection.)

9. Do one of the following:

- If you want to store the query directly in this asset, select Database, click in the
SQL query field, and then write your query.
Content Server 7.0 Developer’s Guide

Chapter 23. Creating Collection, Query, Stylesheet, and Page Assets

Stylesheet Assets
523
- If you wrote the query in an element, select Element and then enter the entire
name of the element in the Element name field.

10. Click Save.

Sharing Query Assets
If you plan to share a query asset with another site, consider the following tips:

• If you want your query results to be site-specific, be sure to include a WHERE clause for
pubid so that the query does not return assets to a site where those assets have not
been shared.

- For example, in either a query for a collection or a query for a static site, you can
use the following statement:
WHERE AssetPublication.pubid = SessionVariables.pubid

because SessionVariables.pubid is always set when you are building a
collection or using the Export to Disk function.

- If the query is to be used on a dynamic site, you can use that same statement as
long as you code your elements to either pass in the identify of pubid to the
ExecuteQuery element or to set the SessionVariables.pubid variable.

• Because page assets cannot be shared, you should not share query assets if they return
page assets.

• As with any shared asset, if the query has a template, be sure that the template
assigned to the query is also shared with the other site.

For the basic procedure for sharing assets, see the Content Server User’s Guide.

Previewing and Approving Query Assets
First, remember that not all query assets have their own templates. If a query asset was
designed to be used on a page asset and it is the page asset’s template that actually formats
the query, you must preview the page in order to preview the query.

If your online site is a dynamic site — that is, you use the Mirror to Server publishing
method—a query asset might return different assets on the management system than it
does on the delivery system, depending on which assets have been published.

Therefore, if you preview your query to determine whether you should approve it or not,
remember that the assets that it returns on the management system (where you are
previewing it) could be different than the assets that it will return on the delivery system
after it is published.

Stylesheet Assets
Stylesheet assets store style sheet files of any format (CSS, XSL, and so on). This asset
type is installed only if you install the Burlington Financial sample site. Typically, you do
not assign Template assets to stylesheet assets because they are, effectively, templates in
themselves. However, if you need to create a different kind of stylesheet or you want to
display information about the stylesheet on a site, you can certainly create a Template
asset and assign it to a stylesheet asset.
Content Server 7.0 Developer’s Guide

Chapter 23. Creating Collection, Query, Stylesheet, and Page Assets

Stylesheet Assets
524
Creating Stylesheet Assets

To create a stylesheet asset

1. If the Content Server interface is not already open, log in.

2. Click New on the button bar.

3. Select Stylesheet from the list of asset types.

The new “Stylesheet” form appears:

4. (Required) In the Name field, type a unique, descriptive name for the stylesheet. You
can enter up to 64 alphanumeric characters, but the first character must be a letter.
Underscores (_) and hyphens (-) are acceptable, but tab and space characters are not.

5. In the Description field, type a brief description of the stylesheet. You can enter up to
128 characters.

6. (Optional) In the Template field, select one from the drop-down list.

7. In the Category field, select a category from the drop-down list. (If you do not select
a category, the first item on the list is selected by default.)

8. In the Source field, select one from the drop-down list.

9. Do one of the following:

- In the Stylesheet field, enter the full path and file name of the stylesheet.

Note

Some browsers do not allow you to type into the Stylesheet field.
Content Server 7.0 Developer’s Guide

Chapter 23. Creating Collection, Query, Stylesheet, and Page Assets

Page Assets
525
- Click Browse next to the Stylesheet field and select the stylesheet file.

10. In the Mimetype field, select the mimetype of the file you specified in the previous
step from the drop-down list. If the correct mimetype is not displayed in the list, see
“Step 13: (Conditional) Add Mimetypes” on page 313.

11. In the Keywords field, enter keywords that you and others can use as search criteria in
the “Advanced Search” form when you search for this template in the future. For
information about searching for assets, see the Content Server User’s Guide.

12. Click Save.

CS-Direct uploads the file you specified in the Stylesheet field.

Sharing Stylesheet Assets
Stylesheet assets are standalone which means that you can share them without considering
dependencies with other assets.

Page Assets
Page assets are site design assets that store references to other assets, organizing them
according to the design that you and the other designers are implementing.

Open CS-Direct and examine the page assets listed in the site tree for the Burlington
Financial sample site:

These page assets represent sections of the site, in essence the structure or organization of
the site. They do not represent each and every rendered page that can possibly be served.
This structural organization is primarily for the benefit of your CS-Direct users. This is not
the only way of organizing your site, but it is convenient for your editors to see a structure
that resembles your finished website.
Content Server 7.0 Developer’s Guide

Chapter 23. Creating Collection, Query, Stylesheet, and Page Assets

Page Assets
526
Typically, you create page assets once: when you design the site. You associate
collections, queries, articles, and so on with page assets and you code template elements
that format the types of assets you want to associate with the page asset.

Before you can select the correct content for your page assets, you must be familiar with
how your site is structured and what your template elements for page assets are designed
to do. That is why you and other site developers—the people who are coding elements and
creating Template assets—typically create the page assets for a site.

Creating a Page Asset
1. If necessary, log in to CS-Direct, and if given a choice, select a site.

2. Click Search on the button bar and run as many searches as necessary to find all the
articles, queries, images, collections, or other assets that you want to include on the
page.

3. In the search results list, select the check box on the right, next to the name of each
asset that you want to display on the new page, and click the Add to My Active List
button at the bottom of the list, as shown here:

4. CS-Direct displays an updated My Active List page on the right, and also lists the
assets on the My Active List tab in the tree view on the left:

5. Click New on the button bar.

6. Select Page from the list of asset types. (Page asset types must be enabled for your
site.) The “Page” form appears.

7. (Required) In the Name field, type a unique, descriptive name for the page. You can
enter up to 64 alphanumeric characters, but the first character must be a letter.
Underscores (_) and hyphens (-) are acceptable, but tab and space characters are not.

The name must be unique for page assets you are creating for this site.

8. In the Description field, type a brief description of the page. You can enter up to 128
characters.

9. In the Template field, select a Template asset from the drop-down list.

10. In the Category field, select a category from the drop-down list. (If you do not select
a category, the first item on the list is selected by default.)
Content Server 7.0 Developer’s Guide

Chapter 23. Creating Collection, Query, Stylesheet, and Page Assets

Page Assets
527
11. If you are creating page assets for exporting to a static site and you are using the
Filename and Path fields, enter the appropriate file name information according to
the conventions that your organization is using. For information about how the Export
to Disk publishing process uses this information, see the Content Server
Administrator’s Guide.

12. To add items from your active list to the Current Contents list on the page form,
select and highlight items on the Active List tab in the tree view, and click Add
Selected Items, as shown here:

Whether you select assets from the Current Contents section, the Related section, or
some combination of both to appear on the page asset depends on how you have coded
the template element for the page.

Selecting assets from the Contains section creates unnamed relationships between the
asset and this page asset. The fields in the Related section represent named
associations. In both cases, the asset becomes a child asset of this page asset, and you
can then use an ASSET.CHILDREN tag to return those assets.

For information about the ASSET.CHILDREN tag, see the Content Server Tag
Reference. For information about named associations and unnamed relationships, see
“Relationships Between Basic Assets” on page 199.

Adding items to the Contains section does not guarantee that those assets will
actually appear on the rendered version of the page asset. The template element that
you select from the Template field must be coded to identify and display the types of
assets that are in the Contains section, otherwise those assets cannot be rendered.
Content Server 7.0 Developer’s Guide

Chapter 23. Creating Collection, Query, Stylesheet, and Page Assets

Page Assets
528
This also applies to the assets that you select in the Related section of the form.
Selecting assets from fields that designate named associations between the page asset
and assets of other types does not guarantee that those assets will appear on the
rendered version of the page asset. The template element must be coded to display
them, otherwise, those assets cannot be rendered.

13. Use the arrows on the right side of the Contains list to position the assets in the
correct order. This determines the order of the assets on a rendered page.

14. In the Related section of the form, select the assets that you want to use as the named
associations for the page.

The assets that you select in this section become child assets of this page asset.

15. Click Save.

The page is saved. It now appears on the site tree under the Unplaced Pages page. To
place the page, see “Placing Page Assets” below.

Placing Page Assets
After you create a page asset, you position it in the appropriate location in the site tree by
using the Place function.

To place a page asset

1. If necessary, log in to the Content Server interface.

2. Click the Site Plan tab, where you should see the site tree with the new page asset in
the Unplaced Pages list, as shown here:

3. Expand the list of Placed Pages in the site tree.

4. Select a parent for the page you are placing by doing one of the following:

- If you want to place a page at the top-most level in the tree, right-click on the
Placed Pages icon.

- Otherwise, right-click on the placed page under which you want to insert the new
unplaced page, and choose Place Page from the pop-up menu.

The place page form appears in the work area on the right. It lists all child pages that
are placed under the parent page. It also lists all pages that have not yet been placed in
the site tree:

Note

See the Content Server User’s Guide for instructions about collection assets.
Content Server 7.0 Developer’s Guide

Chapter 23. Creating Collection, Query, Stylesheet, and Page Assets

Page Assets
529
5. Place the page:

a. In the list of unplaced pages, type a number in the Rank field to designate the new
page’s position in the list of child page assets. Position numbering starts at 1, the
top of the list. (In this example, it makes sense to type “1”.)

b. Click Save.

The unplaced page asset moves to the site tree, to its assigned rank. (To view the
page asset in its new location, you may need to right-click in the site tree and
choose Refresh All from the pop-up menu.)

6. Preview both the parent page and the placed child page. (See “Collection Assets” on
page 516 for instructions.)

Moving Page Assets in the Site Tree
In addition to placing unplaced pages, you can also use the place page form to:

• Change the order of child pages within the same parent page.

• Move a child page from one parent page to another.

Re-ordering Child Pages

To re-order children of the same parent page

1. If necessary, log in to the Content Server interface.

2. Click the Site Plan tab and expand the list of Placed Pages in the site tree.

3. Right-click on a placed page that has more than one child page, and choose Place
Page from the pop-up menu.

The place page form appears in the work area on the right.

4. In the list of placed child pages, type new values in the Rank column to re-order the
child pages.

5. Click Save.

The child pages move to their new positions in the site tree.
Content Server 7.0 Developer’s Guide

Chapter 23. Creating Collection, Query, Stylesheet, and Page Assets

Page Assets
530
Changing Parent Pages

To move a child page from one parent page to another

1. If necessary, log in to the Content Server interface.

2. Click the Site Plan tab and expand the list of Placed Pages in the site tree.

3. Remove the page asset from its parent page:

a. Right-click on the placed page whose child page you want to move, and choose
Place Page from the pop-up menu.

The place page form appears in the work area on the right.

b. In the list of placed child pages, select the Remove check box next to the child
page that you want to move, as shown here:

c. Click Save.

The child page moves to the list of Unplaced Pages in the site tree.

4. Place the page asset under its new parent page:

a. In the site tree, right-click on the placed page where you want to insert the
unplaced child page, and choose Place Page from the pop-up menu.

The place page form appears in the work area on the right.

b. In the list of unplaced pages, type a number in the Rank field to designate the new
page’s position in the list of child page assets. Position numbering starts at 1, the
top of the list. (In this example, it makes sense to type “1”.)

c. Click Save.

The previously unplaced page asset moves to the site tree, to its assigned rank.

Placing Page Assets and Workflow
CS-Direct has a workflow feature that controls the flow of assets as they pass from one
team member to another; for example, from author to editor to approver to publisher. The
workflow administrator can create processes that control who can place page assets in the
site tree and during which workflow step they can do so. Note the following:

• The Place Page workflow privilege controls all place page functions: Place Pages,
Remove, and Rank.

• You must have the proper privileges for both the parent page on which you invoke
Place Pages, and for any child page that you want to Rank or Remove.

For information about the workflow process, see the Content Server Administrator’s
Guide.
Content Server 7.0 Developer’s Guide

Chapter 23. Creating Collection, Query, Stylesheet, and Page Assets

Page Assets
531
Editing Page Assets
In general, there are two ways to edit an existing page asset:

• Change the assets, but not the asset types, that are included on the page. For example,
move new assets to the Contains list from your active list; select a different
collection, query, or article from a named association field; or rebuild a collection
already associated with the page asset to include different assets.

• Create a new association or change the actual structure of the page asset in some way.

Although you may frequently change the content in the collections or queries on a page at
regular intervals, you are less likely to change the associations, asset types, or structure of
a page after the site goes live. This may also require you to edit the code in the template
element that formats the page.

Deleting Page Assets
During your site design phase, it is likely that you will create and delete many page assets.
However, before deleting a page asset from a site that you have published, be sure that you
understand the consequences. For example:

• Have you removed references to the page from other page assets?

• Are any of your other page templates coded to extract and use information about this
page asset in any way?

Before you delete a page asset, be sure to remove any references to it from any other
elements or pages. It is a good idea to unplace a page asset before you delete it.
Content Server 7.0 Developer’s Guide

Chapter 23. Creating Collection, Query, Stylesheet, and Page Assets

Page Assets
532
Content Server 7.0 Developer’s Guide

533
Chapter 24

Coding Elements for Templates and
CSElements
Elements provide the code that identifies, extracts, and displays your content. In a Content
Server system, your content is stored as assets. Therefore, much of the XML or JSP code
in your elements is dedicated to identifying the appropriate asset for the appropriate
context and then extracting and displaying that asset’s data.

This chapter describes how to code the elements that you make for your template and
CSElement assets. For information about creating the assets themselves, see Chapter 21,
“Creating Template, CSElement, and SiteEntry Assets.”

This chapter contains the following sections:

• About Dependencies

• About Coding to Log Dependencies

• Calling CSElement and SiteEntry Assets

• Coding Elements to Display Basic Assets

• About Coding Elements that Display Flex Assets

• Coding Templates That Display Flex Assets

• Creating URLs for Hyperlinks

• Handling Error Conditions
Content Server 7.0 Developer’s Guide

Chapter 24. Coding Elements for Templates and CSElements

About Dependencies
534
About Dependencies
Your Content Server system tracks and relies on two kinds of dependencies to function
correctly:

• Approval dependencies. These are conditions that determine whether an approved
asset can be published.

The approval system calculates the approval dependencies for an asset when it is
approved. If there are dependent assets that also need to be approved, the parent asset
will not be published.

• Compositional dependencies, that is, page composition dependencies. These are
dependencies between assets and the pages and pagelets that they are rendered on that
determine whether a page needs to be regenerated.

The ContentServer servlet logs compositional dependencies when it renders pages.
CacheManager consults the dependency log to determine when to regenerate the
cached pages. The Export to Disk publishing method consults the dependency logs to
determine when an exported page file must be regenerated.

The Publishing System and Approval Dependencies
The publishers, editors, and content providers who work on your management system
approve assets to be published to a target destination. The publishing system then
publishes the approved assets automatically, as a background process, according to the
schedule that your administration team set up for your Content Server system.

An asset can be published only if it meets all specified approval dependencies, that is, all
associated assets must have been either approved or previously published. If not, the asset
is held from being published until the dependencies are met: the dependent (related) assets
must themselves be approved for publishing to the same destination.

This approval process frees your content and editorial team from the responsibility of
manually checking asset dependencies and then publishing a large number of related
assets. It also ensures that there can be no broken links on your online site after assets are
published.

If an asset is subsequently changed, the asset is no longer considered to be approved, and it
must be approved again before it can be re-published.

Calculating Approval Dependencies
Approval dependencies are recorded at the time the asset is approved. They are written to
the ApprovedAssetDeps table in the Content Server database.

The approval status of an asset is determined by its dependency relationships, which
include the approval status of all asset items associated with a particular asset item, as well
as the dependency relationships of those associated items.

Note

One of your responsibilities while coding elements is to ensure that your code
logs compositional dependencies accurately, and, if you are designing a static
site, that it sets approval dependencies appropriately, as well.
Content Server 7.0 Developer’s Guide

Chapter 24. Coding Elements for Templates and CSElements

About Dependencies
535
What is the basis for the dependency calculation? That depends on the publishing method:

• For Export to Disk, the approval system renders the asset using either the template
that is assigned to it or, if there is one specified, the default approval templates for
assets of this type. The tags in the template code set approval dependencies that
determine the appropriate dependents for the approved asset. The dependent assets
must be in an appropriate approval state before the current asset can be published.

• For Mirror to Server or Export Assets to XML, the approval process examines the
data relationships between asset types. Basic assets have associations. Flex assets
have family relationships. Both of these relationships create approval dependencies
for these publishing methods. For example, if you approve a flex asset, it will be held
from a publishing session unless its parent assets are in an appropriate approval state.

Exists vs. Exact vs. None
Approval dependencies can be exists, exact, and none. This section defines each kind of
approval type.

You cannot change the approval dependency type for CSElements and SiteEntry assets,
embedded links and pagelets, or the Engage visitor data assets. With the exception of flex
attributes—whose dependency type you set when you create the attribute—you also
cannot change the approval dependency type for the flex family asset types. For basic
asset types, you set the type of approval dependency for their associated assets when you
configure the association fields.

When your publishing method is Export to Disk, the tags that set compositional
dependencies when pages are rendered also create approval dependencies when the
approval system calculates whether an asset can be published. When your code sets
approval dependencies on pagelets generated for other assets, you can set the approval
type to exists, exact, or none.

Exists
With an exists dependency, the dependent asset must merely exist on the target—the
version of the asset does not matter. An exists dependency means that an approved parent
asset can be published even if a child asset changes (which means that the child asset is no
longer approved), as long as the child asset was previously approved and published to that
same destination.

For example, in the following sequence, a collection asset has an exists relationship with
its ranked children:

1. A collection and all of its ranked articles are approved and published to a target.

2. One of the ranked articles is edited again, but not approved.

3. The collection itself is edited again, approved, and published to the destination.

The collection is not held back from publishing by the changed but unapproved
article, because a prior version of the article already “exists.”

Note

For information about the types of approval dependencies created by the
the relationships between assets of the various types, see the publishing
chapter in the Content Server Administrator’s Guide.
Content Server 7.0 Developer’s Guide

Chapter 24. Coding Elements for Templates and CSElements

About Dependencies
536
However, in the following example, a collection with an exists dependency relationship to
its articles cannot be published:

1. A collection and all of its ranked articles are approved but not published.

2. One of the ranked articles is edited again.

Because the edited article was never published to the destination, it does not yet exist for
that destination, which means that the collection cannot be published. The collection asset
is held and both the collection and the edited article must be approved before the
collection can be published.

The exists approval type is generally useful for links.

Exact
With an exact dependency, the dependent asset must be the exact version on the target. No
other previously approved version will do. An exact dependency means that the parent
asset cannot be published if the version of the parent and child assets on the destination do
not match.

In the following example, a page asset has an exact dependency with its article assets:

1. A page asset and all of its article assets are approved and published to a destination.

2. One of the articles is edited again, but is not re-approved.

3. The page asset is edited and is re-approved.

The page asset is held, and the resulting form in the Content Server interface displays
a link that points to a list of the assets that must be approved before the page asset can
be published. This list shows the article that was edited but not re-approved.

4. The edited article is approved.

The page asset has already been approved and can now be published because the
version stamps of the article and the page asset match.

5. Another article asset associated with the page asset is edited.

6. Both the page asset and the edited article asset must be re-approved because the
version stamps of the two do not match:

- The article must be re-approved because it was edited but not yet re-approved.
- The page asset must be re-approved because it was previously approved with a

dependency on a different version of the article.

The exact approval type is generally useful for embedded content.

None
A none dependency means that the approved asset can be published no matter what
approval state the dependent asset is in. You can set the approval dependency type to none
by adding the DEPTYPE parameter to a tag that sets an approval dependency and setting
that parameter to none.

Note that setting DEPTYPE to none effects the approval dependency only. When the
Export to Disk process generates the page and invokes the tag, a compositional
dependency is logged. But when the approval system invokes the tag during its
calculation, no approval dependency is logged.
Content Server 7.0 Developer’s Guide

Chapter 24. Coding Elements for Templates and CSElements

About Dependencies
537
Approval Templates for Export to Disk
When assets are approved for a publishing destination that uses the Export to Disk
publishing method, the approval system examines the template assigned to the asset to
determine its dependencies.

However, when Export to Disk actually publishes the asset, it does not necessarily use the
template that is assigned to the asset. Why? Because the code in another element could
determine that a different template is used for that asset in certain cases.

Consider the Burlington Financial sample site. An article asset from this sample site can
be rendered by several different templates, depending on the context.

So when you approve an article asset for the Burlington Financial sample site, which
template should the approval process use to determine the dependencies for the article?
The one that contains the most representative set of dependencies for all of the templates.
For an example, see the Burlington Financial template article named Full. You may decide
to create a special template that contains all the possible dependencies for assets of each
type.

What if the template that contains the most representative set of dependencies is not the
template that you want to assign to the asset? Set it as the Default Approval Template for
assets of that type.

You can set Default Approval Templates for each asset type and for each publishing
destination. This feature is located in the tree on the Admin tab:

Subtypes, Flex Definitions, and Approval Templates
If you are using flex assets for a static site, you can assign more than one default approval
template to the flex asset type in the family. You can designate a different default approval
template for each flex definition.

Note

If you specify a default approval template for an asset type on a destination that
uses the Mirror to Server publishing method, that template is used when you
preview the asset on the Asset Status screen, but not when the asset is approved or
published.
Content Server 7.0 Developer’s Guide

Chapter 24. Coding Elements for Templates and CSElements

About Dependencies
538
For basic assets, the Subtype feature provides a way to further categorize assets of a single
asset type. You can use this feature to assign more than one default approval template for
assets of a specific type, based on some other organizing construct.

For example, perhaps the approval template for sports articles should be different than the
approval template for world news articles. You can create a sports subtype and a world
news subtype for the article asset type and then assign different approval templates for
each subtype of the asset type.

You create subtypes for basic assets either in the asset descriptor file when you create the
asset type or by using the Asset Types option on the Admin tab if you decide you need
subtypes after the asset types were created. You assign a subtype to an asset by using the
New and Edit asset forms. As mentioned, flex assets already have subtypes: their flex
definitions.

For more information about configuring subtypes for basic assets, and about subtypes in
general, see Chapter 15, “Designing Basic Asset Types.”

Page Generation and Compositional Dependencies
Compositional dependencies are recorded in different ways:

• When the Export to Disk publishing method renders a page, it logs compositional
dependencies to the appropriate publishing tables. Then, when it’s time to publish
again, Export to Disk can determine which pages need to be regenerated based on
which assets are being published—it generates all the pages that have logged the
assets as compositional dependents.

• When Content Server renders and caches a page, it logs the dependencies in the
SystemItemCache table at the time a page is rendered and cached. Each row in this
table holds the ID of an asset and the cache key or ID of the generated page that the
asset was rendered on.

CacheManager and the Page Caches
The CacheManager maintains the Content Server page caches. As assets are changed, it
consults the SystemItemCache table to determine which cached pages those assets were
rendered on. Then it works through the SystemPageCache table, flushing and
regenerating the appropriate pages.

After it makes changes to the Content Server page cache, CacheManager communicates
that information to all the Satellite Servers participating in your Content Server system,
the co-resident Satellite Server and any remote Satellite Servers that are installed in your
system. The Satellite Server applications then update the Satellite page caches.

Note

If you have the appropriate permissions, you can examine the data in the
SystemItemCache and SystemPageCache tables, but, as with any
other system table in the Content Server database, do not alter the
information stored in these tables in any way.
Content Server 7.0 Developer’s Guide

Chapter 24. Coding Elements for Templates and CSElements

About Coding to Log Dependencies
539
CacheManager and Mirror to Server Publish Sessions
The CacheManager interacts with the publishing system during Mirror to Server
publishing session. When a Mirror to Server publishing session ends, the publishing
system provides a list of all the IDs of all the assets that were included in the publish
operation to the CacheManager servlet on the destination system.

The CacheManager compares that list to the compositional dependencies logged for the
pages in the cache to determine which pages and pagelets need to be flushed from the page
cache and regenerated. It updates the Content Server page cache accordingly, and then
sends the list of pages to the co-resident and remote Satellite servlets so they can flush
those same pages and get new versions from the Content Server page cache.

CacheManager and the Preview Function
When you preview an asset (on the development or management system), the Content
Server interface executes the page name of the template for the asset. ContentServer
renders the page, caches the page, and logs the compositional dependencies between the
rendered page and the asset.

CacheManager updates the cached versions of previewed pages when assets are saved.
That is, when someone clicks Save, CacheManager compares the object ID of that asset to
the compositional dependencies logged for the pages in the cache. It then clears and
refreshes the appropriate pages in the page cache and communicates the information about
the changed pages to the Satellite servlets.

About Coding to Log Dependencies
While you are coding elements, one of your responsibilities is to include code that logs
dependencies accurately.

There are several tags that log compositional dependencies. When the tag is executed,
Content Server logs a dependency between the rendered page and the asset by writing this
information in the SystemItemCache table.

Note that for a static site using the Export to Disk publishing method, the tags that log
compositional dependencies can also log approval dependencies. When an asset is
approved, the approval system renders that asset to determine whether it can be published.
It logs the results of these tags to the ApprovedAssetDep table unless the tag sets the
approval dependency type to none. (See “Exists vs. Exact vs. None” on page 535 for more
information about the “none” dependency type.)

This section presents the tags that log dependencies alphabetically. For more information
about these and any other tag, see the Content Server Tag Reference.

ASSET.LOAD and asset:load
When Content Server executes an ASSET.LOAD tag (or asset:load), it automatically
logs a compositional dependency for the asset that is loaded. For example:

<ASSET.LOAD TYPE="Page" NAME="target" FIELD="name" VALUE="Home"/>

That line of code marks a compositional dependency between the page asset named
“Home” and the rendered page that is displaying this asset.
Content Server 7.0 Developer’s Guide

Chapter 24. Coding Elements for Templates and CSElements

About Coding to Log Dependencies
540
Setting the Approval Dependency Type
When an asset is approved for an Export to Disk destination and the approval system
renders this tag, the tag also logs an approval dependency between the assets that are in
play.

By default, the approval dependency for ASSET.LOAD is set to exact. You can set the
dependency to exists or to none by using the DEPTYPE parameter. For example:

<ASSET.LOAD TYPE="Page" NAME="target" FIELD="name" VALUE="Home"
DEPTYPE="exists"/>

The ASSETSET (assetset) Tag Family
You use the ASSETSET tag family to create a set of one or more flex assets. The following
tags create assetsets and define compositional dependencies for the assets in the set:

ASSETSET.SETASSET and assetset:setasset
ASSETSET.SETEMPTY and assetset:setempty
ASSETSET.SETLISTEDASSETS and assetset:setlistedassets
ASSETSET.SETSEARCHEDASSETS and assetset:setsearchedassets

When an asset from the assetset is rendered, the compositional dependency is logged.

The first three tags define the following compositional dependencies:

• A dependency between each flex asset in the assetset and the rendered page.

• A dependency between the flex asset’s parents and the rendered page. Because flex
assets inherit values from their flex parent assets, a change to a parent can mean a
change to the flex asset and that means the pages that hold the asset may no longer be
accurate.

The fourth tag, assetset:setsearchedassets, creates an assetset from the results of
a search state. Search states are queries, which means there is no way to predict the
identities of the assets in the set. Therefore, the ASSETSET.SETSEARCHEDASSETS tag
defines the compositional dependency as “unknown.” When a compositional dependency
is unknown, it means the page must be regenerated during each Export to Disk publishing
session and updated in the page caches after each Mirror to Server publishing session,
whether it needs it or not.

If you have a search state that describes a fixed set of assets whose identities will not
change, you instruct Content Server to set compositional dependencies for the assets in the
assetset by setting the optional fixedlist property to “true.”

For example:

<assetset:setsearchedassets name=“as” assettypes=“Products”
constrain=“ss” fixedlist=“true” />

This example defines that there is a compositional dependency between each product asset
in the assetset named “as” and the rendered page.

For more information about asset sets and search states, see “Assetsets” on page 553 and
“Searchstates” on page 554.

Setting the Approval Dependency Type
If you are using flex assets for a static site, be aware that when the approval system
invokes an assetset tag, the approval dependency type is set to none by default. To change
this value to exists or exact, you use the deptype parameter.
Content Server 7.0 Developer’s Guide

Chapter 24. Coding Elements for Templates and CSElements

About Coding to Log Dependencies
541
For example:

<assetset:setsearchedassets name=“as” assettypes=“Products”
constrain=“ss” fixedlist=“true” deptype=“exists” />

Note that setting an approval type for the assetset:setsearchedassets tag is
meaningful only if the fixedlist parameter is set to true.

RENDER.GETPAGEURL and render:getpageurl
The RENDER.GETPAGEURL tag creates a URL for assets that are not blobs. This tag logs
an exists approval dependency—but not a compositional dependency—between the asset
being approved (rendered) and the asset referred to by the tag. This means that it creates a
dependency only when your publishing method is Export to Disk.

In this example, the template assigned to article ABC has the following code in it:

<RENDER.GETPAGEURL PAGENAME="BurlingtonFinancial/Page/Home"
cid="Variables.pageid"
c="Page"
OUTSTR="referURL"/>

That code fragment both creates a URL (that is returned in the variable created by the
OUTSTR parameter) and logs an exists approval dependency between the asset identified
in the cid variable and article ABC.

Then, when article ABC is approved, the page identified by the cid variable must either
be approved or must already have been published or article ABC is held from being
published.

RENDER.LOGDEP (render:logdep)
There are several situations in which your code can obtain an asset’s data without actually
loading the asset. When this is the case, be sure to log the compositional dependency
yourself with the render:logdep tag.

Example 1
When you call a CSElement from a Template asset or other CSElement asset, you do not
load the asset to determine the identity of the element file to execute. Instead, you use the
RENDER.CALLELEMENT or render:callelement tag and invoke the element directly
by name. For example:

<render:callelement name=“BurlingtonFinancial/Common/
HeaderText”/>

Because you didn’t use the asset:load tag to access the CSElement, the compositional
dependency between the CSElement asset and the page it is being rendered on is not
automatically logged for you. Instead, you must set it yourself.

At the beginning of the element for each CSElement asset, you include the following line
of code:

<render:logdep cid="Variables.eid" c="CSElement"/>

At the beginning of the element for a Template asset, the render.logdep statement
would be as follows:

<render:logdep cid="Variables.tid" c="template"/>
Content Server 7.0 Developer’s Guide

Chapter 24. Coding Elements for Templates and CSElements

About Coding to Log Dependencies
542
Note that if you use the “CSElement” form or the template form in the Content Server
interface to start coding the element, Content Server automatically includes an appropriate
render:logdep statement in the stub code that it seeds into the element for you.

Example 2
For basic assets, when you use an ASSET.LOAD tag on a parent asset (basic asset) and then
use an ASSET.CHILDREN tag, you have access to the children assets’ data without having
to load it. In this case, you should include a RENDER.LOGDEP statement to log the
compositional dependency.

For example:

<ASSET.CHILDREN NAME="PlainListCollection" LIST="theArticles"
OBJECTTYPE="Article" ORDER="nrank" CODE=“-”/>

<LOOP LIST="theArticles">
<RENDER.LOGDEP cid="theArticles.id" c="Article"/>
.
.
.

Setting the Approval Dependency Type
When an asset is approved for an Export to Disk destination and the approval system
invokes this tag, the tag also creates an exact approval dependency between the asset and
the rendered page.

You can change the approval dependency type to exists or none by setting the DEPTYPE
argument. For example:

<RENDER.LOGDEP cid="theArticles.id" c="Article"
DEPTYPE="exists"/>

RENDER.FILTER and render:filter
You use the RENDER.FILTER tag for lists of assets created by queries. This tag filters out
any unapproved assets from a list or a query. It also sets a compositional dependency of
“unknown.” (The “unknown” compositional dependency is explained in the next section,
“RENDER.UNKNOWNDEPS and render:unknowndeps.”)

You use this tag when you do not want an approved asset that has an approval dependency
on the results of a query (a collection or query asset, for example) to be held from being
published when there are unapproved assets in the list that is returned by the query. For
example, say that the element is coded to provide appropriate formatting for any number
of article assets that are passed to it so it doesn’t matter if only two of the five articles
included in a collection cannot be published. Because this tag tells Export to Disk to filter
out the unapproved assets, a page using the query can be published while the unapproved
assets remain unpublished.

You might use this tag in the following places:

• Templates for query assets

• Templates for collection assets

• SELECTTO statements and EXECSQL queries
Content Server 7.0 Developer’s Guide

Chapter 24. Coding Elements for Templates and CSElements

Calling CSElement and SiteEntry Assets
543
For example:

<RENDER.FILTER LIST="ArticlesFromWireQuery"
LISTVARNAME="ArticlesFromWireQuery" LISTIDCOL="id"/>

RENDER.UNKNOWNDEPS and render:unknowndeps
The RENDER.UNKNOWNDEPS tag signals that there are dependent assets but that there is no
way to predict the identities of those assets because they came from a query or change
frequently. This tag logs a compositional dependency of “unknown” for the rendered page.
This tag does not set an approval dependency for the Export to Disk publishing method.

When a compositional dependency is set to “unknown,” it means the page must be
regenerated during each Export to Disk publishing session and updated in the page caches
after each Mirror to Server publishing session, whether it needs it or not.

You use this tag to cover those coding situations in which you truly cannot determine what
the dependent assets might be. For example, queries are dynamic and can retrieve a
different resultset every time they are run. When you use queries of any kind—query
assets, SELECTTO statements, EXECSQL, and so on—you should use the
RENDER.UNKNOWNDEPS tag.

Calling CSElement and SiteEntry Assets
When your design requires that your code call a CSElement or SiteEntry asset, there is no
need to load the asset itself. From a coding point of view, you are not interested in the
CSElement or SiteEntry as an asset—you are solely interested in the element or page entry
that the asset represents. Therefore, your code can directly invoke the element or page
entry with the appropriate tag.

If a CSElement does not have a corresponding SiteEntry asset (which means its output is
cached according to the cache criteria set for the calling page), or, if you don’t need a
separate pagelet at this invocation, you invoke it by name with the
RENDER.CALLELEMENT (render:callelement) tag. For example:

<render:callelement name="BurlingtonFinancial/Common/
SetHTMLHeader"/>

When CSElement does have a corresponding SiteEntry asset, you invoke the element by
calling the page name of its SiteEntry asset with the RENDER.SATELLITEPAGE
(render:satellitepage) tag. For example:

<render:satellitepage pagename="BurlingtonFinancial/Pagelet/
Common/SiteBanner"/>

Note

You must use this tag carefully because the more pages that must be
regenerated, the longer it takes to publish your site.
Content Server 7.0 Developer’s Guide

Chapter 24. Coding Elements for Templates and CSElements

Coding Elements to Display Basic Assets
544
Coding Elements to Display Basic Assets
To code an element for a template, you need to understand how the asset type it formats is
designed. Having a preliminary understanding of data design and site design will prevent
you from having to recode templates in order to re-display assets when they are updated.
(That is why this developer’s guide covers both data design and site design in the same
book.)

For example, the Home page asset for the Burlington Financial site has four collections
and one query assigned to it through named associations:

• TopStory collection

• SideBarTop collection

• SideBarMiddle collection

• SideBarBottom collection

• Wirefeed Query

The Home page asset has a template, also called Home. The Home template is coded to
identify the collections and the query related to the Home page through these named
associations and to display the assets in the collection and the assets returned by the query.

Because the Home template is coded to handle any collection or query that is associated
with the Home page through these named associations (rather than hard-coded to extract
specific articles), the assets that are displayed on the page can be updated as often as
necessary but the code does not need to be changed.

Content providers can change the articles in the collections, and the wire feed service can
make daily updates to the articles that the Wirefeed Query obtains. And no matter which
articles are selected in the collections or returned by the query, they are always formatted
in the same way.

This section provides:

• Information that you should keep in mind while you code templates for basic asset
types.

Note

When you use CS-Explorer to examine SiteCatalog and
ElementCatalog entries, they are presented as folders and subfolders
that visually organize the pages and pagelets. However, these entries are
simply rows in a database table—there is no actual hierarchy. Therefore
your code must always call a page entry or an element entry by its entire
name. You cannot use a relative path.

Additionally, the chain of called elements should not be more than 20
levels deep. Otherwise, the system will perform poorly when displaying
the assets.

Also, if you edit using CS-Explorer, save the asset in the asset’s editorial
form (in the Content Server interface) to ensure that the cache is updated
to reflect your edits. (CS-Explorer does not automatically update the
cache.)
Content Server 7.0 Developer’s Guide

Chapter 24. Coding Elements for Templates and CSElements

Coding Elements to Display Basic Assets
545
• Code fragments and examples for various situations, including managing the
dependencies between assets so that approval can be calculated correctly for static
sites and so that the page cache can be cleared when appropriate for dynamic sites.

Before you begin, be sure to read the chapters in the Programming Basics section of this
book, especially Chapter 4, “Programming with Content Server.”

For information about the tags used in the code examples in this chapter, see the Content
Server Tag Reference.

For more code samples that display basic assets, see Chapter 25, “Template Element
Examples for Basic Assets.”

Assets That Represent Simple Content
Template elements for content assets generally extract one specific article, advertising
copy, special offer, image, and so on from the database, then obtain information from the
relevant fields such as headline, body, and byline (for example), and then display that
information online.

Consider the following simple template element designed for a Burlington Financial
article asset:

<?xml version="1.0" ?>
<!DOCTYPE FTCS SYSTEM "futuretense_cs.dtd">
<FTCS Version="1.1">
<!-- Article/VeryBasic
-
- INPUT
- Variables.c - asset type (Article)
- Variables.cid - id of the asset to display
- Variables.tid - template used to display the page(let)
- OUTPUT
-
-->
<!-- log the template as a dependent of the pagelet being
rendered, so changes to the template will force regeneration of
the page(let) -->

<IF COND="IsVariable.tid=true">
<THEN>
<RENDER.LOGDEP cid="Variables.tid" c="Template"/>
</THEN>

</IF>
<!-- asset load will mark the asset as an ’exact’ dependent of the
pagelet being rendered -->

<ASSET.LOAD NAME="anAsset" TYPE="Variables.c"
OBJECTID="Variables.cid"/>

<!-- get all the primary table fields of the asset -->

<ASSET.SCATTER NAME="anAsset" PREFIX="asset"/>

<!-- display the description -->
Content Server 7.0 Developer’s Guide

Chapter 24. Coding Elements for Templates and CSElements

Coding Elements to Display Basic Assets
546
<ics.getvar name=”asset:description”/>

<!-- display the contents of the urlbody file -->

<ics.getvar name="asset:urlbody" encoding="default"
output="bodyvar"/>

<RENDER.STREAM VARIABLE="bodyvar" />

</FTCS>

This code in this template does the following things:

• Logs a compositional dependency between the Template asset and the page being
rendered with the element with the RENDER.LOGDEP tag.

• If the approval system is evaluating this code for an Export to Disk target, logs an
approval dependency.

• Loads the article asset with an ASSET.LOAD tag, which logs a compositional
dependency between the article asset and the page being rendered.

• Extracts all the values from all the fields of the article with an ASSET.SCATTER tag.

• Displays the contents of the description column with a CSVAR tag. The description
column corresponds to the Headline field in the New or Edit article forms in the
Content Server interface.

• Displays the contents of the urlbody column with the ics.getvar and
RENDER.STREAM tags. The urlbody column corresponds to the Headline field in the
New or Edit article forms in the Content Server interface.

Notice the difference in the code that displays the value from description column and
the code that displays the value from the urlbody column. The urlbody column can
contain embedded links and whenever a field can contain embedded links, you ensure that
the links are rendered correctly by using the RENDER.STREAM tag rather than the CSVAR
tag.

For a more complex example of an article template, examine the Burlington Financial
template named Full. You can examine it in two ways:

• Search for and then inspect it in the Content Server interface.

• Use Content Server Explorer to open the template element called:

ElementCatalog/BurlingtonFinancial/Article/Full.

This template element provides the format for an article when it is displayed, in full, on a
page in a browser.

Associations
You identify the assets that are associated with other assets through association fields with
the ASSET.CHILDREN tag. To specify which associated asset, you use the CODE parameter
to specify the association field.

For example, say that the following code fragment is inserted right before the </FTCS>
tag in the preceding example:

<!-- display the Main Image -->
<ASSET.CHILDREN NAME="anAsset" LIST="associatedImage"

CODE="MainImage"/>
Content Server 7.0 Developer’s Guide

Chapter 24. Coding Elements for Templates and CSElements

Coding Elements to Display Basic Assets
547
<IF COND="IsList.associatedImage=true">
<THEN>
<RENDER.SATELLITEPAGE PAGENAME="BurlingtonFinancial/ImageFile/
TeaserSummary" ARGS_cid="associatedImage.oid"/>
</THEN>

</IF>

The code in this fragment does the following things:

• Extracts the imagefile asset that is specified in the Main Image field for this article
asset (named “anAsset”) with the ASSET.CHILDREN tag and the CODE parameter set
to “MainImage.”

• Passes the identity of that imagefile to the page entry for the TeaserSummary template
with the RENDER.SATELLITEPAGE tag. The page entry is identified with the
PAGENAME parameter and the imagefile is identified with the ARGS_cid parameter.
The TeaserSummary template than renders the imagefile into a pagelet and passes the
pagelet back to this page, where it is displayed with the article.

ImageFile Assets or Other Blob Assets
The imagefile asset type stores uploaded image files. In other words, the imagefile asset
type is a binary large object (blob), served from the Content Server database. You use the
BlobServer servlet to serve and display imagefiles and other blobs.

A template element for an imagefile or other blob can use the RENDER.SATELLITEBLOB
tag to create and return an HTML tag that tells the browser how to access the blob and
how to format and display it. If you need a BlobServer URL only, without it being
embedded in an HTML tag, you can use the RENDER.GETBLOBURL tag.

For more information about coding links to blobs, see “Creating URLs for Hyperlinks” on
page 567.

Basic Assets That Can Have Embedded Links
The Body field of the Article asset and other assets that have fields with a data type of
TEXTAREA allow editors to create embedded hyperlinks within the text field. To ensure
that these links are rendered properly, use the RENDER.STREAM tag to retrieve the contents
of the field, as shown in the following example:

<ASSET.LOAD TYPE="Variables.c" OBJECTID="Variables.cid"
NAME="TestArticle"/>

<ASSET.SCATTER NAME="TestArticle" PREFIX="articleAsset"/>

<!-- display the contents of the urlbody file -->

<ics.getvar name="articleAsset:urlbody" encoding="default"
output="bodyvar"/>
<RENDER.STREAM VARIABLE="bodyvar" />

If InSite Editor is enabled on your management system, note that the INSITE.EDIT tag
also manages embedded links appropriately when it retrieves the contents of a field that
has embedded links in it. For more information about the InSite Editor, see Chapter 31,
“Coding for the InSite Editor.”
Content Server 7.0 Developer’s Guide

Chapter 24. Coding Elements for Templates and CSElements

Coding Elements to Display Basic Assets
548
Collections
Templates for collection assets typically extract the assets in the collection from the
database with an ASSET.CHILDREN tag. For example:

<ASSET.LOAD TYPE="Variables.c" OBJECTID="Variables.cid"
NAME="PlainListCollection"/>

<ASSET.SCATTER NAME="PlainListCollection" PREFIX="asset"/>
<ASSET.CHILDREN NAME="PlainListCollection" LIST="theArticles"

OBJECTTYPE="Article"/>

After the children are identified, the template code can then display parts of these assets in
a list on a rendered page.

Sometimes the template for a collection is coded to handle the first item in the collection
differently than the rest. You can single out the highest ranking asset in a collection by
coding the element to order the items in the list according to their rank, as shown here:

<ASSET.CHILDREN NAME="HomePageStories" LIST="theArticles"
OBJECTTYPE="Article" ORDER="nrank"/>

For a longer example, examine the Burlington Financial template named MainStory List.
You can examine it in two ways:

• Search for and then inspect it in the Content Server interface.

• Use Content Server Explorer to open the template element called:

ElementCatalog/BurlingtonFinancial/Collection/MainStoryList

This template element calls two page entries for two other templates. The root element for
the first of the two page entries displays the highest ranked article from the collection. The
root element for the second displays the rest of the articles.

Collection Templates and Approval Dependencies
When your publishing method is Export to Disk, you can use the RENDER.FILTER tag in
your collection templates. This tag filters out any unapproved assets from the collection
both when the approval dependencies are calculated and when the publish process renders
the site.

The following code fragment, taken from the Burlington Financial StoryList template,
illustrates this tag:

<ASSET.LOAD TYPE="Variables.c" OBJECTID="Variables.cid"
NAME="StoryListCollection"/>

<ASSET.SCATTER NAME="StoryListCollection" PREFIX="asset"/>
<ASSET.CHILDREN NAME="StoryListCollection" LIST="theArticles"

ORDER="nrank" CODE="-"/>

<!-- Get only the articles that are approved for export -->

<RENDER.FILTER LIST="theArticles"
LISTVARNAME="ApprovedArticles"
LISTIDCOL="oid"/>

<!-- Display only the articles that are approved-->
Content Server 7.0 Developer’s Guide

Chapter 24. Coding Elements for Templates and CSElements

Coding Elements to Display Basic Assets
549
<IF COND="IsList.ApprovedArticles=true">
<THEN>

<LOOP LIST="ApprovedArticles">
<RENDER.SATELLITEPAGE

PAGENAME="BurlingtonFinancial/Article/Summary"
ARGS_cid="ApprovedArticles.oid"
ARGS_p="Variables.p"/>

</LOOP>
</THEN>

</IF>

Collection Templates and Compositional Dependencies
In the preceding code example that illustrates the RENDER.FILTER tag, the ID of each
of the child assets in the collection is passed to the Summary template.

The first line of code in the Summary template is an ASSET.LOAD statement, which
means that the dependency between article asset that it loads and the page that is rendered
with the Summary template is logged.

What if the code in the template for the collection also formats the child articles? In that
case, you must carefully consider the code and determine whether you need to log the
dependency with the RENDER.LOGDEP tag.

For example, when you use the OBJECTYPE parameter in an ASSET.CHILDREN tag, the
resulting list is a join of the AssetRelationTree table and the asset table for the type
specified and includes information from both tables. For example

<ASSET.CHILDREN NAME="StoryListCollection" LIST="theArticles"
OBJECTTYPE=“Article” ORDER="nrank" CODE="-"/>

You can then access the children asset’s information without using subsequent
ASSET.LOAD tags. If you do, be sure to include the RENDER.LOGDEP tag for each child so
that the compositional dependencies between those assets and the rendered page can be
tracked correctly.

For another example, see “Example 2: Coding Links to the Article Assets in a Collection
Asset” on page 579.

Query Assets
Query assets can execute SQL code or they can run an element that contains query code.
You use them in collections, on page assets, and so on:

• You build a collection by running a query in the “Build Collection” form and then
selecting and ordering the assets you want from the resulting list. The collection is a
static list of assets selected from the query’s resultset.

• You select queries for a page asset either through unnamed relationships or through
named associations. You select queries for assets like articles through named
associations.

In these cases, the page or article assets do not themselves invoke the query: you code
the query template element to invoke a standard CS-Direct element called
OpenMarket/Xcelerate/AssetType/Query/ExecuteQuery. This element runs
the query asset when the page asset or article asset is rendered.
Content Server 7.0 Developer’s Guide

Chapter 24. Coding Elements for Templates and CSElements

Coding Elements to Display Basic Assets
550
Elements for query templates invoke the ExecuteQuery element and typically include
code that loops through the items returned in the list object that the query created, extracts
bits of information from those items, and then displays it.

The following example loads a query asset and passes it to the ExecuteQuery element:

<ASSET.LOAD TYPE="Query" NAME="Wirefeed"
OBJECTID="Variables.id"/>
<CALLELEMENT NAME="OpenMarket/Xcelerate/AssetType/Query/

ExecuteQuery">
<ARGUMENT NAME="list" VALUE="ArticlesFromWireFeed"/>
<ARGUMENT NAME="assetname" VALUE="WireFeed"/>
<ARGUMENT NAME="ResultLimit" VALUE="-1"/>

</CALLELEMENT>

For a longer example, examine the Burlington Financial query template named
PlainList. You can examine it in two ways:

• Search for and then inspect it in the Content Server interface.

• Use Content Server Explorer to open the template element called:

ElementCatalog/BurlingtonFinancial/Query/PlainList.

This element invokes the ExecuteQuery element to run the PlainListQuery query asset,
filters out any unapproved asset if the publishing method is Export to Disk, and then loops
through the resulting list, obtaining a dynamic URL for each item in the list and creating a
hyperlink for it.

For information about hyperlinks, see “Creating URLs for Hyperlinks” on page 567.

Queries and Compositional Dependencies
The first line of code in the ExecuteQuery element is a RENDER.UNKNOWNDEPS tag,
which alerts the Export to Disk publishing method and the CacheManager on a dynamic
delivery system that the assets that will be retrieved by the query cannot be predicted and,
therefore, no dependencies can be calculated and logged.

If you are using any other kind of query—for example, a SELECTTO statement, CALLSQL,
or EXECSQL—you should include the RENDER.UNKNOWNDEPS tag.

Additionally, in the element that a query-generated list of assets is returned to, you must
use the RENDER.FILTER tag if you are using the Export to Disk publishing method. For
example:

<CALLELEMENT NAME="OpenMarket/Xcelerate/AssetType/Query/
ExecuteQuery">

<ARGUMENT NAME="list" VALUE="ArticlesFromTheQuery"/>
<ARGUMENT NAME="assetname" VALUE="PlainListQuery"/>
<ARGUMENT NAME="ResultLimit" VALUE="5"/>

</CALLELEMENT>

<!-- On export - filter out un-approved assets -->
<RENDER.FILTER LIST="ArticlesFromTheQuery"
LISTVARNAME="ArticlesFromTheQuery" LISTIDCOL="id"/>

<if COND="ArticlesFromTheQuery.#numRows!=0">
<then>

<LOOP LIST="ArticlesFromTheQuery">
Content Server 7.0 Developer’s Guide

Chapter 24. Coding Elements for Templates and CSElements

Coding Elements to Display Basic Assets
551
<RENDER.GETPAGEURL PAGENAME="BurlingtonFinancial/
Article/

Variables.ct"
cid="ArticlesFromTheQuery.id"
c="Article"
p="Variables.p"
OUTSTR="referURL"/>

<A class="wirelink" HREF="Variables.referURL"
REPLACEALL="Variables.referURL"><ics.listget

listname=”ArticlesFromTheQuery” fieldname=”subheadline”/>
<P/>

For another example, see “Example 4: Coding Templates for Query Assets” on page 585.

Page Assets
Templates for page assets generally contain the following kinds of code:

• The framework for the page asset when it is a rendered page

• The logic for obtaining the content for the rendered page

• The logic for links to other rendered pages

The templates for content assets contain the formatting code for individual pieces of
content. The page templates invoke the templates for the other assets, receive formatted
assets from those template elements, and then place the formatted assets into the context
of the page framework.

Following is the code for a simple template that formats a page asset:

<?xml version="1.0" ?>
<!DOCTYPE FTCS SYSTEM "futuretense_cs.dtd">
<FTCS Version="1.1">
<!-- Page/CollectionsAndQuery
-
- INPUT
- Variables.c - asset type (Page)
- Variables.cid - id of the asset to display
- Variables.tid - template used to display the page(let)
- OUTPUT
-
-->

<!-- log the template as a dependent of the pagelet being
rendered, so changes to the template will force regeneration of
the page(let) -->

<IF COND="IsVariable.tid=true">
<THEN>
<RENDER.LOGDEP cid="Variables.tid" c="Template"/>
</THEN>

</IF>

<!-- asset load will mark the asset as an ’exact’ dependent of the
pagelet being rendered -->
Content Server 7.0 Developer’s Guide

Chapter 24. Coding Elements for Templates and CSElements

Coding Elements to Display Basic Assets
552
<ASSET.LOAD NAME="anAsset" TYPE="Variables.c"
OBJECTID="Variables.cid"/>

<!-- get all the primary table fields of the asset -->

<ASSET.SCATTER NAME="anAsset" PREFIX="asset"/>

<!-- get a list of id’s of the child assets in the collection in
order of their rank -->

<!-- get the WireFeed query -->

<ASSET.CHILDREN NAME="HomeTextPage" LIST="WireFeedStories"
CODE="WireFeed"/>

<IF COND="IsList.WireFeedStories=true">
<THEN>
<RENDER.GETPAGEURL PAGENAME="BurlingtonFinancial/Query/
WireFeedFrontText"

cid="WireFeedStories.oid"
c="Query"
p="Variables.asset:id"
OUTSTR="referURL"/>

<P>
<A HREF="Variables.referURL"

REPLACEALL="Variables.referURL">From the Wires...

</P>
<RENDER.SATELLITEPAGE PAGENAME="BurlingtonFinancial/Query/
WireSummaryText"

ARGS_cid="WireFeedStories.oid"
ARGS_ct="WireStoryText"
ARGS_p="Variables.asset:id"/>

</THEN>
</IF>
</FTCS>

The code in this example does the following things:

• Logs a compositional dependency between the Template asset and the page being
rendered with a RENDER.LOGDEP tag.

• Loads the page asset with an ASSET.LOAD tag, which logs a compositional
dependency between the article asset and the page being rendered.

• Extracts the WireFeed query with an ASSET.CHILDREN tag and the CODE parameter
set to “WireFeed.”

• Obtains a URL for a page that will display the stories from the WireFeed query with
the RENDER.GETPAGEURL tag. The PAGENAME parameter specifies the page entry of
the template to use to create that page and also determines part of the URL. The
OUTSTR parameter creates a variable named referURL to hold the URL that
RENDER.GETPAGEURL creates.

• Uses the URL from the referURL variable to build an <A HREF> link to the page.
Content Server 7.0 Developer’s Guide

Chapter 24. Coding Elements for Templates and CSElements

About Coding Elements that Display Flex Assets
553
• Passes the identity of the query asset to the page entry for the WireSummaryText
template. The WireSummaryText template then creates a pagelet that displays the
summary text from each article returned by the Wire Feed query and passes the
pagelet back to this page, where it is displayed.

For a more complex example of a page asset template, examine the Burlington Financial
template named SectionFront. You can examine it in two ways:

• Search for and then inspect it in the Content Server interface.

• Use Content Server Explorer to open the template element called:

ElementCatalog/BurlingtonFinancial/Page/SectionFront

This element creates a Section Front page with a navigational bar on the top, a
navigational area with links on the left, a list of stories, and so on.

About Coding Elements that Display Flex Assets
When you code templates for basic assets, you use the CS-Direct ASSET tag family. For
example, when you want to extract and display a basic asset, you use the ASSET.LOAD
tag, a tag that extracts data from the primary storage table for that asset type.

Because the database schema for flex assets is different than that for basic assets, CS-
Direct Advantage provides additional tag families for flex assets that you use in place of
the ASSET tags:

• ASSETSET. You use this tag family to specify a set of one or more flex assets.

• SEARCHSTATE. You use this tag family to create search constraints that filter the
assets in an assetset.

When you use the flex asset model to represent your content, your online site will use a
mixture of flex and basic assets because the page asset type (which you are likely to use) is
a basic asset type.

Assetsets
An assetset is a group of one or more flex assets or flex parent assets. You use the
ASSETSET tags to create the set of assets and to extract the attribute values that you want
to display.

You can retrieve the following information from an assetset:

• The values for one attribute for each of the flex assets in the assetset.

• The values for multiple attributes for each of the flex assets in the assetset.

• A list of the flex assets in the assetset

Note

The ASSET.LOAD tag will load a flex asset for you. However, using the
ASSET.LOAD tag with flex assets is not supported: the code cannot be upgraded,
and extracting the asset in this way is slower by orders of magnitude than using the
ASSETSET tag family.
Content Server 7.0 Developer’s Guide

Chapter 24. Coding Elements for Templates and CSElements

About Coding Elements that Display Flex Assets
554
• A count of the flex assets in the assetset

• A list of unique attribute values for an attribute for all flex assets in the assetset

• A count of unique attribute values for an attribute for all flex assets in the assetset

You can create assetsets that include flex assets of more than one type, but only if those
flex assets use the same flex attribute asset type.

The most commonly used ASSETSET tags are:

ASSETSET.SETASSET
ASSETSET.SETSEARCHEDASSETS
ASSETSET.GETMULTIPLEVALUES
ASSETSET.GETATTRIBUTEVALUES
ASSETSET.GETASSETLIST
ASSETSET.SORTLISTENTRY ...

All of the ASSETSET tags are described in the Content Server Tag Reference and several
of them are used in the code samples in this chapter. For information about compositional
dependencies and the assetset tags, see “The ASSETSET (assetset) Tag Family” on page
540.

Searchstates
How do you obtain the IDs of the flex assets that you want to display? With searchstate
objects.

A searchstate is a set of search constraints based on the attribute values held in the
_Mungo table for the flex asset type. You apply searchstates to assetsets.

You build a searchstate by adding or removing constraints to narrow or broaden the list of
flex assets that are described by the searchstate. For example, the GE Lighting sample site
uses searchstates to create drill-down searching features that visitors use to browse
through the product catalog.

An unconstrained searchstate applied to an assetset creates an unfiltered list of all the
assets of that type. For example, the following code sample would create an assetset that
contains all the products in the GE Lighting catalog:

<SEARCHSTATE.CREATE NAME=“nolimits”/>
<ASSETSET.SETSEARCHEDASSETS NAME=“unconstrainedAssetSet”

CONSTRAINT=“nolimits” ASSETTYPES=“Products”/>

To narrow the number of products in the assetset, you add constraints. For example, the
following code sample would create an assetset that contains only the 40-watt light bulbs
from the catalog:

<SEARCHSTATE.CREATE NAME=“lightbulbs”/>
<SEARCHSTATE.ADDSIMPLESTANDARDCONSTRAINT NAME=“lightbulbs”

 ATTRIBUTE=“wattage” VALUE=“40”/>
<ASSETSET.SETSEARCHEDASSETS NAME=“40WattLightbulbs”

CONSTRAINT=“lightbulbs” ASSETTYPES=“Products”/>

A constraint is a filter (restriction) that can be based on the value of an attribute or it can
be based on another searchstate, which is called a nested searchstate.

A searchstate can search either the _Mungo table for the asset type database or the attribute
indexes created by a search engine for that asset type. This means that you can mix
database and rich-text (full-text through an index) searches in the same query. To apply a
Content Server 7.0 Developer’s Guide

Chapter 24. Coding Elements for Templates and CSElements

About Coding Elements that Display Flex Assets
555
constraint against a search engine index, use the
SEARCHSTATE.ADDRICHTEXTCONSTRAINT tag.

The most commonly used SEARCHSTATE tags are as follows:

SEARCHSTATE.CREATE
SEARCHSTATE.ADDSTANDARDCONSTRAINT
SEARCHSTATE.ADDSIMPLESTANDARDCONSTRAINT
SEARCHSTATE.ADDRANGECONSTRAINT
SEARCHSTATE.ADDRICHTEXTCONSTRAINT
SEARCHSTATE.TOSTRING
SEARCHSTATE.FROMSTRING

All of the SEARCHSTATE tags are described in the Content Server Tag Reference and
several of them are used in the code samples in this chapter.

Assetsets, Searchstates, and Flex Attribute Asset Types
Because searchstates filter select assets based on attribute values, and assetsets are created
by applying searchstates to the assets in the database, only those flex asset types that share
the same attribute asset type can be included in the same assetset.

For example, in the GE Lighting sample site, you can create an assetset with both flex
articles and flex images in it because they use the same attribute asset type—content asset
attribute. However, because flex articles use the content attribute asset type and products
use the product attribute asset type, you cannot create an assetset that contains both flex
articles and product assets.

Scope
The scope of assetsets and searchstates is local; that is, they exist only for the current
element (rendered page).

When you want to maintain the existing searchstate, you can use the
SEARCHSTATE.TOSTRING tag to convert it to a string and then include that string as an
argument in the URL for the next page.

For example:

<SEARCHSTATE.TOSTRING NAME=“ss” VARNAME=“stringss”/>
<RENDER.SATELLITEPAGE

pagename= SiteName/Products/Example
ARGS_search=“Variables.stringss”/>

And then, in the root element of this example page that receives the string, you code
another searchstate:

<SEARCHSTATE CREATE NAME=“ss”/>

And upack the string that was passed to the example element with a
SEARCHSTATE.FROMSTRING tag:

Note

Using SQL to query the flex asset database tables instead of using the
SEARCHSTATE tag family is not supported.
Content Server 7.0 Developer’s Guide

Chapter 24. Coding Elements for Templates and CSElements

Coding Templates That Display Flex Assets
556
<SEARCHSTATE.FROMSTRING NAME=“ss” VALUE= “Variables.search”/>

Coding Templates That Display Flex Assets
When you code templates for an online site that uses the flex asset model, you are
primarily concerned with the values of flex attributes, which are assets themselves.

A flex asset (a product, for example) or flex parent asset considered in the context of
displaying it, is really an abstraction of attribute values.

You use searchstates to obtain the identity of the flex assets that you want to display,
filtering the assets under consideration by their attribute values. The result is an assetset of
flex assets or flex parent assets that is based on attribute values, and you can then display
the attribute values for the assets in the assetset.

Be sure that you understand the data model of the flex family (or families) that you are
using before you begin coding template elements for your flex assets. For more
information, read Chapter 11, “Data Design: The Asset Models” and Chapter 16,
“Designing Flex Asset Types.”

Example Data Set for the Examples in This Section
The GE Lighting sample site and the Engage extensions to the Burlington Financial
sample site illustrate the full power of the flex asset data model and the coding toolset
delivered with CS-Direct Advantage. The templates and elements in the sample sites
illustrate the code for fully functioning online sites that display a nearly real-world amount
of data.

The code examples in this chapter of the Content Server Developer’s Guide are much
simpler than the elements in the sample sites. These examples start with simple assetsets
and searchstates (“hello assetset” and “hello searchstate”) that interact with a small,
example data set.

The example data set used in these examples is based on the product flex family, as
follows:

Flex Asset Type External Name (as
displayed in Content
Server interface)

Internal Name (as
used in the Content
Server database)*

flex attribute product attribute PAttributes

flex asset product Products

flex parent product parent ProductGroups

* Always use the internal name of the asset type when you use the ASSETTYPES
parameter for an ASSETSET tag.
Content Server 7.0 Developer’s Guide

Chapter 24. Coding Elements for Templates and CSElements

Coding Templates That Display Flex Assets
557
The example products in this example data set are pairs of blue jeans that have the
following attributes:

There are four pairs of blue jeans, defined as follows:

Examples of Assetsets with One Product (Flex Asset)
The code samples in this section do the following:

• Create an assetset that contains one pair of jeans, identified by its sku number

• Log a dependency between the product asset and the rendered page(let)

• Get and display the value for the price attribute and display it

• Get and display the values for the color attribute and display them

• Get and display the values for both the price and color attribute with the same tag
(ASSETSET.GETMULTIPLEVALUES)

Create a Searchstate and Apply It to an Assetset
This line of code creates an unfiltered searchstate named ss:

<SEARCHSTATE.CREATE NAME="ss"/>

Next, we can narrow the unfiltered searchstate named ss so that it finds a specific product
in the sample data set, by providing the sku of the product:

<SEARCHSTATE.ADDSIMPLESTANDARDCONSTRAINT NAME="ss"
TYPENAME="PAttributes" ATTRIBUTE="sku" VALUE="jeans-2"/>

Now we can create an assetset named as, applying the searchstate named ss to it:

<ASSETSET.SETSEARCHEDASSETS NAME="as"
ASSETTYPES="Products"CONSTRAINT="ss" FIXEDLIST="true"/>

Since the value of the sku attribute is unique for each product asset, there is only one
product in the assetset: the one whose sku value is jeans-2.

Attribute Data Type Number of Values

sku string single

color string multiple

price integer single

style text single

sku color price style

jeans-1 blue 35 wide

jeans-2 blue,black 30 straight

jeans-3 black,green 25 straight

jeans-4 green 20 wide
Content Server 7.0 Developer’s Guide

Chapter 24. Coding Elements for Templates and CSElements

Coding Templates That Display Flex Assets
558
Because this searchstate was created by querying for a hard-coded attribute value—a sku
value of “jeans-2”—we know the exact contents of the assetset. That is why we set the
FIXEDLIST parameter to “true.” Now the ASSETSET.SETSEARCHEDASSET tag logs a
compositional dependency for the product asset.

Get the Price of the Product
Next, let’s extract the price of this pair of jeans:

<ASSETSET.GETATTRIBUTEVALUES NAME="as" ATTRIBUTE="price"
TYPENAME="PAttributes" LISTVARNAME="pricelist"/>

Notice that even though price is a single-value attribute (which means the product only
has one price), the ASSETSET.GETATTRIBUTEVALUES tag returns the value of the price
attribute as a list variable (LISTVARNAME=“pricelist”).

Display the Price of the Product
Now the following line of code can display the price of the jeans-2 product:

Price: <ics.listget listname=”pricelist” fieldname=”value”/>
And this is the result:

Price: 30

Get the Colors for the Product
Next, let’s determine which colors this pair of jeans is available in.

As specified above, the color attribute is a multiple-value attribute. Because the
ASSETSET.GETATTRIBUTEVALUES tag works the same whether an attribute is a single-
value or a multiple-value attribute, we use the tag exactly as we did for single-value
price attribute:

<ASSETSET.GETATTRIBUTEVALUES NAME="as" ATTRIBUTE="color"
TYPENAME="PAttributes" LISTVARNAME="colorlist"/>

Display the Colors of the Product
Now the following code can display the colors for the jeans-2 product, and, because this
product can have more than one color, the code loops through the list:

Colors: <LOOP LIST="colorlist">
<ics.listget listname=”colorlist” fieldname=”value”/>

</LOOP>

And this is the result:

Colors: black blue

Create a List Object for the ASSETSET.GETMULTIPLEVALUES tag
In general, you should not use the ASSETSET.GETATTRIBUTEVALUES tag when you
want to get the value for more than one attribute.

The ASSETSET.GETMULTIPLEVALUES tag gets and scatters the values from more than
one attribute, for all the assets in an assetset. Because the tag makes only one call to the
database for all the attribute values, it performs the query more efficiently than using
multiple ASSETSET.GETATTRIBUTEVALUES tags.

Before you can use this tag, however, you must use the LISTOBJECT tags to create a list
object that describes the attributes that the ASSETSET.GETMULTIPLEVALUES tag will
return. The list object needs one row for each attribute that you want to get.
Content Server 7.0 Developer’s Guide

Chapter 24. Coding Elements for Templates and CSElements

Coding Templates That Display Flex Assets
559
This next line of code creates a list object named lo that has columns named
attributetypename, attributename, and direction.

<LISTOBJECT.CREATE NAME="lo"
COLUMNS="attributetypename,attributename,direction"/>

Then, this line adds a row to the list object for each attribute, color and price:

<LISTOBJECT.ADDROW NAME="lo" attributetypename="PAttributes"
attributename="color" direction="none"/>
<LISTOBJECT.ADDROW NAME="lo" attributetypename="PAttributes"
attributename="price" direction="none"/>

The next line of code converts the list object to a list variable name lolist:

<LISTOBJECT.TOLIST NAME="lo" LISTVARNAME="lolist"/>

Get the Value for Both Price and Color with
ASSETSET.GETMULTIPLEVALUES
And now we can get the values for both the price and the color attribute from our original
assetset, named as:

<ASSETSET.GETMULTIPLEVALUES NAME="as" PREFIX="multi"
LIST="lolist" BYASSET="false"/>

Display the Value of Price and Color for the jeans-2 Product
Now that the values are stored in the list variable (lolist), the following code can
display all the values for all the attributes:

<LOOP LIST="lolist">
<ics.listget listname=”lolist” fieldname=”attributename”

output=”attrName”/>
<ics.getvar name=”attrName”/> is
<LOOP LIST="multi:Variables.attrName">

<ics.listget listname=”multi:Variables.attrName”
fieldname=”value”/>

</LOOP><P/>
</LOOP>

This code sets up a nested loop that loops through all the attributes in the lolist variable,
and then loops through all the distinct attribute values for each of the attributes in the
lolist list variable.

And this is the result:

color is blue black

price is 30

Special Cases: Flex Attributes of Type Text, Blob, and URL
If you want to display the values held in flex attributes of type text, blob, or url (which
was deprecated in version 4.0), use the methodologies described in this section.

Flex Attributes of Type Text
The ASSETSET.GETMULTIPLEVALUES tag does not retrieve the values for attributes of
type text. This means that you must include a separate
ASSETSET.GETATTRIBUTEVALUES tag for attributes of this type.
Content Server 7.0 Developer’s Guide

Chapter 24. Coding Elements for Templates and CSElements

Coding Templates That Display Flex Assets
560
For example, if the color attribute in the sample data set used in these examples were an
attribute of type text rather than type string, we could not have retrieved its values
with the ASSETSET.GETMULTIPLEVALUES tag in the preceding examples.

Flex Attributes of Type Blob
The blob attribute type was new in version 4.0 and it replaced the attribute of type url.

As previously mentioned in Chapter 11, “Data Design: The Asset Models,” the _Mungo
table for a flex asset type stores the attribute values for the flex assets of that type and the
ASSETSET tags query the asset type’s _Mungo table for attribute values.

Attributes of type blob are an exception:

• CS-Direct Advantage stores all the values of all the attributes of type blob in the
MungoBlobs table.

• A row in the _Mungo table (Products_Mungo, for example) for an attribute of type
blob stores only the ID of the row in the MungoBlobs table that holds its value. That
is, the blob column in a _Mungo table is a foreign key to the MungoBlobs table.

This means that for an attribute of type blob, the ASSETSET.GETATTRIBUTEVALUES
and ASSETSET.GETMULTIPLEVALUES tags return the ID of the blob attribute’s value,
but not the actual value.

Once the ID of the attribute’s value has been identified, you can do one of two things with
it:

• Use the ID to obtain a BlobServer URL.

• Use the ID to extract the actual value of the blob.

Creating a BlobServer URL
To obtain a BlobServer URL for the value of the flex attribute blob, you do the following:

• Use the BLOBSERVICE tags to programmatically identify the MungoBlobs table and
the appropriate columns in it.

• Pass that information to a RENDER.SATELLITEBLOB tag, if you want the URL in an
HTML tag, or to a RENDER.GETBLOBURL tag if you need only the URL without the
HTML tag.

To illustrate the following blob examples, let’s add the following attribute to the jeans
products in our sample data set:

Note

Be sure to use the BLOBSERVICE tags to programmatically identify the
MungoBlobs table, as shown in the following example. By obtaining the value
with the BLOBSERVICE tags rather than hard coding the name of the table into
your code, your code will function properly even if the table name is changed in a
future version of the product.

Attribute Data Type Number of Values

description blob single
Content Server 7.0 Developer’s Guide

Chapter 24. Coding Elements for Templates and CSElements

Coding Templates That Display Flex Assets
561
First, let’s create the assetset and log the dependency between the jeans-2 product and
the rendered page:

<SEARCHSTATE.CREATE NAME="ss"/>
<SEARCHSTATE.ADDSIMPLESTANDARDCONSTRAINT NAME="ss"
TYPENAME="PAttributes" ATTRIBUTE="sku" VALUE="jeans-2"/>
<ASSETSET.SETSEARCHEDASSETS NAME="as" ASSETTYPES="Products"
CONSTRAINT="ss"/>
<ASSETSET.GETASSETLIST NAME="as" LISTVARNAME="aslist"/>
<RENDER.LOGDEP cid="aslist.assetid" c="aslist.assettype"/>

The next line of code gets the ID of the jeans-2 asset's description attribute (that
attribute of type blob) and stores it in a list variable called descFile

<ASSETSET.GETATTRIBUTEVALUES NAME="as" TYPENAME="PAttributes"
ATTRIBUTE="description" LISTVARNAME="descFile"/>

The next lines of code use the BLOBSERVICE tags to obtain the table name and column
names from the CS-Direct Advantage table that stores the attribute values for blob
attributes and store them in variables named "uTabname", "idColumn", and "uColumn":

<BLOBSERVICE.GETTABLENAME VARNAME="uTabname"/>
<BLOBSERVICE.GETIDCOLUMN VARNAME="idColumn"/>
<BLOBSERVICE.GETURLCOLUMN VARNAME="uColumn"/>

Now we can pass the list variable named descFile and the uTabname, idColumn, and
uColumn variables to a RENDER.SATELLITEBLOB tag, which returns a BlobServer URL
in an HTML tag:

<RENDER.SATELLITEBLOB
BLOBTABLE="Variables.uTabname"
BLOBWHERE="descFile.value"
BLOBKEY="Variables.idColumn"
BLOBCOL="Variables.uColumn"
BLOBHEADER="application/pdf"
/> add service=”a href” ... download link...

The RENDER.SATELLITEBLOB tag returns a BlobServer URL in an HREF tag.

Getting and Displaying the Value of the Blob
To obtain and display the contents or data in the flex attribute blob after its ID has been
returned, you use a BLOBSERVICE.READDATA tag, which loads the file name and URL
data of the blob.

Under the same assumptions about the data set that we used for the preceding blob
example, let’s create the assetset, log the dependency between the jeans-2 asset and the
rendered page, and get the ID of the description attribute’s value:

<SEARCHSTATE.CREATE NAME="ss"/>
<SEARCHSTATE.ADDSIMPLESTANDARDCONSTRAINT NAME="ss"
TYPENAME="PAttributes" ATTRIBUTE="sku" VALUE="jeans-2"/>
<ASSETSET.SETSEARCHEDASSETS NAME="as" ASSETTYPES="Products"
CONSTRAINT="ss"/>
<ASSETSET.GETASSETLIST NAME="as" LISTVARNAME="aslist"/>
<RENDER.LOGDEP cid="aslist.assetid" c="aslist.assettype"/>
<ASSETSET.GETATTRIBUTEVALUES NAME="as" TYPENAME="PAttributes"
ATTRIBUTE="description" LISTVARNAME="descFile"/>
Content Server 7.0 Developer’s Guide

Chapter 24. Coding Elements for Templates and CSElements

Coding Templates That Display Flex Assets
562
This time, we want to get and then display the value (data) of the description attribute, so
we have to use the BLOBSERVICE.READDATA tag:

<BLOBSERVICE.READDATA ID="descFile.value" LISTVARNAME="descData"/>
<ics.listget listname=”descData” fieldname=”@urldata”/>

Flex Attributes of Type URL
Attributes of type url were deprecated in the 4.0 version of the product. You should use
attributes of type blob, instead.

However, if you have upgraded from a version 3.6.3 and you have attributes of type url
whose values you want to display, be sure that you complete these extra coding steps:

• Obtain the value of the property that sets the defdir for the URL columns in the CS-
Direct Advantage tables and store it in a variable.

• Use the variable with an INSERT tag rather than a CSVAR tag.

This time, let’s assume that the ID of the asset has been passed to this element in a cid
variable and that the description attribute is of type url rather than of type blob.

When the cid variable is set, you can create the assetset like this:

<ASSETSET.SETASSET NAME="as" TYPE=“Products”
ID="Variables.cid”/>

The next line of code obtains the value of the description attribute (which is of type url in
this example):

<ASSETSET.GETATTRIBUTEVALUES NAME="as" ATTRIBUTE="urlattr"
LISTVARNAME="attr_list"/>

Now we need the value of the cc.urlattrpath property from the gator.ini file:

<PROPERTY.GET INIFILE="gator.ini" PARAM="cc.urlattrpath"
VARNAME="path"/>

And finally, we use the INSERT tag rather than the CSVAR tag to display the value of the
description attribute:

<INSERT URL="Variables.pathattr_list.value"/>

Examples of Assetsets with More Than One Product (Flex Asset)
The code samples in this section do the following:

• Create an assetset that holds all the products (pairs of jeans) in the sample data set
being used in this chapter.

• Get and display a count of the number of jeans in the assetset.

• Get and display all the values for the color attribute for all the pairs of jeans in the
assetset.

• Get and display all the values for both the color and the style attributes for the
jeans in the assetset.

• Get and display, in a table, all the attribute values for the jeans in the assetset.

• Add a search constraint that filters the assetset for the jeans whose price falls into a
specific range.
Content Server 7.0 Developer’s Guide

Chapter 24. Coding Elements for Templates and CSElements

Coding Templates That Display Flex Assets
563
• Replace the range constraint on the price attribute with a search constraint that filters
the assetset for the jeans that are available in any color that begins with the letter “b.”

• Replace that color constraint with one that filters the assetset for the jeans that are
available in either of two specific colors: blue or black

Create a Searchstate and Apply it to an Assetset
This line of code creates an unfiltered searchstate named ss:

<SEARCHSTATE.CREATE NAME="ss"/>

When you apply the unfiltered searchstate to an assetset, you get all the flex assets of the
type specified (in this case, product assets):

<ASSETSET.SETSEARCHEDASSETS NAME="as" CONSTRAINT="ss"
ASSETTYPES="Products"/>

Display the Number of Assets in the Assetset
These lines of code return and display a count of the number of assets in the assetset,
which at this point represents the entire sample catalog:

<ASSETSET.GETASSETCOUNT NAME="as" VARNAME="count"/>
How many products are in the catalog?
<ics.getvar name=”count”/>

And this is the result:

How many products are in the catalog? 4

Display the Colors That the Jeans Are Available In
The next lines of code get and display the different colors for the jeans. In other words, the
distinct values of the color attribute:

<ASSETSET.GETATTRIBUTEVALUES NAME="as" ATTRIBUTE="color"
TYPENAME="PAttributes" LISTVARNAME="colors"/>

What are the possible colors for any pair of jeans?

<LOOP LIST="colors">
<ics.listget listname=”colors” fieldname=”value”/>

</LOOP><p/>

And this is the result:

What are the possible colors for any pair of jeans?
black blue green

Display Both the Colors and the Styles for the Jeans in the Assetset
Next, let’s extract and display the values for both the color and the style attribute for
the jeans in the assetset. This time we use the ASSETSET.GETMULTIPLEVALUES tag.

First, however, we need to create a list object for the resultset that the
ASSETSET.GETMULTIPLEVALUES tag returns. The list object needs one row for each of
the attributes, as follows:

<LISTOBJECT.CREATE NAME="lo"
COLUMNS="attributename,attributetypename,direction"/>
<LISTOBJECT.ADDROW NAME="lo" attributename="color"
attributetypename="PAttributes" direction="none"/>
<LISTOBJECT.ADDROW NAME="lo" attributename="style"
attributetypename="PAttributes" direction="none"/>
Content Server 7.0 Developer’s Guide

Chapter 24. Coding Elements for Templates and CSElements

Coding Templates That Display Flex Assets
564
The next line of code converts the list object to a list variable named lolist:

<LISTOBJECT.TOLIST NAME="lo" LISTVARNAME="lolist"/>

Now we can extract the attributes and store them in the list variable named lolist:

<ASSETSET.GETMULTIPLEVALUES NAME="as" LIST="lolist"
PREFIX="distinct" BYASSET="false"/>

Notice the BYASSET parameter in the preceding line of code. Because there is more than
one asset in the assetset and we want to know the distinct values for the attribute rather
than all the attribute values for each asset in the assetset, BYASSET=“false”. This way,
we get only the unique attribute values and not every single attribute value.

The next lines of code loop through the list and display the unique values for each
attribute:

Here are all the possible colors:
<LOOP LIST="distinct:color">

<ics.listget listname=”distinct:color” fieldname=”value”/>
</LOOP><P/>

Here are all the possible styles:
<LOOP LIST="distinct:style">

<ics.listget listname=”distinct:style” fieldname=”value”/>
</LOOP><P/>

And this is the result:

Here are all the possible colors: green blue black
Here are all the possible styles: wide straight

Create a Table That Displays All the Jeans and Their Attribute Values
You can also use the ASSETSET.GETMULTIPLEVALUES tag to obtain the attribute values
that are distinct for each asset in the assetset. It creates a list of all the products and the
values for their attributes that we can use to create a grid or table that displays all the
products in the example catalog.

In this case, we have to do two additional things:

• Because we want the attribute values grouped by the asset that they belong to, the
BYASSET parameter must be set to “true”.

• Because we need the IDs of the assets in this case, we need to use the
ASSETSET.GETASSETLIST tag to obtain them.

First, this code creates a list object:

<LISTOBJECT.CREATE NAME="lo"
COLUMNS="attributename,attributetypename,direction"/>
<LISTOBJECT.ADDROW NAME="lo" attributename="color"
attributetypename="PAttributes" direction="none"/>
<LISTOBJECT.ADDROW NAME="lo" attributename="style"
attributetypename="PAttributes" direction="none"/>
<LISTOBJECT.ADDROW NAME="lo" attributename="price"
attributetypename="PAttributes" direction="none"/>
<LISTOBJECT.ADDROW NAME="lo" attributename="sku"
attributetypename="PAttributes" direction="none"/>
<LISTOBJECT.TOLIST NAME="lo" LISTVARNAME="lolist"/>
Content Server 7.0 Developer’s Guide

Chapter 24. Coding Elements for Templates and CSElements

Coding Templates That Display Flex Assets
565
Next, we can get the attribute values:

<ASSETSET.GETMULTIPLEVALUES NAME="as" LIST="lolist"
PREFIX="grid" BYASSET="true"/>

And then we use the ASSETSET.GETASSETLIST tag.

<ASSETSET.GETASSETLIST NAME="as" LISTVARNAME="aslist"/>

It returns a list with these columns:

• assettype

• assetid

By using both lists, we can create a grid that shows all of the products and all of their
attribute values:

<TABLE>
<LOOP LIST="aslist">

<TR>
<TD><CSVAR NAME="grid:aslist.assetid:sku.value"/></TD>
<TD><CSVAR NAME="grid:aslist.assetid:price.value"/>
 </TD>
<TD><CSVAR NAME="grid:aslist.assetid:style.value"/>

</TD>
<TD>

<IF
COND="IsList.grid:aslist.assetid:color=true"><THEN>

<LOOP LIST="grid:aslist.assetid:color">
<CSVAR NAME="grid:aslist.assetid:color.value"/

>
</LOOP>
</THEN></IF>

</TD>
</TR>

</LOOP>
</TABLE>

And this is the result:

Search for Jeans Based on a Range of Prices
Up until now, we have been using the same assetset (NAME=“as”) that was created in the
second line of code in this section. Next, let’s filter the assetset by the price attribute, using
a range constraint.

This line of code adds a range constraint to our original searchstate (NAME=“ss”) that was
created in the first line of code in this section:

<SEARCHSTATE.ADDRANGECONSTRAINT NAME="ss" ATTRIBUTE="price"
TYPENAME="PAttributes" LOWER="0" UPPEREQUAL="30"/>

jeans-1 35 wide blue

jeans-2 30 straight black blue

jeans-3 25 straight black green

jeans-4 20 wide green
Content Server 7.0 Developer’s Guide

Chapter 24. Coding Elements for Templates and CSElements

Coding Templates That Display Flex Assets
566
The range is from 0 to 30. Let’s apply the modified searchstate against our assetset:

<ASSETSET.SETSEARCHEDASSETS NAME="as" CONSTRAINT="ss"
ASSETTYPES="Products"/>

And check whether it worked, by obtaining and displaying a count of the jeans that are
now in the assetset:

<ASSETSET.GETASSETCOUNT NAME="as" VARNAME="count"/>
How many jeans products are less than or equal to $30?
<ics.getvar name=”count”/>

Here’s the result:

How many jeans products are less than or equal to $30? 3

Search for Jeans with a Wildcard for Color
Now let’s replace the range constraint on the price attribute with a search constraint that
filters the assetset for the jeans that are available in any color that begins with the letter
“b.”

First this line of code deletes the range constraint for price:

<SEARCHSTATE.DELETECONSTRAINT NAME="ss" ATTRIBUTE="price"/>

And this line of code adds a new constraint for color, using the percentage (%) character as
a wildcard with the VALUE parameter:

<SEARCHSTATE.ADDSIMPLELIKECONSTRAINT NAME="ss"
ATTRIBUTE="color" TYPENAME="PAttributes" VALUE="b%"/>

The VALUE="b%" statement means “any color that begins with the letter “b.” Lets apply
the modified searchstate against our same assetset (as):

<ASSETSET.SETSEARCHEDASSETS NAME="as" CONSTRAINT="ss"
ASSETTYPES="Products"/>

And check whether it worked by obtaining and displaying a count of the number of jeans
that are in the assetset now:

<ASSETSET.GETASSETCOUNT NAME="as" VARNAME="count"/>
How many jeans have a color that begins with the letter “b”?
<ics.getvar name=”count”/>

Here’s the result:

How many jeans have a color that begins with the letter “b”? 3

Search for Jeans with Specific Colors
Finally, let’s change the color constraint that filters the assetset for the jeans that are
available in either of two specific colors: blue or black

This line of code deletes the color constraint from the searchstate:

<SEARCHSTATE.DELETECONSTRAINT NAME="ss" ATTRIBUTE="color"/>

Next, because we want to filter based on two values for the color attribute, we need to
create a list object with those values:

<LISTOBJECT.CREATE NAME="lo" COLUMNS="value"/>
<LISTOBJECT.ADDROW NAME="lo" value="blue"/>
<LISTOBJECT.ADDROW NAME="lo" value="black"/>
<LISTOBJECT.TOLIST NAME="lo" LISTVARNAME="colorlist"/>
Content Server 7.0 Developer’s Guide

Chapter 24. Coding Elements for Templates and CSElements

Creating URLs for Hyperlinks
567
Now we can use the list variable named colorlist to create the searchstate:

<SEARCHSTATE.ADDSTANDARDCONSTRAINT NAME="ss" ATTRIBUTE="color"
TYPENAME="PAttributes" LIST="colorlist"/>

The LIST=“colorlist” statement is the equivalent of the VALUE statement in the
preceding example. It means “attribute values that match any of the colors in the list
named colorlist”. Let’s apply the modified searchstate to our same assetset:

<ASSETSET.SETSEARCHEDASSETS NAME="as" CONSTRAINT="ss"
ASSETTYPES="Products"/>

And check whether it worked by obtaining and displaying a count of the number of jeans
that are in the assetset now:

<ASSETSET.GETASSETCOUNT NAME="as" VARNAME="count"/>
How many products have a color that is black or blue?
<ics.getvar name=”count”/>

Here’s the result:

How many products have a color that is black or blue? 3

Creating URLs for Hyperlinks
Whether your site is dynamic or static, the fact that you are using a Content Server system
indicates that your content changes regularly. That means that you cannot hard code URLs
into hyperlinks. Your pages must be able to determine the identity of the assets they are
providing links to when the page is rendered, either by the Export to Disk publish method
or by a visitor’s browser on a dynamic site.

CS-Direct provides three tags (each with an XML and a JSP version) that you can use to
create your URLs:

• For URLs for assets that are not blobs, use RENDER.GETPAGEURL tag.

• For URLs for assets that are blobs, use either the RENDER.SATELLITEBLOB tag or
the RENDER.GETBLOBURL tag.

RENDER.GETPAGEURL (render:getpageurl)
To obtain URLs for regular assets (that is, assets that are not blobs), use the
RENDER.GETPAGEURL tag.

The RENDER.GETPAGEURL tag processes arguments passed in from the element that
invokes it into a URL-encoded string that it returns as a variable that you name with the
OUTSTR parameter. By convention, the name of that variable is referURL.

If rendermode is set to export, it creates a static URL (unless you specify that it should
be dynamic). If rendermode is set to live, it creates a dynamic URL.

For example:

<RENDER.GETPAGEURL PAGENAME="BurlingtonFinancial/Article/Full
cid="Variables.cid"
c="Article"
p="Variables.p"
OUTSTR="referURL"/>
Content Server 7.0 Developer’s Guide

Chapter 24. Coding Elements for Templates and CSElements

Creating URLs for Hyperlinks
568
You can now use the value in the referURL variable to create a hyperlink with an <A
HREF> tag.

For more information about this tag, see the Content Server Tag Reference.

RENDER.SATELLITEBLOB (render:satelliteblob)
Binary large objects (blobs) that are stored in the Content Server database are served by
the BlobServer servlet rather than the ContentServer servlet. The
RENDER.SATELLITEBLOB tag returns an HTML tag with a BlobServer URL in it.

This tag takes a set of arguments that define the blob and an additional set of arguments
that determine how to format the blob. For example, you can use it to create an <IMG
SRC> tag or an <A HREF> tag, as follows:

<RENDER.SATELLITEBLOB
BLOBTABLE=“ImageFile”
BLOBKEY=“id”
BLOBCOL=“urlpicture”
BLOBWHERE=“Variables.asset:id”
BLOBHEADER=“Variables.asset:mimetype”
SERVICE=“IMG SRC”
ARGS_alt=“Variables.asset:alttext”
ARGS_hspace=“5” ARGS_vspace=“5”/>

Note that there are additional coding steps if you are creating a URL for a flex attribute of
type blob. For information, see “Flex Attributes of Type Blob” on page 560.

For a longer example, examine the Burlington Financial imagefile template named
TeaserSummary. You can examine it in two ways:

• Search for and then inspect it in the Content Server interface.

• Use Content Server Explorer to open the template element called:

ElementCatalog/BurlingtonFinancial/ImageFile/TeaserSummary.

Even if you are not using Satellite Server, you should still use the
RENDER.SATELLITEBLOB tag because the tag can create a BlobServer URL in an HTML
tag even when Satellite Server is not present.

For more information about this tag, see the Content Server Tag Reference.

RENDER.GETBLOBURL (render:getbloburl)
If you need a BlobServer URL only, without it being embedded in an HTML tag, use the
RENDER.GETBLOBURL tag.

For example, the Burlington Financial element named SetHTMLHeader uses the
RENDER.GETBLOBURL element to obtain a BlobServer URL (stored as a variable named
referURL) that it then passes on to JavaScript code that runs on the client side to
determine which browser the visitor is using. In this case, the client-side JavaScript creates
the HTML tag based on the browser it discovers, so it needs the BlobServer URL without
an HTML tag.

The SetHTMLHeader element is the element for a CSElement. You can examine it in two
ways:

• Use the Content Server interface to search for the BurlingtonFinanical/Common/
SetHTMLHeader CSElement and then inspect it.
Content Server 7.0 Developer’s Guide

Chapter 24. Coding Elements for Templates and CSElements

Creating URLs for Hyperlinks
569
• Use Content Server Explorer to open the element called:

ElementCatalog/BurlingtonFinancial/Common/SetHTMLHeader

Note that there are additional coding steps if you are creating a URL for a flex attribute of
type blob. For information, see “Flex Attributes of Type Blob” on page 560.

For more information about the RENDER.GETBLOBURL tag, see the Content Server Tag
Reference.

Using the referURL Variable
The RENDER.GETPAGEURL, RENDER.GETBLOBURL, and RENDER.SATELLITEBLOB tags
were introduced in the 3.6.x version of CS-Direct. Older versions of the product used
elements named GetPageURL and GetBlobURL to obtain URLs; they are coded to return
URLs in a variable named referURL.

By convention, all of the sample code in the sample sites that use the tags that replaced the
GetPageURL and GetBlobURL elements use a referURL variable for the value of the
URL.

Do not append or add any text to the value held in the referURL variable or any other
variable returned by a RENDER.GETPAGEURL or RENDER.GETBLOBURL tag. URLs in this
kind of variable are complete (whole). If you change the URL returned by the tag, you are
likely to break it.

If you need to include additional arguments in a URL, use the RENDER.PACKARGS tag to
URL-encode them ("pack" them) and then pass those encoded arguments to the
RENDER.GETPAGEURL or RENDER.GETBLOBURL tag with the PACKEDARGS parameter.

For information about the RENDER.PACKARGS tag, see the Content Server Developer’s
Guide.
Content Server 7.0 Developer’s Guide

Chapter 24. Coding Elements for Templates and CSElements

Handling Error Conditions
570
Handling Error Conditions
While you code your elements, you should also include code that checks for error
conditions. You decide which error conditions are serious and, when necessary, code a
solution or alternate action. Sometimes the solution is to write a meaningful error
message. As an additional step, you can include code that stops a broken page from being
cached.

Using the Errno Variable
The errno variable, a standard Content Server variable, holds error numbers that the
Content Server XML and JSP tags report. When a Content Server tag cannot successfully
execute, it sets errno to the value that best describes the reason why it did not succeed. For
example, an errno value of -13004 means a CURRENCY tag couldn’t read a number because
it was not in the correct currency format. For a complete list of all the errno values and
their descriptions, see the error conditions section in the Content Server Tag Reference.

The tags that are delivered with the CS modules and products clear errno before they
execute so you do not need to set errno to 0 when you want to check for errors from these
tags. Here’s a code example that determines whether an ASSET.LOAD was successful
before attempting to load the child assets:

<ASSET.LOAD NAME="topArticle" TYPE="Article"
OBJECTID="Variables.cid"/>

<IF COND="IsError.Variables.errno=false">
<THEN>

<ASSET.CHILDREN NAME="topArticle"
LIST="listOfChildren”/>

</THEN>
</IF>

If you want to check the results of the tags that are delivered by Content Server, you must
include code that clears the value errno before the tag whose results you want to check.
For example:

<SETVAR NAME=“errno” VALUE=“0”/>

For a longer example, see the Burlington Financial CSElement named
BurlingtonFinancial/Util/Account/SignUp. This CSElement provides the code that adds
members to the site and updates existing member’s information. It checks for several error
conditions and provides appropriate responses to them.

Note

While you are debugging your code, don’t forget that you can use the Page
Debugger utility. There are also additional debugging properties on the Debug tab
in the futuretense.ini file that you can enable, if necessary. When you enable
these properties, additional error and debugging messages are then written to the
futuretense.txt log file, which is located in the Content Server installation
directory.

For information about the debugging properties, see the Content Server Property
Files Reference. For information about the Page Debugger tool, see Chapter 8,
“Content Server Tools and Utilities.”
Content Server 7.0 Developer’s Guide

Chapter 24. Coding Elements for Templates and CSElements

Handling Error Conditions
571
The following code sample shows an error message that you could use while you are in the
process of developing your templates:

<IF rendermode=“preview”>
<THEN>

<IF COND=“IsError.Variables.errno=true”>
<THEN>

Error <ics.geterrno/>
while rendering <ics.getvar name=“pagename”/>
with asset ID <ics.getvar name=“cid”/>.

</THEN>

</IF>
</THEN>

</IF>

Ensuring that Incorrect Pages Are Not Cached
If you can determine that the output from an element is incorrect, there is probably no
need for Content Server or Satellite Server to cache the page. You can stop the page that is
being generated from being cached with the ics.disablecache tag.

Example 1: Error Condition
To continue with the first example in “Using the Errno Variable” on page 570, if the article
asset could not be loaded, there would also be no reason to cache the page. You could add
the following ELSE statement to the IF condition in that code sample:

<ASSET.LOAD NAME="topArticle" TYPE="Article"
OBJECTID="Variables.cid"/>

<IF COND="IsError.Variables.errno=false">
<THEN>

<ASSET.CHILDREN NAME="topArticle"
LIST="listOfChildren”/>

</THEN>
<ELSE>

<ics.disablecache/>
</ELSE>
</IF>

Example 2: Clear the Page From Cache if the Asset’s Status
is VO (Basic Assets Only)
As described in “CacheManager and Mirror to Server Publish Sessions” on page 539, the
CacheManager on the destination system regenerates all the pages and pagelets that were
affected by a publishing session. “Affected pages” includes those whose dependent assets
were deleted.

Deleted assets have their status set to VO. The ASSET.LOAD and asset:load tags do not
check the status of an asset before they execute which means they can and will load a
deleted asset. Typically this isn’t a problem. Why? Because an asset cannot be deleted
until all links to it from other assets are removed. Therefore, when the site is regenerated
there are no longer any links to a page or pagelet that would display the deleted asset. But
there is no need to leave a page or pagelet that displays a deleted asset in the cache.
Content Server 7.0 Developer’s Guide

Chapter 24. Coding Elements for Templates and CSElements

Handling Error Conditions
572
The following code sample stops the page from being cached if the asset cannot be loaded
or if the asset’s status is deleted:

<ASSET.LOAD TYPE="Variables.c" OBJECTID="Variables.cid"
NAME="WireStoryTextArticle"/>
<!-- if the asset cannot be loaded, then flush the pagelet from
cache -->

<if COND="IsError.Variables.errno=true">
<then>
<ics.disablecache/>
</then>

</if>
<ASSET.SCATTER NAME="WireStoryTextArticle" PREFIX="asset"/>
<!-- if the asset is marked as void, then flush the pagelet
from cache -->

<if COND="Variables.asset:status=VO">
<then>
<ics.disablecache/>
</then>

</if>

Note that you do not need to include code that checks the status of flex assets. The
SEARCHSTATE and searchstate tags do not return assets that have a status of VO and
the ASSETSET and assetset tags do not include assets that have a status of VO in the
assetsets that they create.
Content Server 7.0 Developer’s Guide

573
Chapter 25

Template Element Examples for Basic Assets
This chapter uses examples from the Burlington Financial sample site to illustrate the
information presented in Chapter 24, “Coding Elements for Templates and CSElements.”
It contains the following sections:

• Example 1: Basic Modular Design

• Example 2: Coding Links to the Article Assets in a Collection Asset

• Example 3: Using the ct Variable

• Example 4: Coding Templates for Query Assets

• Example 5: Displaying an Article Asset Without a Template

• Example 6: Displaying Site Plan Information

• Example 7: Displaying Non-Asset Information

All of the elements described in this section are from the Burlington Financial sample site.
Content Server 7.0 Developer’s Guide

Chapter 25. Template Element Examples for Basic Assets

Example 1: Basic Modular Design
574
Example 1: Basic Modular Design
The Burlington Financial sample site is an example of a modular site design that takes
advantage of common elements so that common code is written once but reused in several
locations or contexts. Following is a description of how one area on the Burlington
Financial home page is created from five separate elements.

First, open the Content Server interface, select the Burlington Financial site and preview
the Home page asset. You can either search for the asset and select Preview from the drop-
down list on the icon bar or you can expand the Placed Pages icon under the Burlington
Financial node in the Site Plan tab, select the Home page, and then select Preview from
the right-mouse menu.

CS-Direct displays the Burlington Financial home page in your browser.

Directly under the date, there is a column that displays the main stories of the day. There is
a summary paragraph and byline for each story in the list. The titles of the stories are
hyperlinks to the full story. Several of the stories, including the first story in the list, also
present a photo:

This example describes how the first story in the list is identified, selected, positioned at
the top of the list, and formatted.

These are the elements used to format the first story in the list:

• BurlingtonFinanical/Page/Home

• BurlingtonFinancial/Collection/MainStoryList

• BurlingtonFinancial/Article/LeadSummary

• BurlingtonFinancial/ImageFile/TeaserSummary
Content Server 7.0 Developer’s Guide

Chapter 25. Template Element Examples for Basic Assets

Example 1: Basic Modular Design
575
First Element: Home
The Home page of the of the Burlington Financial sample site uses a template that is also
named Home. You can examine it in two ways:

• Search for and then inspect it in the Content Server interface.

• Use Content Server Explorer to open the template element called:

ElementCatalog/BurlingtonFinancial/Page/Home

First, the Home element loads the home page asset, names it HomePage, and then scatters
the information in its fields:

<ASSET.LOAD TYPE="Variables.c" OBJECTID="Variables.cid"
NAME="HomePage"/>
<ASSET.SCATTER NAME="HomePage" PREFIX="asset"/>

The value for cid is passed in from the Burlington Financial URL and the value for c is
available because it is set as a variable in the resarg1 column in the SiteCatalog page entry
for the Home template.

Scroll down past several callelement and RENDER.SATELLITEPAGE tags to the
following ASSET.CHILDREN tag:

<ASSET.CHILDREN NAME=“HomePage” LIST=“MainStories”
CODE=“TopStories”/>

With this code, Home obtains the collection asset identified as the page asset’s TopStories
collection (CODE=“TopStories”) and creates a list named MainStories to hold it
(LIST=“MainStories”).

Next, Home determines whether it successfully obtained the collection and then calls for
the page entry of the MainStoryList template.

<IF COND = “IsList.MainStories=true”>
<THEN>
<RENDER.SATELLITEPAGE pagename=“BurlingtonFinanical/Collection/
MainStoryList”
ARGS_cid=“MainStories.oid”
ARGS_p=“Variables.asset:id”/>
<THEN/>
<IF/>

Notice that Home passes the identity of the list that holds the collection to MainStories
with ARGS_cid and the identity of the Home page asset with
ARGS_p=“Variables.asset:id”.

Second Element: MainStoryList
The MainStoryList page entry invokes its root element. Use Content Server Explorer to
open and examine this element:

ElementCatalog/BurlingtonFinancial/Collection/MainStoryList.xml

The MainStoryList element is the template element (the root element) for the
MainStoryList Template asset, a template that formats collection assets.

This element creates the framework for the Home page column that holds the main list of
stories, and then fills that column with the articles from the TopStories collection. It uses
two templates to format those articles:
Content Server 7.0 Developer’s Guide

Chapter 25. Template Element Examples for Basic Assets

Example 1: Basic Modular Design
576
• LeadSummary for the first article in the collection (the top-ranked article)

• Summary for the rest of the articles

Because the purpose of this example is to describe how the first story in the list is
displayed, this example discusses only the LeadSummary template element.

MainStoryList loads and scatters the collection that Home passed to it:

<ASSET.LOAD TYPE="Variables.c" OBJECTID="Variables.cid"
NAME="MainStoryListCollection"/>

<ASSET.SCATTER NAME="MainStoryListCollection" PREFIX="asset"/>

It then extracts the articles from the collection, creates a list to hold them, ordering them
by their rank:

<ASSET.CHILDREN NAME="MainStoryListCollection"
LIST="theArticles"
ORDER="nrank" CODE=“-”/>

And then it calls for the page entry of the LeadSummary template:

<RENDER.SATELLITEPAGE PAGENAME="BurlingtonFinancial/Article/
LeadSummary"
ARGS_cid="theArticles.oid"
ARGS_ct="Full"
ARGS_p="Variables.p"/>

Once again, this element passes on several pieces of information:

• The identity of the list that holds the articles (ARGS_cid)

• The name of the template to use when creating the link to each of the articles
(ARGS_ct)

• The identity of the originating page asset (ARGS_p), which is Home.

Because the list was ordered by rank and this code does not loop through the list, the value
in ARGS_cid (theArticles.oid) is the object ID of the highest ranked article in the
collection because that article is the first article in the list.
Content Server 7.0 Developer’s Guide

Chapter 25. Template Element Examples for Basic Assets

Example 1: Basic Modular Design
577
Third Element: LeadSummary
The LeadSummary page entry invokes its root element (which is the template element for
the LeadSummary template). Use Content Server Explorer to open and examine it:

ElementCatalog/BurlingtonFinancial/Article/LeadSummary.xml

This element formats the first article in the TopStories collection. It does the following:

• Retrieves the image file associated with the first article through the TeaserImage
association.

• Invokes the TeaserSummary element to obtain the formatting code for the image.

• Uses a RENDER.GETPAGEURL tag to obtain the URL for the first article in the
collection.

• Displays the imagefile asset, the title of the article as a hyperlink to the full article, the
summary paragraph, and the byline.

First LeadSummary loads the article and names it LeadSummaryArticle:

<ASSET.LOAD TYPE="Variables.c" OBJECTID="Variables.cid"
NAME="LeadSummaryArticle"/>
<ASSET.SCATTER NAME="LeadSummaryArticle" PREFIX="asset"/>

It obtains the assets associated with the article as its Teaser imagefile asset, creating a list
for that file named “TeaserImage”:

<ASSET.CHILDREN NAME="LeadSummaryArticle" LIST="TeaserImage"
CODE="TeaserImageFile"/>

Finally, it calls the page entry for the TeaserSummary template, passing it the ID of the
imagefile asset held in the list:

<THEN>
<RENDER.SATELLITEPAGE PAGENAME="BurlingtonFinancial/ImageFile/
TeaserSummary"
ARGS_cid="TeaserImage.oid"/>
</THEN>
</IF>

Fourth Element: TeaserSummary
The TeaserSummary page entry invokes its root element, the template element for the
TeaserSummary template. Use Content Server Explorer to open and examine it:

ElementCatalog/BurlingtonFinancial/ImageFile/TeaserSummary

Because imagefile assets are blobs stored in the Content Server database, and blobs stored
in the database must be served by the BlobServer servlet rather than the ContentServer
servlet, this element obtains an HTML tag that uses a BlobServer URL.

Scroll down to the following RENDER.SATELLITEBLOB tag:

<RENDER.SATELLITEBLOB BLOBTABLE=“ImageFile” BLOBKEY=“id”
BLOBCOL=“urlpicture” BLOBWHERE=“Variables.asset:id” BLOBHEADER=
“Variables.asset:mimetype” SERVICE=“IMG SRC” ARGS_alt=
“Variables.asset:alttext” ARGS_hspace=“5” ARGS_vspace=“5” />
Content Server 7.0 Developer’s Guide

Chapter 25. Template Element Examples for Basic Assets

Example 1: Basic Modular Design
578
The tag creates an HTML tag. The SRC is the blob in the ImageFile table
identified through the ID passed in with BLOBWHERE=“Variables.asset:id” and
both its horizontal and vertical spacing are at five pixels.

When TeaserSummary is finished, LeadSummary continues.

Back to LeadSummary
When LeadSummary resumes, having obtained the teaser image for the first article in the
TopStories collection, it uses RENDER.GETPAGEURL to obtain the URL for that article:

<RENDER.GETPAGEURL PAGENAME="BurlingtonFinancial/Article/
Variables.ct"

cid="Variables.cid"
c="Article"
p="Variables.p"
OUTSTR="referURL"/>

Remember that when the MainStoryList element called the page entry for
LeadSummary, it passed a ct variable set to Full. Therefore, the page name that
LeadSummary is passing to RENDER.GETPAGEURL is really BurlingtonFinancial/
Article/Full.

RENDER.GETPAGEURL creates the URL for the article based on the information passed in
to it and then returns that URL to LeadSummary in a variable called referURL, as
specified by the OUTSTR parameter.

LeadSummary uses the referURL variable in an HTML <A HREF> tag and then displays
the link, the abstract of the article, and the byline:

<A class="featurehead" HREF="Variables.referURL"
REPLACEALL="Variables.referURL">
<csvar NAME="Variables.asset:description"/>

<csvar NAME="Variables.asset:abstract"/
>

<csvar NAME="Variables.asset:byline"/
>

Note the use of the REPLACEALL tag as an attribute in the HTML <A HREF> tag. You
must use this tag as an attribute when you want to use XML variables in HTML tags.

Now that LeadSummary is finished, MainStoryList continues.

Back to MainStoryList
Next MainStoryList loops through the rest of the articles in the TopStories collection and
uses the Summary template to format them.

If you are interested, use Content Server Explorer to open and examine it:

ElementCatalog/Article/Summary

When MainStoryList is finished, Home continues.
Content Server 7.0 Developer’s Guide

Chapter 25. Template Element Examples for Basic Assets

Example 2: Coding Links to the Article Assets in a Collection Asset
579
Back to Home
Home resumes, with a call to the WireFeedBox page entry.

Example 2: Coding Links to the Article Assets in a
Collection Asset

When an element needs URLs to create a list of hyperlinks to dynamically served Content
Server pages, use the RENDER.GETPAGEURL tag.

These are the elements referred to in this example:

• ElementCatalog/BurlingtonFinancial/Page/SectionFront

• ElementCatalog/BurlingtonFinancial/Collection/PlainList

For the purposes of this example, the code displayed is stripped of any error checking so
that you can focus on how the links are created.

First element: SectionFront
SectionFront is the template element, the root element, of the SectionFront template which
is assigned to the main section pages—News, Markets, Stocks, and so on. It is invoked
when a visitor clicks a link to a section.

One section of a page formatted with the SectionFront element displays a list of links to
articles from the Section Highlights collection that is associated with that page asset.

Use Content Server Explorer to open and examine the SectionFront element:

ElementCatalog/BurlingtonFinancial/Page/SectionFront.

First, SectionFront uses the variables c and cid to load and scatter the page asset, and
names it “SectionFrontPage”:
Content Server 7.0 Developer’s Guide

Chapter 25. Template Element Examples for Basic Assets

Example 2: Coding Links to the Article Assets in a Collection Asset
580
<ASSET.LOAD TYPE="Variables.c" OBJECTID="Variables.cid"
NAME="SectionFrontPage"/>
<ASSET.SCATTER NAME="SectionFrontPage" PREFIX="asset"/>

The values for c and cid are passed to the SectionFront element from the link that
invoked it. That link could be from the home page or any one of several other locations.

In Content Server Explorer, scroll down past several ASSET.CHILDREN tags to the one
that retrieves the Section Highlights collection:

<ASSET.CHILDREN NAME="SectionFrontPage"
LIST="SectionHighlights" CODE="SectionHighlight"/>

This code retrieves the collection with the CODE=“SectionHighlights” statement and
stores it as a list, also named SectionHighlights.

Then SectionFront calls the page entry of the PlainList template (a collection template):

<RENDER.SATELLITEPAGE
pagename="BurlingtonFinancial/Collection/PlainList"
ARGS_cid="SectionHighlights.oid" ARGS_p="Variables.asset:id"/>

This code passes in the ID of the Section Highlights collection (cid) and the ID of the
current page asset (p), which is the page asset assigned the name of SectionFrontPage.

Second element: PlainList
The PlainList page entry invokes its root element, the template element for the PlainList
template. Use Content Server Explorer to open and examine it:

ElementCatalog/BurlingtonFinancial/Collection/PlainList.

PlainList extracts the articles from the collection and presents them in a list, by their rank,
with the subheadline of the article. This element assumes that the assets in the collection
are articles.

PlainList uses the values in c and cid (passed in from the SectionFront element) to load
and scatter the collection:

<ASSET.LOAD TYPE="Variables.c" OBJECTID="Variables.cid"
NAME="PlainListCollection"/>
<ASSET.SCATTER NAME="PlainListCollection" PREFIX="asset"/>

PlainList then sets the variable ct to Full because a value for this variable was not passed
in (Full is the name of an article template):

<IF COND="IsVariable.ct!=true">
<THEN>
<SETVAR NAME="ct" VALUE="Full"/>
</THEN>

</IF>

Next PlainList creates a list of all the child articles in the collection asset, listing them by
their rank, and naming the list “theArticles”.

<ASSET.CHILDREN NAME="PlainListCollection" LIST="theArticles"
OBJECTTYPE="Article" ORDER="nrank" CODE=“-”/>

Note that this ASSET.CHILDREN tag used the OBJECTTYPE parameter. If you use the
OBJECTTYPE parameter with this tag, the resulting list of children is a join of the
Content Server 7.0 Developer’s Guide

Chapter 25. Template Element Examples for Basic Assets

Example 3: Using the ct Variable
581
AssetRelationTree and the asset table for the type you specified—in this case, the
Article table—and it contains data from both tables.

There is now no need for subsequent ASSET.LOAD tags because the data that the
PlainList element is going to use to create the links to these articles is stored in the
Article table.

PlainList loops through the list of articles, using the RENDER.GETPAGEURL tag to
create a URL for each one. In this case —because the code does not use subsequent
ASSET.LOAD tags for each of the children assets— the element includes a
RENDER.LOGDEP tag in the loop:

<LOOP LIST="theArticles">
<RENDER.LOGDEP cid="theArticles.id" c="Article"/>
<RENDER.GETPAGEURL PAGENAME="BurlingtonFinancial/Article/
Variables.ct"

cid="theArticles.id"
c="Article"
p="Variables.p"
OUTSTR="referURL"/>

PlainList passes a cid and pagename and the asset type with ctype for each article in
the collection to the RENDER.GETPAGEURL tag. Because the variable ct was set to Full,
the page name being passed to the tag is actually BurlingtonFinancial/Article/
Full.

The RENDER.GETPAGEURL tag returns a referURL variable for each article in the
collection, as specified by the OUTSTR parameter, and then PlainList uses the value in
the referURL variable to create an HTML <A HREF> link for each article.

Because the ASSET.CHILDREN tag that obtained this collection created a join between
AssetRelationTree and the Article table, PlainList can use the article’s
subheadline field to create the link:

<A class="wirelink" HREF="Variables.referURL"
 REPLACEALL="Variables.referURL">
<csvar NAME="Variables.theArticles:subheadline"/>

</LOOP>

Note the use of the REPLACEALL tag as an attribute for this HTML tag. You must use this
tag as an HTML attribute when you want to use XML variables in an HTML tags. (For
more information about REPLACEALL, see the Content Server Tag Reference.)

Example 3: Using the ct Variable
The ct variable represents the concept of a “child template.” Child templates are alternate
templates. Because assets are assigned a template when they are created, the identity of an
asset’s template (which is not the same as a default approval template) is part of the
information you obtain with an ASSET.LOAD or an ASSET.CHILDREN tag.

However, sometimes you want to use a template other than an asset’s default template. In
such a case, you supply the name of an alternate template with the ct variable.

For example, when a visitor browses the Burlington Financial site, there are text-only
versions of most of the site available to that visitor. The text-only format is not the default
format and content providers do not assign text-only formats to their assets. The
Content Server 7.0 Developer’s Guide

Chapter 25. Template Element Examples for Basic Assets

Example 3: Using the ct Variable
582
Burlington Financial page elements are coded to provide the ID of the alternate, text-only
template when it is appropriate to do so.

Open the Content Server interface, and preview both the Burlington Financial Columnists
page and the News Page. In the upper right corner of these pages, the Plain Text link is
displayed.

Click the Plain Text link on the Columnists page. Then click the Plain Text link on the
News Page:

Every page on the site uses the same element, the TextOnlyLink element, to determine the
URL embedded in the Plain Text link for that page. The TextOnlyLink element returns the
correct URL for each page because the Plain Text link on each page passes the TextOnly
element the information that it needs:

• The ID of the page making the request

• The alternate, text-only template (that is, the child template) to use for the Plain Text
link

These are the elements used in this example:

• ElementCatalog/BurlingtonFinancial/Page/SectionFront

• ElementCatalog/BurlingtonFinancial/Page/SectionFrontText

• ElementCatalog/BurlingtonFinancial/Common/TextOnlyLink

• ElementCatalog/BurlingtonFinancial/Page/ColumnistFront

First Element: SectionFront
Use Content Server Explorer to open and examine the Section Front element:
Content Server 7.0 Developer’s Guide

Chapter 25. Template Element Examples for Basic Assets

Example 3: Using the ct Variable
583
ElementCatalog/BurlingtonFinancial/Page/SectionFront.

SectionFront is the template element (root element) of the Template asset assigned to the
standard section pages on the site, pages such as News, Money, Stocks, and so on.

Scroll down approximately two-thirds of the element to this CALLELEMENT tag:

<CALLELEMENT NAME="BurlingtonFinancial/Common/TextOnlyLink">
<ARGUMENT NAME="ct" VALUE="SectionFrontText"/>
<ARGUMENT NAME="assettype" VALUE="Page"/>
</CALLELEMENT>

TextOnlyLink is the element that creates the Plain Text Link. SectionFront passes it
the name of the alternate template (ct=“SectionFrontText”) and the name of the
asset type (assettype=“Page”).

Second Element: TextOnlyLink
The TextOnlyLink element executes. Use Content Server Explorer to open and examine
it:

ElementCatalog/BurlingtonFinancial/Common/TextOnlyLink

First, TextOnlyLink checks to see whether there is a value for ct.

<IF COND="IsVariable.ct!=true">
<THEN>

<SETVAR NAME="ct" VALUE="Variables.asset:templateText"/>
</THEN>
</IF>

There is a value for ct because the SectionFront element passed in
ct=“SectionFrontText”.

Next, TextOnlyLink uses a RENDER.GETPAGEURL tag to obtain a URL for the Plain
Text link, passing in the page name by concatenating one based on the variables that were
passed to TextOnlyLink by SectionFront.

<RENDER.GETPAGEURL PAGENAME="BurlingtonFinancial/
Variables.assettype/Variables.ct"

cid="Variables.asset:id"
c="Variables.assettype"
p="Variables.p"
OUTSTR="referURL"/>

TextOnlyLink knows that ct=“SectionFrontText” and that assettype=“Page”.
Therefore BurlingtonFinancial/Variables.assettype/Variables.ct means
BurlingtonFinancial/Page/SectionFrontText.

Now that TextOnlyLink has a URL (in the referURL variable specified by the OUTSTR
parameter), it can create the Plain Text link with an HTML <A HREF> tag:

<A class="contentlink" HREF="Variables.referURL"
REPLACEALL="Variables.referURL">
<img src="/futuretense_cs/bf/images/TextOnly.gif" width="22"

height="14" border="0" HSPACE="3"/>Plain Text

Note the use of the REPLACEALL tag as an attribute for this HTML tag. You must use this
tag as an HTML attribute when you want to use XML variables in an HTML tag. (For
more information about REPLACEALL, see the Content Server Tag Reference.)
Content Server 7.0 Developer’s Guide

Chapter 25. Template Element Examples for Basic Assets

Example 3: Using the ct Variable
584
And then TextOnlyLink clears the ct variable.

<REMOVEVAR NAME="ct"/>

When a visitor clicks the Plain Text link, the article is formatted with the
SectionFrontText element and then displayed in the browser.

ColumnistFront
Use Content Server Explorer to open and examine the ColumnistFront element:

ElementCatalog/BurlingtonFinancial/Page/ColumnistFront

This element formats the web format page that displays the stories supplied from the
Burlington Financial columnists.

To create the Plain Text link in the upper right corner of a section page, ColumnistFront
calls TextOnlyLink:

<CALLELEMENT NAME="BurlingtonFinancial/Common/TextOnlyLink">
<ARGUMENT NAME="ct" VALUE="ColumnistFrontText"/>
<ARGUMENT NAME="assettype" VALUE="Page"/>

</CALLELEMENT>

Based on the information passed in from ColumnistFront, this time TextOnlyLink creates
a Plain Text link that takes the visitor to BurlingtonFinancial/Page/
ColumnistFrontText.

Note

If you are interested in the format of the plain text version of a section page, use
Content Server Explorer to open and examine SectionFrontText:

ElementCatalog/BurlingtonFinancial/Page/
SectionFrontText
Content Server 7.0 Developer’s Guide

Chapter 25. Template Element Examples for Basic Assets

Example 4: Coding Templates for Query Assets
585
Example 4: Coding Templates for Query Assets
When you use a query asset to obtain the assets that you want to display, you use the
standard CS-Direct element name ExecuteQuery to run it.

Burlington Financial uses several query assets. This example describes a query asset
named Home Wire Feed which is used to list wire feed stories on the Home page:

These are the elements used in this example:

• ElementCatalog/BurlingtonFinancial/Page/Home

• ElementCatalog/BurlingtonFinancial/Query/WireFeedBox

• ElementCatalog/OpenMarket/Xcelerate/AssetType/Query/ExecuteQuery

First Element: Home
Use Content Server Explorer to open and examine the template element for the Home
page:

ElementCatalog/BurlingtonFinancial/Page/Home

First, Home loads the home page asset, names it HomePage, and then scatters the
information in its fields:

<ASSET.LOAD TYPE="Variables.c" OBJECTID="Variables.cid"
NAME="HomePage"/>
<ASSET.SCATTER NAME="HomePage" PREFIX="asset"/>

The values for c and cid are passed in from the Burlington Financial URL.

Scroll down past several CALLELEMENT and RENDER.SATELLITEPAGE tags to the
following ASSET.CHILDREN tag:

<ASSET.CHILDREN NAME="HomePage" LIST="WireFeedStories"
Content Server 7.0 Developer’s Guide

Chapter 25. Template Element Examples for Basic Assets

Example 4: Coding Templates for Query Assets
586
CODE="WireFeed"/>

Notice that in this line of code, the OBJECTTYPE parameter is not used.
CODE=“WireFeed” is enough information for Content Server Direct to locate and
retrieve the query assigned to the Home page asset through the WireFeed association and
there is no need to create a join between the AssetRelationTree and the Query table
because all that Home needs is the ID of the query. The WireFeed query is retrieved and
stored as “WireFeedStories”.

Next, Home calls the page entry of the WireFeedBox template, passing it the cid of the
query stored as “WireFeedStories”:

<RENDER.SATELLITEPAGE PAGENAME="BurlingtonFinancial/Query/
WireFeedBox"
ARGS_cid="WireFeedStories.oid"
ARGS_p=“Variables.asset:id”/>

Home passes on several pieces of information: the identity of the query with the
cid=“WireFeedStories.oid” statement and the identity of the originating page asset,
Home, with the p=“Variables.asset:id” statement.

Second Element: WireFeedBox
The WireFeedBox page entry invokes its root element, the template element for the
WireFeedBox template. Use Content Server Explorer to open and examine it:

ElementCatalog/BurlingtonFinancial/Query/WireFeedBox

This element invokes the ExecuteQuery element to run the query and then displays a list
of links to the article assets returned by the query.

First, WireFeedBox loads the query asset passed in from Home, names it
“WireFeedBoxQuery”, and then retrieves the values from all of its fields with an
ASSET.SCATTER statement:

<ASSET.LOAD TYPE="Variables.c" OBJECTID="Variables.cid"
NAME="WireFeedBoxQuery"/>
<ASSET.SCATTER NAME="WireFeedBox" PREFIX="asset"/>

Variables.cid is the WireFeedStories.oid passed in from the Home element.

Then WireFeedBox calls the ExecuteQuery element:

<CALLELEMENT NAME="OpenMarket/Xcelerate/AssetType/Query/
ExecuteQuery">
<ARGUMENT NAME="list" VALUE="ArticlesFromWireQuery"/>
<ARGUMENT NAME="assetname" VALUE="WireFeedBoxQuery"/>
<ARGUMENT NAME="ResultLimit" VALUE="8"/>
</CALLELEMENT>

WireFeedBox passed in the query asset, the name of the list to create to hold the results of
the query, and a limit of 8 so that no matter how many assets the query returns to
ExecuteQuery, ExecuteQuery returns only 8 of them to WireFeedBox.
Content Server 7.0 Developer’s Guide

Chapter 25. Template Element Examples for Basic Assets

Example 4: Coding Templates for Query Assets
587
Third Element: ExecuteQuery
The ExecuteQuery element runs the query asset.

The query assets that can be assigned to a page asset as that page’s “Wire Feed” query are
coded to return field data rather than the IDs of assets only. Therefore, ExecuteQuery
returns up to eight article assets and the data from several of their fields to WireFeedBox.

Use Content Server Explorer to open and examine ElementCatalog/OpenMarket/
Xcelerate/AssetType/Query/ExecuteQuery if you are interested in this element.
Notice that the first line of code in the element is RENDER.UNKNOWNDEPS because there is
no way of knowing which assets will be returned so there is no way to log dependencies
for them.

When ExecuteQuery is finished, WireFeedBox resumes.

Back to WireFeedBox
WireFeedBox resumes, looping through the list of articles returned by ExecuteQuery,
and obtaining a URL for each one by using a RENDER.GETPAGEURL tag.

Because there is no way of knowing which article assets will be returned by
ExecuteQuery, there is a RENDER.FILTER tag included in the loop to filter out
unapproved assets when the publishing method is Export to Disk:

<RENDER.FILTER LIST="ArticlesFromWireQuery"
LISTVARNAME="ArticlesFromWireQuery" LISTIDCOL="id"/>

<if COND="ArticlesFromWireQuery.#numRows!=0">
<then>
<LOOP LIST="ArticlesFromWireQuery">
<RENDER.GETPAGEURL PAGENAME="BurlingtonFinancial/Article/
WireStory"
cid="ArticlesFromWireQuery.id"
c="Article"
p="Variables.p"
OUTSTR="referURL"/>
<A class="wirelink" HREF="Variables.referURL"
REPLACEALL="Variables.referURL"><csvar
NAME="ArticlesFromWireQuery.subheadline"/><P/>

</LOOP>
</then>
</if>

The RENDER.GETPAGEURL tag returns a URL for each article in the list in a variable
named referURL. WireFeedBox uses the value from the referURL variable to create
links to the articles, using the content from their subheadline fields (which is one of the
fields that the Wire Feed query returned) as the hyperlinked text.

Note the use of the REPLACEALL tag as an attribute for this HTML tag. You must use this
tag as an HTML attribute when you want to use XML variables in an HTML tag. (For
more information about REPLACEALL, see the Content Server Tag Reference.)
Content Server 7.0 Developer’s Guide

Chapter 25. Template Element Examples for Basic Assets

Example 5: Displaying an Article Asset Without a Template
588
Example 5: Displaying an Article Asset Without a
Template

Burlington Financial provides an “email this article to a friend” function. Here is the email
form for an article:

Obviously the Burlington Financial developers do not want the Burlington Financial
content providers to assign the email form to an article as the article’s Display Style
(template). Therefore, there is no Template asset that points to the email element that
creates the article email form.

These are the elements used in this example:

• ElementCatalog/BurlingtonFinancial/Article/Full

• ElementCatalog/BurlingtonFinancial/Article/AltVersionBlock

• ElementCatalog/BurlingtonFinancial/Util/EmailFront

First Element: Full
Use Content Server Explorer to open and examine the template element for the Full
template:

ElementCatalog/BurlingtonFinancial/Article/Full

This element provides the formatting code for articles when they are displayed in full. It
displays the following items:

• A site banner

• The left navigation column

• A collection of related stories

• The text of the article

• A photo for the article
Content Server 7.0 Developer’s Guide

Chapter 25. Template Element Examples for Basic Assets

Example 5: Displaying an Article Asset Without a Template
589
• A link that prints the story

• A link that emails the story

Scroll down past several RENDER.SATELLITEPAGE and CALLELEMENT tags to the
following tag:

<CALLELEMENT NAME="BurlingtonFinancial/Article/
AltVersionBlock"/>

Second Element: AltVersionBlock
Use Content Server Explorer to open and examine this element:

ElementCatalog/BurlingtonFinancial/Article/AltVersionBlock

AltVersionBlock is a short element with two RENDER.GETPAGEURL tags. The first
RENDER.GETPAGEURL tag obtains the URL for the print version of an article. The second
RENDER.GETPAGEURL tag obtains the URL for the email version of the story.

Because the Burlington Financial developers want a dynamic URL for the email version
of the story even if the site is a static site, the second RENDER.GETPAGEURL tag uses the
DYNAMIC parameter.

Scroll down to the second RENDER.GETPAGEURL tag:

<RENDER.GETPAGEURL PAGENAME="BurlingtonFinancial/Util/
EmailFront"
cid="Variables.asset:id"
c="Article"
DYNAMIC="true"
OUTSTR="referURL"/>

AltVersionBlock passes in the pagename for the EmailFront page entry, and a value for
c, and cid, and sets the DYNAMIC parameter to “true”. The tag creates a dynamic URL
for the article (even if the publishing method is Export to Disk) and returns it in a variable
named referURL, as specified by the OUTSTR parameter.

Third Element: EmailFront
EmailFront is the pagename that AltVersionBlock passes to the
RENDER.GETPAGEURL element. Because there is no corresponding template for
EmailFront, CS-Direct did not create a page entry in the SiteCatalog for
EmailFront by default. The Burlington Financial developers created the SiteCatalog
entry for this element manually through Content Server Explorer.

Use Content Server Explorer to open and examine its root element:

ElementCatalog/BurlingtonFinancial/Util/EmailFront

This element creates a form that displays the first paragraph of the article that the visitor
has chosen to email.

First, EmailFront loads the article asset:

<ASSET.LOAD TYPE="Article" OBJECTID="Variables.cid"
NAME="EmailFront"/>
<ASSET.SCATTER NAME="EmailFront" PREFIX="asset"/>

Then it formats several parts of the page before creating the email form. Scroll down to the
HTML FORM tag:
Content Server 7.0 Developer’s Guide

Chapter 25. Template Element Examples for Basic Assets

Example 6: Displaying Site Plan Information
590
<FORM NAME="mailform" onSubmit="return checkEmail();"
METHOD="POST" ACTION=...

EmailFront then calls the LeadSummary page entry to display a summary of the article in
the form:

<RENDER.SATELLITEPAGE
ARGS_pagename="BurlingtonFinancial/Article/LeadSummary"
ARGS_cid="Variables.cid"
ARGS_ct="Full"
ARGS_p="Variables.p"/>

For information about the LeadSummary element, see “Example 1: Basic Modular
Design” on page 574 or use Content Server Explorer to open and examine it.

Example 6: Displaying Site Plan Information
Because the developers of the Burlington Financial sample site used the Site Plan tab in
the Content Server interface to order the basic structure of the Burlington Financial site,
they are able to extract information from the SitePlanTree table to create navigational
features for the site.

For example, the navigation bar at the top of the Burlington Financial home page is
created by extracting information about the site’s structure from the SitePlanTree table.

To extract information from the SitePlanTree table, you use the CS-Direct SITEPLAN
tag family.

These are the elements used in this example:

• ElementCatalog/BurlingtonFinancial/Article/Home

• ElementCatalog/Pagelet/Common/SiteBanner

• ElementCatalog/BurlingtonFinancial/Site/TopSiteBar

First Element: Home
Use Content Server Explorer to open and examine the template element for the Home
template:

ElementCatalog/BurlingtonFinancial/Page/Home

Scroll down to the first RENDER.SATELLITEPAGE tag:

<RENDER.SATELLITEPAGE PAGENAME="BurlingtonFinancial/Pagelet/
Common/SiteBanner"/>

Second Element: SiteBanner
The SiteBanner pagelet invokes its root element. Use Content Server Explorer to open
and examine it:

ElementCatalog/BurlingtonFinancial/Common/SiteBanner
Content Server 7.0 Developer’s Guide

Chapter 25. Template Element Examples for Basic Assets

Example 6: Displaying Site Plan Information
591
SiteBanner gathers the images for the banner (the Burlington Financial logo and an
advertising image) and then calls an element that creates the navigational links to the main
sections of the site.

Scroll down to this CALLELEMENT tag:

<CALLELEMENT NAME="BurlingtonFinancial/Site/TopSiteBar"/>

Third Element: TopSiteBar
TopSiteBar executes, creating the navigational links to the main sections in the site. Use
Content Server Explorer to open and examine TopSiteBar:

ElementCatalog/BurlingtonFinancial/Site/TopSiteBar

Creating the Link for the Home Page
First, TopSiteBar loads the Home page, names it “target”, gets the value from its ID
field, and stores that value in the output variable “pageid”:

<ASSET.LOAD TYPE="Page" NAME="target" FIELD="name" VALUE="Home"
DEPTYPE="exists"/>
<ASSET.GET NAME="target" FIELD="id" OUTPUT="pageid"/>

Note that the ASSET.LOAD tag changes the dependency type from its default of exact to
exists with the DEPTYPE parameter. For a link like this one, a link in a navigational bar,
it makes more sense for the dependency to be an exists dependency.

Then TopSiteBar uses the variable pageid to obtain a URL for the Home page from a
RENDER.GETPAGEURL tag:

<RENDER.GETPAGEURL PAGENAME="BurlingtonFinancial/Page/Home"
cid="Variables.pageid"
c="Page"
OUTSTR="referURL"/

Next TopSiteBar extracts the page asset’s name from its Name field and uses it as the
text for the hyperlink:

<ASSET.GET NAME="target" FIELD="name" OUTPUT="thepagename"/>
<A class="sectionlinks" HREF="Variables.referURL"
REPLACEALL="Variables.referURL"><csvar
NAME="Variables.thepagename"/>

Note the use of the REPLACEALL tag as an attribute for this HTML tag. You must use this
tag as an HTML attribute when you want to use XML variables in an HTML tag. (For
more information about REPLACEALL, see “Using Variables in HTML Tags” on page
106.)

Creating the Links to the Home Page’s Child Pages
In the next part of the code, TopSiteBar creates links for the child pages of the Home page.
In order to determine the child pages of the Home page, it must first determine the node ID
of the Home page.

The node ID of a page asset is different from its object ID:

• You use an object ID to extract information about an asset from asset tables.

• You use a node ID to extract information about a page asset from the SitePlanTree
table.
Content Server 7.0 Developer’s Guide

Chapter 25. Template Element Examples for Basic Assets

Example 6: Displaying Site Plan Information
592
First, TopSiteBar determines the node ID of the Home page:

<ASSET.GETSITENODE NAME="target" OUTPUT="PageNodeId"/>

Then it uses that information to load the Home page as a siteplan node object:

<SITEPLAN.LOAD NAME="ParentNode" NODEID="Variables.PageNodeId"/>

With the Home page node identified and loaded, TopSiteBar can then obtain the Home
page’s child nodes, storing them in a list that it names “PeerPages,” and ordering them
according to their rank:

<SITEPLAN.CHILDREN NAME="ParentNode" TYPE="PAGE" LIST="PeerPages"
CODE="Placed" ORDER="nrank"/>

And now TopSiteBar loops through all the child nodes at the first level, using the
RENDER.GETPAGEURL tag to create a URL for the link to each page:

<IF COND="IsList.PeerPages=true">
<THEN>

<LOOP LIST="PeerPages"> |
<ASSET.LOAD NAME="ThePage" TYPE="Page"

 OBJECTID="PeerPages.oid"/>
<ASSET.GET NAME="ThePage" FIELD="name"

OUTPUT="thepagename"/>
<ASSET.GET NAME="ThePage" FIELD="template"

OUTPUT="pagetemplate"/>
<RENDER.GETPAGEURL PAGENAME="BurlingtonFinancial/Page/
Variables.pagetemplate"

cid="PeerPages.oid"
c="Page"
OUTSTR="referURL"/>

<A class="sectionlinks" HREF="Variables.referURL"
REPLACEALL="Variables.referURL">
<csvar NAME="Variables.thepagename"/>

Notice how the page name is constructed in this example. The second ASSET.GET
statement in the preceding piece of code obtains the name of the page’s template from its
template field. Here it is again:

<ASSET.GET NAME="ThePage" FIELD="template"
OUTPUT="pagetemplate"/>

Then, that information is used in the PAGENAME parameter passed to the
RENDER.GETPAGEURL tag:

PAGENAME="BurlingtonFinancial/Page/Variables.pagetemplate"/>

Therefore, if the template for the page asset is SectionFront, this argument statement
passes pagename=“BurlingtonFinancial/Page/SectionFront. And if the
template for the page asset is AboutUs, this argument statement passes
pagename=“BurlingtonFinancial/Page/AboutUs.
Content Server 7.0 Developer’s Guide

Chapter 25. Template Element Examples for Basic Assets

Example 7: Displaying Non-Asset Information
593
Back to SiteBanner
SiteBanner is finished after the call to TopSiteBar. The SiteBanner element is invoked
on each page in the site.

Because SiteBanner has a page entry in the SiteCatalog table, the results of the
navigational bar that TopSiteBar creates is cached the first time a visitor requests a page
on the Burlington Financial site. This speeds up performance because the site does not
have to re-invoke the TopSiteBar element for each and every page that the visitor
subsequently visits.

Example 7: Displaying Non-Asset Information
Sometimes you need to render and display information that is not stored as an asset in the
Content Server database. For example, the Burlington Financial site displays today’s date
on each page. The date is not information that can be stored as an asset.

These are the elements used in this example:

• ElementCatalog/BurlingtonFinancial/Article/Home

• ElementCatalog/Common/ShowMainDate

First Element: Home
Use Content Server Explorer to open and examine the template element for the Home
template:

ElementCatalog/BurlingtonFinancial/Page/Home

Scroll down to the third CALLELEMENT tag, one that invokes the ShowMainDate element.

<CALLELEMENT NAME=“BurlingtonFinancial/Common/ShowMainDate”/>

Second Element: ShowMainDate
ShowMainDate executes. Use Content Server Explorer to open and examine it:

ElementCatalog/BurlingtonFinancial/Common/ShowMainDate

The main line of code is this one:

<csvar NAME="CS.Day CS.Mon CS.DDate,
CS.Year"/>

It calculates the date and then returns that value to the Home element, which displays it at
the top of the page, under the navigation bar and over the main list of stories.

This element performs a simple calculation and then outputs the value into the HTML
code that is rendered in the browser window. There are no content assets that it formats or
Template assets that use it as a root element. It also has no SiteCatalog entry because
its result—the date—should be calculated each time the Home page is rendered.
Content Server 7.0 Developer’s Guide

Chapter 25. Template Element Examples for Basic Assets

Example 7: Displaying Non-Asset Information
594
Content Server 7.0 Developer’s Guide

595
Chapter 26

Configuring Sites for Multilingual Support
This chapter explains how to configure multilingual support for a site.

This chapter contains the following sections:

• Overview

• Working with Locale Filtering

• Planning Multilingual Support for a Site

• Configuring Multilingual Support for a Site
Content Server 7.0 Developer’s Guide

Chapter 26. Configuring Sites for Multilingual Support

Overview
596
Overview
When you configure a site for multilingual support, users in that site gain the ability to
assign locale (language version) designations to assets, and to create linked translations of
assets. You also have the option to create site-specific delivery rules for multilingual
content that determine which language versions of assets will be shown on the online site,
and what to do if a visitor’s request is for a language version in which the content does not
yet exist.

This chapter describes important topics you need to consider when planning and
implementing the design of your site with respect to multilingual support. The chapter
then goes on to describe the procedures necessary to configure your site to support
multilingual assets and related features.

Dimensions
Locale designations in Content Server are implemented through the concept of
dimensions. Each dimension is enabled on a per-site basis through a “Dimension” asset.
The “Dimension” asset represents the dimension in the site. For locales, you create
“Dimension” assets of the “Locale” subtype.

A dimension is an identifier that differentiates two assets that are otherwise semantically
identical. A locale is thus a type of dimension that differentiates two translations of the
same content. An asset becomes localized when it is assigned a locale. (This assignment is
recorded in the assetType_Dim table for the corresponding asset type.)

To enable a given locale on the online site, you must publish the corresponding
“Dimension” asset to the delivery system before publishing your localized content, and
include the locale in the site’s dimension set.

Dimension Sets
After you create your locales, we recommend that you configure a dimension set. To set
up a dimension set, you create a “DimensionSet” asset.

A dimension set allows you to define, through attached business logic, which locales are
permitted on the online site, and how to handle content that has not yet been translated into
the visitor’s preferred language at the time the visitor requests it. This way, content can
exist in any language, but only the language versions relevant to the site will be shown on
the site.

In most situations, you will only need a single dimension set per site. The “DimensionSet”
asset must be published to the delivery system for locale-specific rendering features (such
as locale filtering) to function on the online site. When you approve the “DimensionSet” for
publishing, the “Dimension” assets listed in the dimension set must be approved as well.

Note

If you do not create a dimension set, localized assets will still function just like
their non-localized counterparts; however, locale-specific rendering features, such
as locale filtering, will not be available.
Content Server 7.0 Developer’s Guide

Chapter 26. Configuring Sites for Multilingual Support

Overview
597
Multilingual Support Across Sites
If you are setting up multilingual support in more than one site, you can choose to
implement one of the following scenarios:

• Create the locales and a dimension set, and share them across your sites

This option provides the simplest way of enabling multilingual support on multiple
sites. Sites set up in this way share the properties stored in the dimension set (locales
enabled for display on the online site, the locale filtering method, and, if applicable,
the fallback hierarchy). If you are creating a “bare-bones” site that you will replicate
into multiple target sites, it is best to share your locales to the target sites.

• Create separate locales and dimension sets for each site

This option affords the most flexibility, at the cost of increased configuration
complexity. Sites set up this way benefit from the fact that properties such as locale
filter type or fallback hierarchy can be tailored to each site.

• A mixture of the two options

This option provides the right balance between flexibility and configuration
complexity. As a possible best practice, you would create a pool of unique locales,
then enable required locales from that pool for each site, and share or create dimension
sets for each site as needed.

Translations and Multilingual Sets
When a user creates a translation of an asset, Content Server copies the asset and assigns a
locale designation to the copy according to the user’s choice. The user then enters the
translated content and saves the translation as a new asset. At this point, the source asset
and its translation are linked into a multilingual set. If this is the first translation of the
source asset, the source asset is designated as the master (dimension parent) asset of the set.
The linking is accomplished through the assetType_DimP table for the asset type. The
table stores the asset ID of the translation and the ID of the locale dimension asset assigned
to that translation. All translations in a multilingual set point to the dimension parent
(master) asset through the assetType_DimP table for the corresponding asset type.

Note

While creating duplicate “Dimension” assets to represent the same language in
multiple sites is possible, it is not recommended, as it introduces unnecessary
complexity.

Note

If a localized asset is being revision-tracked, changes to asset locale data (such as
locale designation or master asset status) do not generate a new version of the asset.
Content Server 7.0 Developer’s Guide

Chapter 26. Configuring Sites for Multilingual Support

Overview
598
Asset Relationships
The way asset relationships are handled with respect to multilingual assets is summarized
in the following table:

You may also decide to use locale filtering to handle asset relationships at render time. For
more information, see the next section, “Working with Locale Filtering,” on page 600.”

Relationship Type Behavior

Named and Unnamed
Associations

When an asset containing named or unnamed associations is
translated, all assets associated with the source asset are
automatically associated with the translation. You then have
the choice to translate the associated assets and associate the
translated versions with the translated parent asset.

Collections When you create a translation of a “Collection” asset, the new
“Collection” asset retains the member assets of the source
asset. You then have the choice to translate the member assets
and place the translated versions in the new “Collection”
asset, replacing the member assets carried over from the old
collection.

Static Lists
Recommendations

When you create a new language version of a Static Lists
recommendation, the new “Recommendation” asset retains
the member assets of the source asset. You then have the
choice to translate the member assets and place the translated
versions in the new “Recommendation” asset, replacing the
member assets carried over from the old collection.

Dynamic Lists
Recommendations

Since Dynamic Lists recommendations are populated by
element code, they are not affected.

Related Items
Recommendations

When an asset containing Related Items associations is
translated, all assets associated with the source asset are
automatically associated with the translation. You then have
the choice to translate the associated assets and associate the
translated versions with the translated parent asset.

Asset-Type Attributes When an asset containing associations through asset-type
attributes is translated, all assets associated with the source
asset are automatically associated with the translation. You
then have the choice to translate the associated assets and
associate the translated versions with the translated parent
asset.

Embedded Links Embedded links are not affected. When an asset containing
embedded links is translated, you must manually update the
links to point to the corresponding translations of the linked
content (if such translations exist).
Content Server 7.0 Developer’s Guide

Chapter 26. Configuring Sites for Multilingual Support

Overview
599
Approval Dependencies
An approval dependency exists between two assets when editing one of the assets causes
the other’s approval status to change. The following table summarizes the approval
dependencies affecting localized assets:

Dependency Effect on Asset Approval

An “Exists” dependency exists
between a localized asset and the
“Dimension” asset representing
the assigned locale.

To approve a localized asset for publishing, the
corresponding “Dimension” asset must also be
approved.

In a multilingual set, an “Exists”
dependency exists between the
master asset and each translation
linked to it.

When you create the first translation of an asset, you
must approve both the asset and its translation.

To approve a translation, you must also approve the
corresponding master asset, unless the master asset
has already been approved.

You must reapprove all members of the set if:

• You add a new translation to, or delete an
existing translation from the set.

• You edit the set’s master asset.

• You designate another member of the set as the
master.

An “Exists” dependency exists
between a “DimensionSet” asset
and the “Dimension” assets
representing the locales enabled in
that dimension set.

To approve a dimension set, the corresponding
“Dimension” assets must also be approved.
Content Server 7.0 Developer’s Guide

Chapter 26. Configuring Sites for Multilingual Support

Working with Locale Filtering
600
Working with Locale Filtering
Ideally, a multilingual site would be complete in terms of its content before it is launched
— that is, all assets and their relatives would exist in all of the required languages.
However, in many situations, this is not so. In such cases, you would use a locale filter to
decide at render time which language version of an asset to show on the site depending on
the circumstances and the language preference specified by the visitor. For example, you
could use filtering to let the business logic decide what to do if a requested asset does not
exist in the requested language.

By using locale filtering, you can also spread editorial work over time by allowing content
providers to create the required translations after the original content is published to the
online site. Locale filtering allows the site to automatically “pick up” the missing
translations as soon as they are published to the delivery system.

Keep in mind that locale filtering introduces additional load on the delivery system. The
amount of additional load depends on the complexity of the filtering logic.

Handling Asset Relationships Through Locale Filtering
The way you choose to implement locale filtering will have an influence on how asset
relationships on your site are structured, and vice versa, depending on the way you want
the online site to behave.

You can choose to implement one of the following options:

• Maintain different asset relationship trees for each locale

When rendering assets, this model renders whatever assets are associated with the
requested asset.

For example, if an asset exists in English and French, and each version has a unique
set of associated assets, each version is rendered with its respective associated assets.
Filtering is only used to look up and deliver a version of the requested asset matching
the language preference specified by the visitor; the associated assets are expected to
already have been translated into all required languages.

This model allows for completely independent content for each language. It is used in
the First Site II sample site.

• Use the same asset relationship tree for all locales

When rendering assets, this model substitutes the associated assets of the requested
asset with the assets associated with a specific language version of the requested asset,
regardless of the language preference specified by the visitor.

For example, if an asset exists in English and French, each version has a unique set of
associated assets, and the visitor specified French as their language preference,
filtering will look up and deliver the French version of the requested asset, but it will
substitute the associated assets of the English version in place of those of the French
version (assuming the language version from which filtering is to derive associations
is English).

This model ensures consistent content across all languages.

• A mixture of the two models

Allows for the greatest amount of flexibility and customization for your site. The optimal
proportion between the two models will depend on the intended behavior of your site.
Content Server 7.0 Developer’s Guide

Chapter 26. Configuring Sites for Multilingual Support

Working with Locale Filtering
601
Included Locale Filters
Content Server ships with the following locale filters:

• The Simple Filter

• The SimpleLookup Filter

• The Hierarchical Filter (also known as the Fallback filter)

You also have the option to implement custom locale filters, if desired. See “Custom
Locale Filters,” on page 603 for more information on custom filters.

Note that depending on the type of filter you choose to implement, the assets being filtered
must satisfy one, or both of the following conditions:

• Assets must have locale designations assigned. Assets without locale designations will
be ignored by locale filters.

• Assets that are translations of one another must be linked into multilingual sets (that
is, designated as translations of one another through a master asset). Otherwise, the
filters will not be able to perform the necessary translation lookups.

The Simple Filter
The Simple filter is a possible choice for a site that should only be rendered in one
language, but whose content exists in multiple languages. The filter checks the following:

• Whether the requested asset is in the language specified by the visitor

• Whether the locale of the asset is listed in the site’s dimension set

If both conditions are met, the filter passes the asset to the template for rendering;
otherwise, nothing is rendered.

The Simple filter has the least impact on delivery system performance, but increases the
amount of editorial work that needs to be done, as assets must exist in the required
language versions or they will not be displayed on the online site.

The SimpleLookup Filter
The SimpleLookup filter is ideal for a site that should only be rendered in one language,
but whose content may exist in multiple languages, and for which there is no guarantee
that all of the necessary translations exist at render time. The filter checks the following:

• Whether the requested asset is in the language specified by the visitor

• Whether the locale of the asset is listed in the site’s dimension set

If the requested asset is not in the visitor’s preferred language, the filter looks up a suitable
replacement by checking the asset’s translations. If the filter finds a matching translation,
it passes it to the template; otherwise, nothing is rendered. (The filter will also return
nothing if the locale of the translation is not included in the site’s dimension set.)

This filter offers a reasonable balance between performance and functionality. While the
lookup queries slightly increase the load on the delivery system, the amount of editorial
work done to create assets can be reduced, as the required translations can be created after
the original content is published to the online site. The lookup mechanism will “pick up”
the missing translations as soon as they are published to the delivery system.

The FirstSite II sample site uses this filter as the default locale filter.
Content Server 7.0 Developer’s Guide

Chapter 26. Configuring Sites for Multilingual Support

Working with Locale Filtering
602
The Hierarchical Filter
The Hierarchical filter checks whether the locale of the requested asset matches the locale
requested by the visitor. If the locales do not match, the filter checks the asset’s
translations to see if a suitable replacement exists. If the filter finds a matching translation,
it passes it to the template; otherwise, it substitutes translations of the requested asset
according to the fallback hierarchy you set up when you configure the site’s dimension set.
The fallback hierarchy determines which language versions the filter should substitute for
the requested asset, and in what order.

For example, consider the following hierarchy:

· en_US (US English)

· de_DE (German)

· de_CH (Swiss German)

· de_AT (Austrian German)

· fr_FR (French)

· fr_BE (Belgian French)

· fr_CA (Canadian French)

· en_UK (British English)

In our example, when the visitor requests an asset in Swiss German (de_CH), the filter
looks up the asset’s translations and if it finds a Swiss German version of the asset, it
passes that version to the template. If the filter cannot find a Swiss German version, it falls
back to the “next best” locale in the hierarchy path, German (de_DE). If, in turn, no
German translation exists, the filter follows the path specified in the hierarchy until it
reaches the top of the tree. If no match is found in the process, nothing is rendered.

Note that the above example describes a situation in which the visitor specifies a single
preferred language. If the user specifies multiple preferred languages (in most cases, in the
form of an ordered list), the filter attempts to find a match in the fallback hierarchy for the
visitor’s most preferred language. If no match is found, the filter checks the next language
on the visitor’s list, until a match in the fallback hierarchy is found. When that happens,
the filter attempts to substitute translations of the requested asset by tracing a path from
the matching locale to the top of the fallback tree, as described earlier.

For example, if the user’s preferred languages are Japanese, French, and English (in that
order), the filter attempts to locate Japanese in its fallback hierarchy. Since Japanese is not
in the hierarchy, the filter then attempts to locate French. French is in the hierarchy, so the
filter traces a path from French to the root node of the tree, and attempts substitution
according to that path, as illustrated by the example earlier in this section.

While powerful and convenient, the hierarchical filter has the following drawbacks:

• The additional database queries run by the filter tax the performance of the delivery
system. To minimize the performance hit, editorial work should be done to ensure that
content exist in as many of the required languages as possible, so that the filter’s
activity is minimized. (You may also choose to use a different filter.)

• Control over which assets to display on the online site is put exclusively in the hands
of the site developer or administrator. This is because the filter follows the fallback
tree configured in the dimension set, rather than the preference order specified by the
site visitor (assuming the site is set up to accept multiple language preferences from
each visitor).
Content Server 7.0 Developer’s Guide

Chapter 26. Configuring Sites for Multilingual Support

Working with Locale Filtering
603
Custom Locale Filters
Depending on the design of your site, you may decide to create custom filters. For
example, your site design might call for a hierarchical (fallback) filter that favors the
locale priority specified by the visitor, rather than the one defined in the dimension set. In
such cases, a field in the “Edit” form for the “DimensionSet” asset allows you to specify a
custom filter class.

Compositional Dependencies
If you decide to incorporate locale filtering on your site, you must account for the
additional compositional dependencies that are introduced as a result. Compositional
dependencies determine how pages are cached on your delivery system.

Asset Lookup Chain
When using locale filtering to look up a translation of an asset, the following factors
determine how pages are cached, based on which assets are loaded during the lookup
process:

• The filtering logic employed

• The page and asset from which the lookup request originates

• The language preference specified by the visitor

A cached page containing the requested asset is dependent on all assets loaded during the
lookup process. Thus, if an asset that is loaded during the lookup process is modified, the
affected page is flushed from the cache.

For example, consider the “SimpleLookup” filter and the following multilingual set:

· en_US (master)

· fr_FR (translation)

· de_DE (translation)

If a visitor requests a page containing the French version, but the visitor’s language
preference is German, the lookup chain is as follows:

fr_FR en_US de_DE

In this example, all three assets are loaded, because the filter must first load the master
asset linked to the French version, and then use the master asset to look up the German
version. Thus, if any of these three assets is modified, the affected page is flushed from the
cache.

If, on the other hand, the user requested the US English version, which is the master asset
of the set, then the lookup chain would be shorter:

fr_FR en_US

In such case, the French and US English versions are loaded, but the German version is not.
Thus, modifying the German version would not cause the corresponding page to be flushed
from the cache, but modifying the French or US English versions would.

For a detailed explanation of the lookup mechanisms employed by locale filters included
with Content Server, see “Included Locale Filters,” on page 601.

The next section, “Caching Rules,” on page 604, explains the caching rules applicable to
multilingual assets.
Content Server 7.0 Developer’s Guide

Chapter 26. Configuring Sites for Multilingual Support

Working with Locale Filtering
604
Caching Rules
Once the translation lookup occurs and the affected page is cached, the page is flushed
from the cache whenever one of the following occurs:

• A new translation is added to the multilingual set

• A translation that was part of the lookup chain when the page was rendered is edited

• A translation that is a member of the multilingual set is deleted

• The set’s master asset is edited

• Another member of the set is designated as the master

Adding Filtering Support to Your Site
To add support for locale filtering to your site, you must modify the templates and element
code used on your site.

When the template code fetches an asset via the asset’s c/cid values, the locale filter
executes its business logic on the incoming c/cid values and returns the resulting c/cid
values (or nothing) to the template for rendering.

The structure of your site will influence how you implement locale filtering in your
templates, and vice versa. It will also determine the behavior of your site in different
scenarios.

For example, imagine five articles, each exiting in two languages, en (English), and fr
(French). The articles would be a1en, a1fr, a2en, a2fr, and so on. We can decide to put
these articles into a collection and implement locale filtering in one of the following ways:

• Create an English collection, c1en, and assign all of the English articles to it. This
way, before we render the collection, we would simply filter the c/cid of the c1en
asset, then render its children without filtering their c/cid values, because we trust
the c1en collection to be in a single language.

• Create a multilingual collection (without assigning a locale to it) and add the articles
in whatever languages are desired. Then, when rendering each article, filter the article
c/cid values so that the article is rendered in the locale specified by the visitor.

Adding Filtering to Templates
Usually, you would place your filter code into a utility element and call the element at the
top of the template to process the c/cid values.

The following example shows how the FSIILayout template calls the filter code stored in
the FSIICommon/Multilingual/Filter element asset via the render:lookup tag:

<%-- Execute the Dimension filter to look up the translated asset
that corresponds to the locale that the visitor requested. --%>

<render:lookup site=’<%=ics.GetVar("site")%>’ varname="Filter"
key="Filter" match=":x" tid=’<%=ics.GetVar("tid")%>’ />

Note

The examples below are based on the FirstSite II sample site.
Content Server 7.0 Developer’s Guide

Chapter 26. Configuring Sites for Multilingual Support

Working with Locale Filtering
605
<render:callelement elementname=’<%=ics.GetVar("Filter")%>’
scoped="global"/>

Obtaining and Maintaining a Visitor’s Locale Preference
For filtering to work, you have to allow the visitor to specify a preferred language (locale).
This preference must then be propagated throughout the entire site (that is, passed to all
the templates).

The example below shows how this is accomplished in the FSIIWrapper element. The
last section of this example shows how the locale variable is set by taking the value from
the session variable (earlier in the example, we ensure that the session variable exists).

<%-- The session variable locale refers to the id of the dimension
with the subtype of Locale that specifies which language the site
is to be rendered in. Users can select the locale of their choice
from a menu on every page of the site, and once selected, it is
stored in session. A default locale is mapped to this CSElement and
is set if it has not already been set. --%>

<ics:if condition=’<%=ics.GetSSVar("preferred_locale") == null%>’>

<ics:then>

<render:lookup site=’<%=ics.GetVar("site")%>’
varname="default:locale:name" key=’DefaultLocale’
ttype="CSElement" tid=’<%=ics.GetVar("eid")%>’ match=":x"/>

<asset:load name="defaultLocale" type="Dimension" field="name"
value=’<%=ics.GetVar("default:locale:name")%>’/>

<asset:get name="defaultLocale" field="id"
output="default:locale:id"/>

<ics:setssvar name="preferred_locale"
value=’<%=ics.GetVar("default:locale:id")%>’/>

</ics:then>

</ics:if>

<%-- Call the wrapped child page. There is no need to look up the
template or to enable any special PageBuilder functionality, so we
can use the render:satellitepage tag in this situation. --%>

<render:satellitepage pagename=’<%=ics.GetVar("childpagename")%>’
packedargs=’<%=ics.GetVar("packedargs")%>’>

<render:argument name=’c’ value=’<%=ics.GetVar("c")%>’/>

<render:argument name=’cid’ value=’<%=ics.GetVar("cid")%>’/>

<render:argument name=’p’ value=’<%=ics.GetVar("p")%>’ />

<render:argument name="locale"
value=’<%=ics.GetSSVar("preferred_locale")%>’/>

</render:satellitepage>

Filtering Search Results
If your online site contains search functionality, you may choose to filter the search results
returned to the visitor, based on the visitor’s language preference.

The following example shows how the Page/SearchDetailView template filters an
IList of search results so that the query can go against all languages but only return the
desired results:

<%-- look up the dimension set and filter the ProductList results -
-%>
Content Server 7.0 Developer’s Guide

Chapter 26. Configuring Sites for Multilingual Support

Planning Multilingual Support for a Site
606
<asset:load name="GlobalDimSet" type="DimensionSet" field="name"
value=’<%=ics.GetVar("GlobalDimSet")%>’ />

<dimensionset:filter name="GlobalDimSet" tofilter="ProductList"
list="ProductList">

<dimensionset:asset assettype="Dimension"
assetid=’<%=ics.GetVar("locale")%>’/>

</dimensionset:filter>

For more information, see the Content Server Tag Reference. Additionally, examine the
code in the FirstSite II sample site to see how it implements multilingual support.

Planning Multilingual Support for a Site
Before you start configuring a site for multilingual support, make sure you have satisfied
the following prerequisites. It is best to make these decisions in agreement with your site
administrators.

1. Determine how many languages to initially implement on your site (or sites), based on
your organization’s content management needs. You can either:

- Build a site (or sites) to support a single language initially, and add support for
additional languages as the need arises.

- Plan ahead for all the languages you expect to incorporate across all of your sites
and create the appropriate locales in advance.

2. Determine whether you will share existing locales and dimension sets to the new site
(or sites), or create separate ones. For more information, see “Multilingual Support
Across Sites,” on page 597.

3. Decide how asset relationships are going to be handled at render time with respect to
locales, and choose the locale filtering method(s) appropriate to your decision. The
choices you make will have to strike a balance between the desired levels of
automation, delivery system performance, and editorial workload, and are thus best
made in agreement with your site administrators. For more information, see “Working
with Locale Filtering,” on page 600. Note the following:

- Different filtering methods provide different levels of automation at the cost of a
performance hit on the delivery system. The more complex the filter, the higher
the performance hit. For example, the SimpleLookup filter provides better
performance than the Hierarchical filter.

- Depending on the filtering method you implement, editorial work on site content
can be spread over time, as translations can be created after the original content is
created and published to the live site. The filtering logic you implement will
decide what to do content that does not yet exist in the required language versions.
Content Server 7.0 Developer’s Guide

Chapter 26. Configuring Sites for Multilingual Support

Planning Multilingual Support for a Site
607
4. If you are converting a monolingual site to a multilingual site, obtain the element code
you will use to assign the default locale to the assets in the site. Sample code based on
the FirstSite II sample site is provided in the section, “Sample Element Code for Bulk-
Assigning a Default Locale,” on page 616.

Note

When replicating a site containing multilingual sets, make sure the master assets
are available on the target site (by either sharing or copying). Otherwise, the set
members will no longer be linked as translations of each other on the target site.
Content Server 7.0 Developer’s Guide

Chapter 26. Configuring Sites for Multilingual Support

Configuring Multilingual Support for a Site
608
Configuring Multilingual Support for a Site
This section describes the procedures necessary to configure a site for multilingual support.

The following topics are covered in this section:

• Configuration Quick Reference

• Enabling the “Dimension” and “DimensionSet” Asset Types

• Enabling the “Locale” Subtype of the “Dimension” Asset Type

• Creating a Locale

• Sharing a Locale to Another Site

• Creating and Configuring a Dimension Set

• Sharing a Dimension Set to Another Site

• Configuring a Locale Filter

• Configuring the Fallback Hierarchy of the Hierarchical Filter

• Bulk-Assigning a Default Locale to Assets in a Site

Configuration Quick Reference
This section provides an overview of the steps necessary to configure multilingual support
for a site. Use this list as a quick reference during the configuration process.

To configure multilingual support for a site

1. Make the necessary decisions and preparations as described in “Planning Multilingual
Support for a Site,” on page 606.

2. Enable the “Dimension” and “DimensionSet” asset types on the site. For instructions,
see “Enabling the “Dimension” and “DimensionSet” Asset Types,” on page 609.

3. Enable the “Locale” subtype of the “Dimension” asset type on the site. For
instructions, see “Enabling the “Locale” Subtype of the “Dimension” Asset Type,” on
page 610.

4. Create or share the desired locales. For instructions, see the following sections:

- For creating new locales, see “Creating a Locale,” on page 610.

- For sharing existing locales, see “Sharing a Locale to Another Site,” on page 611.

For help in determining whether to create new locales or share existing ones, see
“Multilingual Support Across Sites,” on page 597.

5. Create or share a dimension set. For instructions, see the following sections:

- For creating a new dimension set, see “Creating and Configuring a Dimension
Set,” on page 612.

- For sharing an existing dimension set, see “Sharing a Dimension Set to Another
Site,” on page 612.

For help in determining whether to create a new dimension set or share an existing
one, see “Multilingual Support Across Sites,” on page 597.
Content Server 7.0 Developer’s Guide

Chapter 26. Configuring Sites for Multilingual Support

Configuring Multilingual Support for a Site
609
6. (Optional) If you are converting an existing monolingual site to a multilingual site,
execute element code that assigns a default locale to each asset in the site. For
instructions, see “Bulk-Assigning a Default Locale to Assets in a Site,” on page 615.
The section includes sample code which you can customize for your site.

7. Modify the templates used in the site to include support for the locale filter you
selected when you configured the dimension set. For an overview of the process, see
“Adding Filtering Support to Your Site,” on page 604.

Enabling the “Dimension” and “DimensionSet” Asset Types
Before you can create “Dimension” and “DimensionSet” assets in your site, you must
enable the corresponding asset types and subtypes. This procedure describes how to
enable the “Dimension” and “DimensionSet” asset types on your site. The next procedure
describes how to enable the “Locale” subtype of the “Dimension” asset type on your site.

To enable the “Dimension” and “DimensionSet” asset types on your site

1. Log in to the Content Server interface and select the site in which you want to enable
the asset types.

2. In the tree, select the Admin tab.

3. In the Admin tab, drill down the following hierarchy:

a. Expand the Sites node.

b. Under the Sites node, expand the node corresponding to the desired site.

c. Under the desired site node, expand the Asset Types node.

d. Under the Asset Types node, double-click the Enable node.

Content Server displays the “Enable Asset Types” form.

4. In the “Enable Asset Types” form, select the check boxes next to the Dimension and
DimensionSet asset types.

5. Click Enable Asset Types.

Content Server displays the “Start Menu Selection” form.

6. In the “Start Menu Selection” form, select all of the check boxes, and click Enable
Asset Types.

Note

In addition to locale filtering, you will have to implement the following site
functionality:

• Allow the visitor to specify their language preference

• Propagate the visitor’s language preference throughout the site (by passing
it to all templates on the site)

• Maintain the visitor’s language preference for the duration of the session.
Content Server 7.0 Developer’s Guide

Chapter 26. Configuring Sites for Multilingual Support

Configuring Multilingual Support for a Site
610
Content Server displays a message confirming the asset types have been enabled for
the site.

Enabling the “Locale” Subtype of the “Dimension” Asset Type
Before you can assign locales to assets in your site, you must enable the “Locale” subtype
of the “Dimension” asset type on your site.

To enable the “Locale” subtype of the “Dimension” asset type on your site

1. Log in to the Content Server interface and select the site in which you want to enable
the subtype.

2. In the tree, select the Admin tab.

3. In the Admin tab, drill down the following hierarchy:

a. Expand the Asset Types node.

b. Under the Asset Types node, expand the Dimension node.

c. Under the Dimension node, double-click the Subtypes node.

Content Server displays the “Subtypes for Asset Type: Dimension” form.

4. In the form, click the Edit (pencil) icon next to the Locale subtype.

Content Server displays the “Edit Dimension Subtype: Locale” form.

5. In the Sites field, Ctrl+click the site in which you want to enable the “Locale”
subtype.

6. Click Save.

Creating a Locale
To add a new locale to your site, create a “Dimension” asset of subtype “Locale”
representing the desired locale, by performing the following steps:

To create a locale

1. In the button bar, click New.

Note

You must Ctrl+click the name of your site in order to keep the existing site
selections intact; if you simply click on the site name, other selected sites (if any)
will be deselected.

Tip

If the locale you want to create designates a language that is already represented by a
“Dimension” asset in another site in your CS system, share the existing “Dimension”
asset representing that language to your current site instead to avoid redundancy.
Content Server 7.0 Developer’s Guide

Chapter 26. Configuring Sites for Multilingual Support

Configuring Multilingual Support for a Site
611
2. In the list of asset types, click New Dimension.

3. Content Server displays the “New Dimension” form.

4. In the “New Dimension” form, do the following:

a. In the Name field, enter a descriptive name for the locale. FatWire recommends
using the following convention as a best practice:

xx_YY

where:

- xx is the two-letter ISO 639-1 language code (for example, fr for French)

- YY is the two-letter ISO country code (for example, CA for Canada)

To complete the above example, the name fr_CA would denote Canadian French.

b. (Optional) In the Description field, enter a description of the language this locale
represents.

c. In the “Subtype” drop-down list, select Locale.

d. Click Save.

Sharing a Locale to Another Site
To share a locale to another site, you must share the corresponding “Dimension” asset.

To share a locale to another site

1. Log in to the Content Server interface and select the site containing the “Dimension”
assets for the locales you want to share.

2. Find the desired “Dimension” asset and open its “Inspect” form:

a. In the button bar, click Search.

b. In the list of asset types, click Find Dimension.

c. Enter the desired search criteria (if any), and click Search.

d. In the list of search results, navigate to the desired asset and click its name.

Content Server opens the asset in the “Inspect” form.

3. In the action bar, select Share Dimension.

Content Server displays the “Share Dimension” form.

4. In the “Share Dimension” form, select the check boxes next to the sites to which you
want to share the “Dimension” asset. (To share the asset to all sites on your CS
system, select the “All Sites” check box.)

5. Click Save Changes.

6. Content Server displays a message confirming the asset is now available in the sites
you selected.
Content Server 7.0 Developer’s Guide

Chapter 26. Configuring Sites for Multilingual Support

Configuring Multilingual Support for a Site
612
Creating and Configuring a Dimension Set
To create and configure a new dimension set

1. Add the “Dimension” assets (locales) you want to include in the dimension set to your
Active List by doing the following:

a. In the button bar, click Search.

b. In the “Search” form, click Find Dimension.

c. Enter the desired search criteria (if any) and click Search.

d. In the list of search results, navigate to the desired Dimension assets and select
their check boxes.

e. Click Add to My Active List.

2. Create and configure the dimension set by doing the following:

a. In the button bar, click New.

b. In the “New” asset list, click New DimensionSet.

Content Server displays the “New DimensionSet” form.

c. In the Name field, enter a descriptive name for the dimension set.

d. In the tree, select the Active List tab.

e. In the Active List tab, select a locale you want to add to the dimension set and
click Add Selected Items. Repeat this step for each additional locale you want to
add.

f. In the Dimension Filter Class field, select the desired locale filter type. The
Advanced option allows you to specify a custom filter class.

For more information on locale filter types, see “Working with Locale Filtering,”
on page 600.

g. (Optional) If you selected Advanced in step 2, enter the name of the custom filter
class into the text box that appears.

h. When you are finished, click Save Changes.

i. (Optional) If you selected the Hierarchical filter in step 2, complete the steps in
“Configuring the Fallback Hierarchy of the Hierarchical Filter,” on page 613 to
configure the filter’s fallback hierarchy.

Sharing a Dimension Set to Another Site
To share a dimension set to another site, you must share the corresponding
“DimensionSet” asset.

To share a dimension set to another site

1. Log in to Content Server and select the site containing the “DimensionSet” asset you
want to share.

2. Find the desired “DimensionSet” asset and open its “Inspect” form:

a. In the button bar, click Search.

b. In the list of asset types, click Find DimensionSet.

c. Enter the desired search criteria (if any), and click Search.
Content Server 7.0 Developer’s Guide

Chapter 26. Configuring Sites for Multilingual Support

Configuring Multilingual Support for a Site
613
d. In the list of search results, navigate to the desired asset and click its name.

Content Server opens the asset in the “Inspect” form.

3. In the action bar, select Share DimensionSet.

Content Server displays the “Share DimensionSet” form.

4. In the “Share DimensionSet” form, select the check boxes next to the sites to which
you want to share the “DimensionSet” asset. (To share the asset to all sites on your CS
system, select the “All Sites” check box.)

5. Click Save Changes.

6. Content Server displays a message confirming the asset is now available in the sites
you selected.

Configuring a Locale Filter
Usually, you configure the locale filter when you create the dimension set for your site. To
make changes to the locale filter configuration in an existing dimension set, do the following:

To configure a locale filter

1. Find the dimension set whose locale filter you want to configure and open in the
“Inspect” form:

a. In the button bar, click Search.

b. In the “Search” form, click Find DimensionSet.

c. Enter the desired search criteria (if any) and click Search.

d. In the list of search results, navigate to the desired asset and click its name.

Content Server opens the asset in the “Inspect” form.

2. In the Dimension Filter Class field, select the radio button next to the desired filter
type. The Advanced option allows you to specify a custom filter class.

For more information on locale filters, see “Working with Locale Filtering,” on
page 600.

3. (Optional) If you selected Advanced in step 2, enter the name of the custom filter
class into the text field that appears.

4. Click Save Changes.

5. (Optional) If you selected the Hierarchical filter in step 2, complete the steps in
“Configuring the Fallback Hierarchy of the Hierarchical Filter,” on page 613 to
configure the filter’s fallback hierarchy.

Configuring the Fallback Hierarchy of the Hierarchical Filter
If you selected the Hierarchical (Fallback) locale filter when configuring your dimension
set, perform the following steps to configure the filter’s fallback hierarchy:
Content Server 7.0 Developer’s Guide

Chapter 26. Configuring Sites for Multilingual Support

Configuring Multilingual Support for a Site
614
To configure the fallback hierarchy of the Hierarchical locale filter

1. If you plan to add new locales or rearrange existing locales in the fallback hierarchy,
add the “Dimension” assets representing the locales to be included in the hierarchy to
your Active List by doing the following:

a. In the button bar, click Search.

b. In the “Search” form, click Find Dimension.

c. Enter the desired search criteria (if any) and click Search.

d. In the list of search results, navigate to the desired “Dimension” assets and select
their check boxes.

e. Click Add to My Active List.

2. Find and open in the “Inspect” form the dimension set that contains the Hierarchical
filter you want to configure:

a. In the button bar, click Search.

b. In the “Search” form, click Find DimensionSet.

c. Enter the desired search criteria (if any) and click Search.

d. In the list of search results, navigate to the desired “DimensionSet” asset and click
its hyperlinked name.

Content Server displays the “DimensionSet” asset in the “Inspect” form.

3. Configure the fallback hierarchy:

a. In the Dimension Filter Class field, click Configure Locale Hierarchy.

Content Server displays the “Configure Locale Hierarchy” form.

b. In the “Configure Locale Hierarchy” form, click Edit.

Content Server displays an editable version of the form.

c. In the tree, select the Active List tab.

d. (Optional) If the hierarchy is empty, select in the Active List tab the locale you
want to designate as the top node of the fallback hierarchy, then click Add
Selected Items.

e. Select a parent node for the locale you want to add to the hierarchy.

If you are building a hierarchy from scratch, your only choice will be the top-level
node you added in step d.

When building your hierarchy, keep in mind the direction in which the fallback
process occurs (from most-specific to least-specific; that is, towards the root node
of the tree).

Note

• A locale can only appear in the fallback hierarchy once.

• To delete a locale from the hierarchy, click the Delete (trash can) icon next
to the locale node.

• To change the position of a locale in the hierarchy, delete it, then add it
under the desired parent node.
Content Server 7.0 Developer’s Guide

Chapter 26. Configuring Sites for Multilingual Support

Configuring Multilingual Support for a Site
615
f. In the Active List tab, select the locale you want to appear under the parent node
you selected in step e, then click Add Selected Items.

g. Repeat steps e and f for each additional locale you want to add to the hierarchy.

h. When your fallback hierarchy is complete, click Save Changes.

Bulk-Assigning a Default Locale to Assets in a Site
If you are converting a monolingual site to a multilingual site, you must assign a default
locale to all assets in the site. The fastest way to accomplish this is to execute an element
that assigns the default locale to the assets.

To bulk-assign a default locale to assets in a site

1. Create a CSElement asset to hold the element code that will assign a default locale to
your assets. For instructions, see the Content Server Developer’s Guide.

2. Create a SiteEntry asset that references the CSElement asset you created in step 1. For
instructions, see the Content Server Developer’s Guide.

3. Call the SiteEntry asset you created in step 2 in a URL, as follows:

http://<host>:<port>/<context>/ContentServer?pagename=
<siteentry_name>

where:

- <host> is the host of your CS system

- <port> is the port number on which CS is listening for connections

- <context> is the application context root assigned to the CS application.

- <siteentry_name> is the name of the SiteEntry asset you created in step 2

When the element code completes execution, check to make sure that your assets have
the desired locale assigned. If not, check the element code for possible errors.

Note

For your convenience, sample element code for this procedure is provided in the
section, “Sample Element Code for Bulk-Assigning a Default Locale,” on
page 616. The sample code is intended as an example, and will have to be
customized for your site.
Content Server 7.0 Developer’s Guide

Chapter 26. Configuring Sites for Multilingual Support

Configuring Multilingual Support for a Site
616
Sample Element Code for Bulk-Assigning a Default Locale
This section contains sample element code written for the FirstSite II sample site. The
code does the following:

1. Creates a “Dimension” asset named en_US to represent your default locale
designation within the site (US English in this example).

2. Assigns this default locale to all “Page” assets within the site.

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld"%>

<%@ taglib prefix="asset" uri="futuretense_cs/asset.tld"%>

<%@ taglib prefix="ics" uri="futuretense_cs/ics.tld"%>

<%@ taglib prefix="render" uri="futuretense_cs/render.tld"%>

<%@ taglib prefix="user" uri="futuretense_cs/user.tld"%>

<cs:ftcs>

<%-- Record dependencies for the SiteEntry and the CSElement --%>

<ics:if condition=’<%=ics.GetVar("seid")!=null%>’>

<ics:then>

<render:logdep cid=’<%=ics.GetVar("seid")%>’ c="SiteEntry"/>

</ics:then>

</ics:if>

<ics:if condition=’<%=ics.GetVar("eid")!=null%>’>

<ics:then>

<render:logdep cid=’<%=ics.GetVar("eid")%>’ c="CSElement"/>

</ics:then>

</ics:if>

<%-- log in as firstsite--%>

<user:login username="firstsite" password="firstsite"/>

<%-- create the Dimension asset (this can be done manually) --%>

<asset:create name="en_US" type="Dimension"/>

<asset:setsubtype name="en_US" value="Locale"/>

<asset:set name="en_US" field="name" value=’en_US’/>

<asset:set name="en_US" field="description" value=’US English’/>

<%-- enter your site’s pubid below --%>

<ics:setvar name="primarypubid" value="1112198287026"/>

<asset:save name="en_US"/>

Note

The code in this section is provided as an example. If you decide to use it, be sure
to customize it for your site. Test the code before deploying it; no error checking is
included in this example.
Content Server 7.0 Developer’s Guide

Chapter 26. Configuring Sites for Multilingual Support

Configuring Multilingual Support for a Site
617
<%-- look up the id of the Dimension asset you just created --%>

<asset:get name="en_US" field="id" output="en_US.id"/>

<%-- get a list of all Content_C assets in the site, and assign a
dimension to each of them --%>

<asset:list type="Content_C" list="allContentAssets"
pubid="1112198287026"/>

<ics:listloop listname="allContentAssets">

<ics:listget listname="allContentAssets" fieldname="id"
output="id"/>

<asset:load type="Content_C" objectid=’<%=ics.GetVar("id")%>’
name="tempName" editable="true"/>

<asset:adddimension name="tempName"
dimensionid=’<%=ics.GetVar("en_US.id")%>’/>

<asset:save name="tempName"/>

</ics:listloop>

</cs:ftcs>
Content Server 7.0 Developer’s Guide

Chapter 26. Configuring Sites for Multilingual Support

Configuring Multilingual Support for a Site
618
Content Server 7.0 Developer’s Guide

619
Chapter 27

User Management on the Delivery System
Content Server provides authentication functionality through the USER tags, user profile
management through the DIR tags, and enforces security on database tables and rendered
pages through access control lists (ACLs). You use these user management and security
mechanisms to manage users and control visitor access on your distribution system and on
your Content Server development and management systems.

This chapter contains the following sections:

• The Directory Services API

• Controlling Visitor Access to Your Online Sites

• Creating Login Forms

• Creating User Account Creation Forms

• Visitor Access in the Burlington Financial Sample Site
Content Server 7.0 Developer’s Guide

Chapter 27. User Management on the Delivery System

The Directory Services API
620
The Directory Services API
The Directory Services API enables your Content Server system to connect to directory
servers that contain authentication information, user information, and so on.

Content Server delivers three directory services plug-ins, one of which was installed when
your Content Server systems were installed:

• The Content Server directory services plug-in, which uses the native Content Server
user management tables; that is, the SystemUsers and SystemUserAttrs tables

• The LDAP plug-in, which actually supports any JNDI server

• The NT plug-in, which retrieves user credentials and login name from the NT
directory but gets all other user information from the SystemUserAttrs table

The plug-in is installed during the installation of your Content Server systems and it is
configured by setting properties in the dir.ini file. For information about configuring
your user management setup, see the Content Server Administrator’s Guide.

Entries
A directory entry is a named object with assigned attributes, in particular, user and group
type entries:

• A user type object has a distinguished name and a set of attributes such as
commonname, username, password and email.

• A group type object, similar to a Content Server ACL, also has a distinguished name
and a set of attributes.

Names reflect the hierarchy in which they are associated; to ensure portability across
directory implementations, names should be treated as opaque strings.

Hierarchies
Some directory databases organize entries using a hierarchical structure. With Content
Server’s directory services API, an entry’s attributes and its place in the hierarchy are
distinct. As a result, retrieving an entry’s attributes does not yield information about its
children.

Support for hierarchies depends on the underlying directory implementation; for example,
LDAP directories support a hierarchical structure, while Content Server’s native directory
database does not support a hierarchical structure.

To ensure portability across directory implementations, your code should not assume
support for hierarchical data.

Group hierarchies do not affect internal Content Server permissions.

Groups
Content Server’s directory services API does not enforce referential integrity. When you
delete a user with the directory tags, your application must ensure that group memberships
are also deleted, by first removing the user from the groups that he is associated with.

When a member is added to a group, the JNDI implementation always builds a fully
distinguished name for the value of the uniquemember attribute, regardless of the name
passed into the addmember tag.
Content Server 7.0 Developer’s Guide

Chapter 27. User Management on the Delivery System

The Directory Services API
621
Directory Services Tags
Content Server delivers the DIR tag family, with both XML and JSP versions, that you can
use to invoke the Directory Services API.

The DIR tags are as follows:

Regardless of whether the directory is implemented with LDAP, Content Server only, or
any other directory server, the code you write with the DIR tags is very similar.

For more information about these tags, see the Content Server Tag Reference. For code
samples, see “Directory Services Code Samples” on page 622.

Directory Operations
Some of the Content Server Directory Services tags write information to the database. If
your database administrators will be handling all of the web site’s write operations, such
as adding user information to the database, restrict use of the directory tags to

Tag Description

DIR.ADDATTRS
dir:addattrs

Adds attributes to an existing entry (which can be either
a user or a group).

DIR.ADDGROUPMEMBER
dir:addgroupmember

Adds a member to a group (usually a user).

DIR.CHILDREN
dir:children

Retrieves the child entries for a specified parent in a list
variable.

DIR.CREATE
dir:create

Creates a directory entry.

DIR.DELETE
dir:delete

Deletes a directory entry.

DIR.GETATTRS
dir:getattrs

Gets the attribute values for a specified entry in a list
variable.

DIR.GROUPMEMBERS
dir:groupmembers

Lists the members of a specified group.

DIR.GROUPMEMBERSHIPS
dir:groupmemberships

Lists all the groups that an entry (either a group or a
user) belongs to.

DIR.LISTUSERS
dir:listusers

Returns a list of all the users in the directory.

DIR.REMOVEATTRS
dir:removeattrs

Deletes an attribute value for an entry.

DIR.REMOVEGROUPMEMBER
dir:removegroupmember

Removes an entry from a group.

DIR.REPLACEATTRS
dir.replaceattrs

Replaces the value of an attribute for an entry (either a
user or a group).

DIR.SEARCH
dir:search

Searches the directory for entries who match the
specified search criteria.
Content Server 7.0 Developer’s Guide

Chapter 27. User Management on the Delivery System

The Directory Services API
622
read-only operations. This policy avoids synchronization issues with third-party directory
administration tools.

The read-only operations are presented in this section. Operations are performed using the
credentials and read permissions of the currently authenticated user.

Searching
Due to limitations in some directory servers, search is not allowed from the top
organizational level. To avoid portability issues, always specify the context attribute on
the DIR.SEARCH tag.

Lookup
Looking up a user generally involves two steps:

1. Call DIR.SEARCH on the userid to get the entry name.

2. Call DIR.GETATTRS to get the attributes of the user in question.

Listing Users
FatWire recommends that you use one of the following three methods to list users:

• For small user databases, use the DIR.LISTUSERS tag, which recursively lists all
users under the peopleParent property. This tag is inefficient on large user
databases.

• For large user databases, use the DIR.CHILDREN tag to walk the hierarchy. The
DIR.CHILDREN tag is best used for group types and not for user types.

• For user databases with a flat hierarchy, narrow results with a search

Directory Services Code Samples
The following JSP code sample illustrates some possible directory operations:

<%
String sMainTestUserName = "ContentServer";
String sMainTestUserPW="FutureTense";

String sPeopleParent = ics.GetProperty("peopleparent", "dir.ini",
true);
String sGroupParent = ics.GetProperty("groupparent", "dir.ini",
true);
String sUsername = ics.GetProperty("username", "dir.ini", true);
String sCommonName = ics.GetProperty("cn", "dir.ini", true);
IList mylist;
%>

<user:su username=’<%=sMainTestUserName%>’
password=’<%=sMainTestUserPW%>’>

<H2>List All Users</H2>

<ics:clearerrno/>
<dir:listusers list=’mylist’/>

Content Server 7.0 Developer’s Guide

Chapter 27. User Management on the Delivery System

The Directory Services API
623
dir:listusers errno: <ics:getvar name=’errno’/>
<ics:listloop listname=’mylist’>

<ics:listget listname=’mylist’ fieldname=’NAME’/>
</ics:listloop>

<H2>Look Up the ContentServer User by Username</H2>

<ics:clearerrno/>
<dir:search list=’mylist’ context=’<%=sPeopleParent%>’>

<dir:argument name=’<%=sUsername%>’ value=’ContentServer’/>
</dir:search>

dir:search errno: <ics:getvar name=’errno’/>

<%
mylist = ics.GetList("mylist");
if(mylist.numRows() != 1) {

out.print("
Error finding entry.");
}
mylist.moveTo(1);
ics.SetVar("ContentServerDn", mylist.getValue("NAME"));

%>

<H2>Show ContentServer Attributes</H2>

<ics:clearerrno/>
<dir:getattrs list=’mylist’

name=’<%=ics.GetVar("ContentServerDn")%>’/>

dir:getattrs errno: <ics:getvar name=’errno’/>
<ics:listloop listname=’mylist’>

<ics:listget listname=’mylist’ fieldname=’NAME’/>=
<ics:listget listname=’mylist’ fieldname=’VALUE’/>

</ics:listloop>

<H2>Show Group Memberships for ContentServer</H2>

<ics:clearerrno/>
<dir:groupmemberships name=’<%=ics.GetVar("ContentServerDn")%>’

list=’mylist’/>

dir:groupmemberships errno: <ics:getvar name=’errno’/>
<ics:listloop listname=’mylist’>

<ics:listget listname=’mylist’ fieldname=’NAME’/>
</ics:listloop>

<H2>Lookup the SiteGod Group by CommonName</H2>

<ics:clearerrno/>
<dir:search list=’mylist’ context=’<%=sGroupParent%>’>

<dir:argument name=’<%=sCommonName%>’ value=’SiteGod’/>
</dir:search>

dir:search errno: <ics:getvar name=’errno’/>
Content Server 7.0 Developer’s Guide

Chapter 27. User Management on the Delivery System

The Directory Services API
624
<%
mylist = ics.GetList("mylist");
if(mylist.numRows() != 1) {

out.print("
Error finding entry.");
}
mylist.moveTo(1);
ics.SetVar("SiteGodDn", mylist.getValue("NAME"));

%>

<H2>Show SiteGod Attributes</H2>

<ics:clearerrno/>
<dir:getattrs list=’mylist’ name=’<%=ics.GetVar("SiteGodDn")%>’/>

dir:getattrs errno: <ics:getvar name=’errno’/>
<ics:listloop listname=’mylist’>

<ics:listget listname=’mylist’ fieldname=’NAME’/>=
<ics:listget listname=’mylist’ fieldname=’VALUE’/>

</ics:listloop>

<H2>Show SiteGod Group Members</H2>

<ics:clearerrno/>
<dir:groupmembers name=’<%=ics.GetVar("SiteGodDn")%>’
list=’mylist2’/>

dir:groupmembers errno: <ics:getvar name=’errno’/>
<ics:listloop listname=’mylist2’>

<ics:listget listname=’mylist2’ fieldname=’NAME’/>

</ics:listloop>

<H2>Children of groupparent </H2>

<ics:clearerrno/>
<dir:children name=’<%=sGroupParent%>’ list=’mylist’/>

dir:children errno: <ics:getvar name=’errno’/>
<ics:listloop listname=’mylist’>

<ics:listget listname=’mylist’ fieldname=’NAME’/>

</ics:listloop>

</user:su>

Error Handling
Any of the directory tags can cause a range of directory errors to be set. See the Content
Server Tag Reference for a comprehensive list of directory services error messages.
Content Server 7.0 Developer’s Guide

Chapter 27. User Management on the Delivery System

The Directory Services API
625
Your directory services code should handle every one of the error codes listed for a given
tag call. This is necessary to support the J2EE JNDI interface.

Troubleshooting Directory Services Applications
The first step in troubleshooting directory services applications is to check the error log
(futuretense.txt).

You enable directory services logging by setting the log.filterLevel property (found
in the logging.ini property file). There are seven levels of error messages that you can
view:

• fatal, which logs fatal level messages

• severe, which logs severe and fatal level messages

• error, which logs error and fatal level messages

• warning, which logs warning and fatal level messages

• info, which logs warning, error, severe, and fatal level messages

• trace, which logs trace messages

• detail, which logs all types of messages

During troubleshooting, trace is the most verbose setting, and as a result, has the highest
performance impact.

Directory services log entries use the following format:

[<timestamp>][Directory-<severity>-<errno>]
[<class>:<method>][<message>][<session id>]

For example:

[Jan 17, 2002 1:49:44 PM][Directory-T]
[BaseFactory:instantiateImplementation(ICS,String,Class[],
Object[])][Instantiating:com.openmarket.directory.common.Factor
y]
[PEccxyF1Ueh7zYvjNgg4D6bqZzf0llfWMaiBimIN9H1Z9KomDcPy]

The previous message is a trace (T), and thus has no associated errno value.

For information about error logging, see Chapter 10, “Error Logging and Debugging.”

A common problem for LDAP implementations is incorrectly specified permissions on
the directory server. If the error log indicates a permission problem, ensure that the
authenticated user has permissions to execute the requested operation by checking the
permission settings on the directory server. For iPlanet, this entails checking the groups to
which the user belongs, and checking the LDAP ACLs associated with those groups. Try
logging into the directory server directly (outside of Content Server) and performing the
same action to ensure that permissions are correctly set.

After checking the log and permissions, you can often resolve a configuration error by
examining the property files.

For property descriptions and values, see the Content Server Property Files Reference.
Content Server 7.0 Developer’s Guide

Chapter 27. User Management on the Delivery System

Controlling Visitor Access to Your Online Sites
626
Controlling Visitor Access to Your Online Sites
Content Server manages users through access control lists (ACLs). By using ACLs, you
can restrict access to tables in the Content Server database and the rendered pages served
on your sites by Content Server.

If you design an online site where visitors log in with user names and passwords, you can
associate registered visitors with one or more ACLs.

When a visitor first visits a site, Content Server creates a session and implicitly logs in the
visitor as the standard default user, DefaultReader. The identity of a visitor is updated
(and any associated ACLs go into effect) when a USER.LOGIN command is used and the
visitor is authenticated against a password.

ACL Tags
Content Server provides a set of access control list tags (both XML and JSP versions) that
you can use to create ACLs. You can use either the Content Server interface on the
delivery system or the Content Server ACL tags to create the ACLs that you need for your
visitor accounts on your delivery system.

The following table lists the ACL tags:

For more information:

• ACL tags—see the Content Server Tag Reference.

• ACLs in general—see the Content Server Administrator’s Guide.

Tag Description

ACL.CREATE
acl:create

Creates an ACL

ACL.DELETE
acl:delete

Deletes an ACL

ACL.GATHER
acl:delete

Gathers fields into an ACL

ACL.GET
acl:get

Copies a field from an ACL

ACL.LIST
acl:list

Retrieves a list of ACLs

ACL.LOAD
acl:load

Loads an ACL

ACL.SAVE
acl:save

Saves an ACL

ACL.SCATTER
acl:scatter

Scatters a field from an ACL

ACL.SET
acl:set

Sets a field in an ACL
Content Server 7.0 Developer’s Guide

Chapter 27. User Management on the Delivery System

Creating Login Forms
627
User Tags
Content Server also provides the following USER tags (both XML and JSP versions) that
you use on pages that log users in and out.

The USER tags are as follows:

For more information about these tags, see the Content Server Tag Reference.

Content Server and Encryption
Content Server includes a default key for encrypting passwords and other sensitive
information. You can specify your own encryption key by using the Utilities class
encryptString method. See the Content Server Javadoc for information about Java
methods that deal with encryption.

Content Server also supports Secure Sockets Layer (SSL), which allows encryption of
information going to and from your web servers. For more information about Content
Server and SSL, see the Content Server Administrator’s Guide.

Creating Login Forms
This section provides simple code samples that illustrate how to code login forms that
prompt a visitor to log in and then authenticate the user name and password.

This example presents code from the following elements:

• PromptForLogin, an XML element that displays a form that requests a username
and password

• Login, an XML element that authenticates the username and password combination
passed to it from the PromptForLogin element

Prompt for Login (PromptForLogin.xml)
The PromptForLogin element displays a form that asks a visitor to enter two pieces of
information: username and password.

The code that creates the form follows:

<DIV ALIGN="center">
<FORM ACTION="ContentServer" METHOD="post">
<INPUT TYPE="hidden" NAME="pagename" VALUE="CSGuide/Security/
Login"/>

Tag Description

USER.LOGIN
user:login

Logs a user in.

USER.LOGOUT
user:logout

Logs a user out.

USER.SU
user:su

Logs the user in as a specific user in order to
perform an operation such as creating an
account or edit a user profile.
Content Server 7.0 Developer’s Guide

Chapter 27. User Management on the Delivery System

Creating Login Forms
628
<TABLE CELLPADDING="5" CELLSPACING="5">

<TR>
<TH ALIGN="right">Name</TH>
<TD><INPUT TYPE="text" NAME="username" SIZE="16"/></TD>
</TR>

<TR>
<TH ALIGN="right">Password</TH>
<TD><INPUT TYPE="password" NAME="password" SIZE="16"/></TD>
</TR>

<TR>
<TD> </TD>
<TD ALIGN="center"><INPUT TYPE="submit" NAME="doit" VALUE="Login"/
></TD>
</TR>

</TABLE>

</FORM>
</DIV>

The visitor fills in the form and clicks the Submit button. The information gathered in the
form and the page name of the Login page (see the first input type statement, above) is
sent to the browser. The browser sends the page name to Content Server, Content Server
looks it up in the SiteCatalog table and then invokes that page entry’s root element.

Root Element for the Login Page
There can only be one root element for a Content Server page (that is, an entry in the
SiteCatalog table). The root element for the Login page is the Login.xml element.

The Login element attempts to log the visitor in and then to authenticate the visitor by
using the USERISMEMBER tag to determine whether the visitor has any of the required
ACLs.

This element does the following:

• Logs the visitor in with the USER.LOGIN tag and checks to see if there was an error.

• Sets a variable list that holds a list of ACLs to compare the visitor’s credentials
against.

• Checks the visitor’s ACLs assignments against the list variable with the
USERISMEMBER tag

The following sample code authenticates the visitor:

<SETVAR NAME="errno" VALUE="0"/>

<USER.LOGIN USERNAME="Variables.username"
PASSWORD="Variables.password"/>

<IF COND="Variables.errno=0">
<THEN>
Content Server 7.0 Developer’s Guide

Chapter 27. User Management on the Delivery System

Creating User Account Creation Forms
629
<H3>Welcome <CSVAR NAME="Variables.username"/></H3>

<!-- Next, create a variable named “aclToCheck” and set it to hold
the ACLs that the visitor needs to progress any further on the
site. This variable can be set to one ACL or to a comma-separated
list of ACLs, as in this example-->

<SETVAR NAME="aclToCheck" VALUE="ContentCustomer,SiteGod"/>
<SETVAR NAME="errno" VALUE="0"/>

<USERISMEMBER GROUP="Variables.aclToCheck"/>
<IF COND="Variables.errno=1">

<THEN>
<P>You are a member of the at least one of the following

acls:
<CSVAR NAME="Variables.aclToCheck"/></P>
</THEN>

 <ELSE>
<P>Sorry, you are not a member of any of the following

acls:
<CSVAR NAME="Variables.aclToCheck"/></P>

 </ELSE>
 </IF>

</THEN>
<ELSE>

 <H3>Sorry, can't find your credentials.</H3>

</ELSE>
</IF>

Creating User Account Creation Forms
This section provides simple code samples that illustrate how to code forms that prompt a
visitor to register (obtain a user account) and then create a user account for that visitor.

This example presents code from the following elements:

• PromptForNew Account, an XML element that displays a form that requests the
visitor to enter the user name and password that he or she would like to use

• CreateAccount, a JSP element that creates the new account

PromptForNewAccount
The PromptForNewAccount element displays a form that prompts the visitor to enter a
user name and password and to re-enter the password to confirm it.

Here’s the code that creates the form:

<div align="center">
<h3>Create a New Account</h3>
<FORM ACTION="ContentServer" METHOD="post">
Content Server 7.0 Developer’s Guide

Chapter 27. User Management on the Delivery System

Creating User Account Creation Forms
630
<input type="hidden" name="pagename" value="CSGuide/Security/
CreateAccount"/>

<table cellpadding="5" cellspacing="5">

<tr>
<th align="right">Pick a username</th>
<td><input type="text" name="username" size="16"/></td>
</tr>

<tr>
<th align="right">Pick a password</th>
<td><input type="password" name="password" size="16"/></td>
</tr>

<tr>
<th align="right">Confirm your new password</th>
<td><input type="password" name="confirm_password" size="16"/></
td>
</tr>

<tr>
<td> </td>
<td><input type="submit" name="doit" value="Create Account"/></td>
</tr>
</table>

</FORM>
</div>

The visitor fills in the form and clicks the Submit button. The information gathered in the
form and the page name of the CreateAccount page (see the first input type
statement, above) is sent to the browser.

The browser sends the page name to Content Server, Content Server looks it up in the
SiteCatalog table and then invokes that page entry’s root element.

Root Element for the CreateAccount Page
There can only be one root element for a Content Server page (that is, an entry in the
SiteCatalog table). The root element for the CreateAccount page is the
CreateAccount.jsp element.

Only someone with SiteGod or ContentEditor ACLs can create a new user account.
Because of this restriction, the CreateAccount element does the following:

• Logs the visitor in as a privileged user, without the knowledge of the visitor.

• Creates the account.

• Assigns the new user the appropriate ACLs (every user must belong to at least one
ACL)

Here’s the code that creates the new user account:

<SETVAR NAME="errno" VALUE="0"/>
Content Server 7.0 Developer’s Guide

Chapter 27. User Management on the Delivery System

Creating User Account Creation Forms
631
<!-- switch temporarily to a privileged user -->
<!-- The username and password for the privileged user should be
encrypted in a property file. You should obtain them from the
property file, decrypt them, then pass them it. For this example,
they are hard-coded. -->

<USER.SU USERNAME="jumpstart" PASSWORD="jumpstart">

<USERISMEMBER GROUP="UserEditor"/>
<IF COND="Variables.errno!=1">

<THEN>
<h3>An error has occurred creating the account (no

UserEditor
privs). Contact the webmaster</h3>

</THEN>
<ELSE>

 <IF COND="Variables.password!=Variables.confirm_password">
<THEN>
<h3>Your passwords do not match. Click the Back button

and
try again.</h3>
</THEN>
<ELSE>

<!-- Get the parameters from the property file -->

<ics.getproperty name="username" file="dir.ini"
output="unameattr"/>
<ics.getproperty name="password" file="dir.ini"
output="passattr"/>

<!-- create the user’s name in the right format for the dir
tags -->

<ics.getproperty name="peopleparent" file="dir.ini"
output="namebase"/>
<name.makechild context="Variables.namebase"

output="iname">
<name.argument name="Variables.unameattr"
value="Variables.username"/>

</name.makechild>

<!-- create the user -->

<dir.create name="Variables.iname">
<dir.argument name="Variables.unameattr"
value="Variables.username"/>
<dir.argument name="Variables.passattr"
value="Variables.password"/>

<!-- additional parameters can be added here but for the
example we won’t -->
Content Server 7.0 Developer’s Guide

Chapter 27. User Management on the Delivery System

Creating User Account Creation Forms
632
<!-- In particular, if you are using LDAP, you will have to
spin through and set the values of the properties in the
property requiredPeopleAttrs in dir.ini. -->

 </dir.create>

 <IF COND="Variables.errno=0">
 <THEN>

<!-- give the new user an acl and format it correctly for
dir.addgroupmember -->

<ics.getproperty name="groupparent" file="dir.ini"
output="groupparent"/>
<ics.getproperty name="cn" file="dir.ini"

output="cn"/>
<name.makechild context="Variables.groupparent"
output="groupid">

<name.argument name="Variables.cn"
value="Browser"/>

</name.makechild>

<!-- add the acl -->

<dir.addgroupmember name="Variables.groupid"
member="Variables.iname"/>

<IF COND="Variables.errno=0">
<THEN>

 <h3>Success!</h3>
</THEN>
<ELSE>

<h3>User created but error adding user to
group.

Contact the webmaster</h3>
</ELSE>

</IF>

</THEN>
<ELSE>

<h3>Error creating user! Contact the webmaster.</
h3>

</ELSE>
</IF> <!-- create success check -->

</ELSE>
</IF> <!-- passwords match -->

</ELSE>
</IF>

</USER.SU>
Content Server 7.0 Developer’s Guide

Chapter 27. User Management on the Delivery System

Visitor Access in the Burlington Financial Sample Site
633
Visitor Access in the Burlington Financial Sample
Site

The Burlington Financial sample site includes a membership component that uses
elements to sign up new members and log in existing members.

These visitor registration elements are not robust enough for use on a real-world web site,
but can give you a starting point for your own designs. For example, Burlington Financial
has sample visitor account screens, allowing visitors to register and set their own
preferences, but does not use this information to restrict visitor access to certain web
pages, or to make recommendations based on a member’s profile.

Membership Table
Burlington Financial uses a table named bfmembers to implement the membership
component. (This table is created for the sample site when it is installed—none of the CS
modules or products use this table.) Although the membership elements add a row to the
bfmembers database table for each new registered member’s profile information, they do
not add a row to the SystemUsers table.

Users and Passwords
There is one generic user, BFUser, for all Burlington Financial members. The name and
password are the same (BFUser/BFUser) and should not be changed. The member login
code in Burlington Financial sets a session variable for the visitor, which is then used to
identify that visitor.

Because Burlington Financial is a sample site, members’ passwords are stored in the
bfmembers table as plain text. A real web site would store passwords in encrypted
format. Burlington also grants Visitor, BFMember, and Browser ACL privileges to entries
added to the bfmembers table.

Member Accounts
There are currently no elements for managing the Burlington Financial accounts. If you
want to try editing or deleting members’ accounts, use Content Server Explorer to modify
the bfmembers table.

Membership Processing Elements
There are several elements that handle processing requests for Burlington Financial
members. If you have installed the Burlington Financial sample site, you can use Content
Server Explorer to open and examine them. All but one is located here:

ElementCatalog/BurlingtonFinancial/Util/Account

The AccountAccessScript element is located here:

ElementCatalog/BurlingtonFinancial/Util

AccountAccess.xml
This is a page template that calls pagelet elements for the header, footer, navigation menu,
and the account content.
Content Server 7.0 Developer’s Guide

Chapter 27. User Management on the Delivery System

Visitor Access in the Burlington Financial Sample Site
634
AccountAccessScript.xml
This file contains three JavaScript routines (checkSignupForm, checkProfileForm,
and checkLoginForm) that perform basic error checking on the HTML account forms.
This is called from Login.xml, Profile.xml, and SignUp.xml elements.

Benefits.xml
This page calls the Block.xml article template to render an article of text about the
Burlington Financial site. On a real web site, the article would contain benefits
information.

Login.xml
This page displays the login screen for registered members and calls LoginPost.xml to
handle the login form input. It also calls Benefits.xml, and SignUp.xml for non-
members.

LoginPost.xml
This pagelet element calls ProcessLogin.xml to display a login message.

Profile.xml
This page displays an editable profile form if the visitor is registered, or else calls
SignUp.xml if the visitor is not registered.

ProcessLogin.xml
This pagelet element displays an appropriate login message, depending on whether the
visitor who submitted the form is a registered member.

SignUp.xml
This page displays the sign-up screen for non-registered visitors and calls the
catalogmanager to add a row to the bfmembers table for a new user, or to update the
bfmembers table for an existing user.
Content Server 7.0 Developer’s Guide

635
Chapter 28

The HelloAssetWorld Sample Site
The HelloAssetWorld sample site is a sample web site built using Content Server and
CS-Direct. It is meant to provide a simple entry point into the process of building a web
site with CS-Direct. This chapter focuses on the steps that a developer would take in
creating this simple web site; further information on HelloAssetWorld’s configuration and
users are in the Content Server Administrator’s Guide and the Content Server User’s
Guide.

This chapter contains the following sections:

• Overview

• Modified Asset Types

• HelloAssetWorld Templates

• The HelloQuery Asset
Content Server 7.0 Developer’s Guide

Chapter 28. The HelloAssetWorld Sample Site

Overview
636
Overview
The HelloAssetWorld site has a simple design; it is composed of one page, as shown in the
following screen capture:

The stories that appear on this web page change depending upon the article that you
choose to view, but the layout of the page remains the same.

To view the HelloAssetWorld sample site yourself, enter the following URL into your web
browser:

http://server_name/servlet/ContentServer?pagename=HelloAssetWorld/
Page/HelloPageTemplate

HelloAssetWorld Templates
The HelloAsset World web page is composed of three templates:

• The HelloArticle template, which displays the article that you select and that article’s
associated image.

• The HelloCollection template, which displays hyperlinks to a collection of articles
that you can view.

• The HelloPage template, which is the containing page. It displays the
HelloAssetWorld banner graphic and calls the HelloArticle and Hello Collection
templates.
Content Server 7.0 Developer’s Guide

Chapter 28. The HelloAssetWorld Sample Site

Modified Asset Types
637
HelloAssetWorld Asset Types
The asset types used in the HelloAssetWorld site are modified from asset types used in the
Burlington Financial sample site, described in Chapter 29, “The Burlington Financial
Sample Site.” A list of the asset types used in HelloAssetWorld follows:

• The Page asset type, which performs several functions:

- It allows uses to create a site hierarchy by placing the page. Placing a page gives
it an entry in the SitePlanTree table and allows it to be viewed under the
Placed Pages node of the Site Plan Tree.

- It allows you to associate assets of various types with it. For example, you can
associate Collection assets and Article assets with a Page asset.
The instance of the Page asset type used in the HelloAssetWorld site, HelloPage,
has a collection called HelloCollectionHello associated with it. The Page asset
type is a core asset type which is provided with CS-Direct, and has not been
modified.

• The HelloArticle asset type, which contains an article. HelloArticle assets can have
HelloImage assets associated with them. The HelloArticle asset type has been
modified from the Article asset type that is provided with Burlington Financial.

• The HelloImage asset type, which contains an image. The HelloImage asset type has
been modified from the ImageFile asset type that is provided with Burlington
Financial.

• The Query asset type, which queries the database and returns the HelloArticle assets
that display on the web site. This is a core asset type, which is provided with
CS-Direct and has not been modified.

• The Collection asset type, which orders the results that the query asset returns. This is
a core asset type, which is provided with CS-Direct and has not been modified.

• The Template asset type, which renders the various asset types. This is a core asset
type, which is provided with CS-Direct and has not been modified.

Modified Asset Types
Most of the asset types used in the HelloAssetWorld sample site are core asset types, and
hence cannot be modified. The HelloArticle and HelloImage asset types, however, are
simplified versions of the Article and ImageFile asset types that are provided with
CS-Direct. Each asset type has a new asset descriptor file that is based on the asset
descriptor files for the Article and ImageFile asset types. The simplified asset descriptor
files are shown in the following sections.

The HelloArticle Asset Type
The ASSET tag, shown in the following line, is the standard opening for all asset descriptor
files. Among other things, it names the new asset type and specifies the asset’s defdir, the
default directory where uploaded items are stored.

<ASSET NAME="HelloArticle" DESCRIPTION="HelloArticle"
MARKERIMAGE="/Xcelerate/data/help16.gif" PROCESSOR="4.0"
DEFDIR="c:\FutureTense\Storage\HelloArticle">
Content Server 7.0 Developer’s Guide

Chapter 28. The HelloAssetWorld Sample Site

Modified Asset Types
638
The next lines create a text field for the article’s headline.

<PROPERTIES>
<PROPERTY NAME="Headline" DESCRIPTION="Headline">
<STORAGE TYPE="VARCHAR" LENGTH="255" />
<INPUTFORM TYPE="TEXT" WIDTH="48" MAXLENGTH="255"
REQUIRED="YES" />
<SEARCHFORM DESCRIPTION="Headline contains" TYPE="TEXT"
WIDTH="48" MAXLENGTH="255" />
</PROPERTY>

The next lines create a text field for the article’s byline.

<PROPERTY NAME="Byline" DESCRIPTION="Byline">
<STORAGE TYPE="VARCHAR" LENGTH="100" />
<INPUTFORM TYPE="TEXT" WIDTH="48" MAXLENGTH="100"
REQUIRED="YES" />
<SEARCHFORM DESCRIPTION="Byline contains" TYPE="TEXT"
WIDTH="48" MAXLENGTH="100" />
</PROPERTY>

The following lines create an upload field where content editors and authors can type in
the content of an article’s body. This content will be stored in the defdir specified in the
ASSET tag.

<PROPERTY NAME="urlBody" DESCRIPTION="Body">
<STORAGE TYPE="VARCHAR" LENGTH="2000" />
<INPUTFORM TYPE="TEXTAREA" COLS="300" ROWS="300" REQUIRED="YES"
/>
</PROPERTY>
</PROPERTIES>
</ASSET>

The HelloImage Asset Type
The ASSET tag, shown in the first line below, is the standard opening for all asset
descriptor files. Among other things, it names the new asset type and specifies the asset’s
defdir, the default directory where uploaded items are stored.

<ASSET NAME="HelloImage" DESCRIPTION="HelloImage"
MARKERTEXT="*" PROCESSOR="4.0"
DEFDIR="c:\FutureTense\Storage\HelloImage">

Then, the next lines create an upload field for the image file.

<PROPERTIES>
<PROPERTY NAME="urlfile" DESCRIPTION="Image File">
<STORAGE TYPE="VARCHAR" LENGTH="255"/>
<INPUTFORM TYPE="UPLOAD" WIDTH="36" REQUIRED="NO"
LINKTEXT="HelloImage"/>
</PROPERTY>

The following lines create a drop-down select and specify how the search field for
mimetypes will appear on the “Advanced Search” form. The SQL statement supplied as a
value for the SQL parameter for the INPUTFORM tag queries the database to supply
mimetypes for the text of the dropdown.

<PROPERTY NAME="mimetype" DESCRIPTION="Mimetype">
Content Server 7.0 Developer’s Guide

Chapter 28. The HelloAssetWorld Sample Site

Modified Asset Types
639
<STORAGE TYPE="VARCHAR" LENGTH="36"/>
<INPUTFORM TYPE="SELECT" SOURCETYPE="TABLE"
TABLENAME="mimetype" OPTIONDESCKEY="description"
OPTIONVALUEKEY="mimetype" SQL="SELECT mimetype, description
FROM mimetype WHERE keyword = ’image’ AND isdefault = ’y’"
INSTRUCTION="Add more options to mimetype table with
isdefault=y and keyword=image"/>

The next line specifies how the mimetype field will appear on the “Advanced Search”
form. As shown above, the SQL supplied here queries the database for mimetypes to fill
the dropdown select with.

<SEARCHFORM DESCRIPTION="Mimetype" TYPE="SELECT"
SOURCETYPE="TABLE" TABLENAME="mimetype"
OPTIONDESCKEY="description" OPTIONVALUEKEY="mimetype"
SQL="SELECT mimetype, description FROM mimetype WHERE keyword =
’image’ AND isdefault = ’y’"/>
</PROPERTY>

The following lines create a text field that allows users of the management system to input
alternate text for the image. The SEARCHFORM tag specifies how the Alt Text
contains field will appear on the “Advanced Search” form.

<PROPERTY NAME="alttext" DESCRIPTION="Alt Text">
<STORAGE TYPE="VARCHAR" LENGTH="255"/>
<INPUTFORM TYPE="TEXT" WIDTH="48" MAXLENGTH="255"
REQUIRED="NO"/>
<SEARCHFORM DESCRIPTION="Alt Text contains" TYPE="TEXT"
WIDTH="48" MAXLENGTH="255"/>
</PROPERTY>

</PROPERTIES>
</ASSET>
Content Server 7.0 Developer’s Guide

Chapter 28. The HelloAssetWorld Sample Site

HelloAssetWorld Templates
640
HelloAssetWorld Templates
The HelloAssetWorld sample site uses three Template assets to render the assets that were
described previously. The following sections describe these Template assets.

The HelloArticle Template
The HelloArticleTemplate renders HelloArticle assets. The template uses the following
variables:

Variable Value Source

tid The current template’s
ID.

The tid variable is set in the
resargs1 field of the SiteCatalog
table. The value is set automatically
when the template is created.

c The type of content that
the template displays.

The c variable is set in the
resargs1 field of the SiteCatalog
table. The value is set using the
Asset Type field on the “New
Template” form.

cid The ID of the asset to
load.

The cid variable is passed in by the
HelloPage template.

picture:oid The object ID of a
HelloImage asset that is
associated with the
HelloArticle asset.

The picture:oid variable is
obtained by loading the current
HelloArticle asset and using the
ASSET.CHILDREN tag to find
information on associated
HelloImage assets.

picture:alttext The alternate text for
the associated
HelloImage asset.

The picture:alttext variable is
obtained by loading the current
HelloArticle asset and using the
ASSET.CHILDREN tag to find
information on associated
HelloImage assets.

picture:mimetype The mimetype of the
associated
HelloImage asset.

The picture:mimetype variable
is obtained by loading the current
HelloArticle asset and using the
ASSET.CHILDREN tag to find
information on associated
HelloImage assets.

asset:headline The value in the
Headline field of this
HelloArticle asset.

The asset:headline variable is
obtained by scattering the
information in the HelloArticle
asset.

asset:byline The value in the
Byline field of this
HelloArticle asset.

The asset:headline variable is
obtained by scattering the
information in the HelloArticle
asset.
Content Server 7.0 Developer’s Guide

Chapter 28. The HelloAssetWorld Sample Site

HelloAssetWorld Templates
641
The following lines are the standard beginning for an article template. They appear when
you click the XML or JSP buttons on the “New Template” form in the Content Server user
interface.

<?xml version="1.0" ?>
<!DOCTYPE FTCS SYSTEM "futuretense_cs.dtd">
<FTCS Version="1.1">
<!-- HelloArticle/HelloArticleTemplate
-
- INPUT
-
- OUTPUT
-
-->

The RENDER.LOGDEP tag marks the template as a cache dependency item. This means
that when the template is modified, any outdated copies of the template will be removed
from the Content Server and Satellite Server caches and replaced with current versions
automatically.

<IF COND="IsVariable.tid=true">
<THEN>

<RENDER.LOGDEP cid="Variables.tid" c="Template"/>
</THEN>
</IF>

<table border="0" cellspacing="2" cellpadding="2">

<tr>
<td>

The following ASSET.LOAD tag loads a HelloArticle asset using the asset’s ID, which is
stored in Variables.cid. This value is passed in to the HelloArticle template by the
HelloPage template.

<!-- asset load will mark the asset as an ’exact’ dependent of
the pagelet being rendered -->

<ASSET.LOAD NAME="helloArticleAsset" TYPE="Variables.c"
OBJECTID="Variables.cid"/>

The next line uses the ASSET.CHILDREN tag to load any HelloImage assets that are
associated with the article. ASSET.CHILDREN creates a list which contains the
information necessary to display the HelloImage asset.

<ASSET.CHILDREN NAME="helloArticleAsset" LIST="picture"
TYPE="HelloImage"/>

artID The ID of the article to
display in the
HelloArticle template.

On the first page view, this is set in
the resdetails field of the
ElementCatalog entry. On
subsequent viewings, this is passed
in by the HelloCollection template.

Variable Value Source
Content Server 7.0 Developer’s Guide

Chapter 28. The HelloAssetWorld Sample Site

HelloAssetWorld Templates
642
These lines check to see if there is a HelloImage asset associated with the current article. If
there is no associated HelloImage asset, the template only displays the text of the article.

<!--Check to see if the list (which contains information to
display an image) exists--if the list doesn’t exist, display
the article text only. -->
<IF COND="IsList.picture=true">
 <THEN>
 <!--Log the image as a dependency.-->
 <RENDER.LOGDEP cid="picture.oid" c="HelloImage"/>

 These lines use the RENDER.SATELLITEBLOB tag to display the associated image.

 <!--Display the image.-->
 <RENDER.SATELLITEBLOB BLOBTABLE="HelloImage" BLOBKEY="id"
BLOBCOL="urlfile" BLOBWHERE="picture.oid"
BLOBHEADER="picture.mimetype" SERVICE="IMG SRC"
ARGS_ALT="picture.alttext" ARGS_ALIGN="left"/>
 </THEN>
</IF>
</td>
</tr>

<tr>
<td>

Then this ASSET.SCATTER tag gets all of the HelloArticle asset’s primary fields.

<!-- get all the primary table fields of the asset -->
<ASSET.SCATTER NAME="helloArticleAsset" PREFIX="asset"/>

The following CSVAR tag displays the contents of the asset’s fields.

<!-- display the headline-->

<h3><CSVAR NAME="Variables.asset:headline"/></h3>
</td>
</tr>

<tr>
<td>
<CSVAR NAME="Variables.asset:byline"/>
</td>
</tr>

<tr>
<td>

Because the Body field may contain an embedded link, it must be retrieved using the
ics.getvar tag and displayed using the RENDER.STREAM tag, shown in the following
lines:

<!-- display the body-->
<ics.getvar name="asset:urlbody" encoding="default"
output="bodyvar"/>
<RENDER.STREAM VARIABLE="bodyvar" />

</td></tr>
Content Server 7.0 Developer’s Guide

Chapter 28. The HelloAssetWorld Sample Site

HelloAssetWorld Templates
643
</table>

</FTCS>

The HelloCollection Template
The collection template displays the HelloCollectionHello collection. It uses the following
variables:

Variable Value Source

tid The current template’s
ID.

The tid variable is set in the
resargs1 field of the
SiteCatalog table. The value is
set automatically when the
template is created.

c The type of content that
the template displays.

The c variable is set in the
resargs1 field of the
SiteCatalog table. The value is
set using the Asset Type field
on the “New Template” form.

cid The ID of the asset to
load.

The cid variable is passed in by
the HelloPage template.

tid The current template’s
ID.

The tid variable is set in the
resargs1 field of the
SiteCatalog table. The value is
set automatically when the
template is created.

p The ID of the page that
generates the hyperlink—
in this case, the current
template.

ApprovedArticles:id The ID of the current
HelloArticle in the
collection.

ApprovedArticles:name The name of the current
HelloArticle in the
collection.

artID On line 23 this variable
contains the ID of the
HelloArticle being
displayed by the
HelloArticleTemplate. On
line 33, the value is the ID
of the current article in
the collection.

The variable used on line 23 is
passed in by the HelloPage
template. The variable set on line
33 gets its value from the ID of
the current HelloArticle in the
collection. It is then passed to the
HelloPage and HelloArticle
templates.

pageID The ID of the HelloPage
asset.
Content Server 7.0 Developer’s Guide

Chapter 28. The HelloAssetWorld Sample Site

HelloAssetWorld Templates
644
<IF COND="IsVariable.tid=true">
<THEN>

<RENDER.LOGDEP cid="Variables.tid" c="Template"/>
</THEN>
</IF>

The following ASSET.LOAD tag loads the HelloCollectionHello asset, based upon the
value of its ID, contained in Variables.cid. Variables.cid is passed in by the
HelloPage template. ASSET.LOAD also names the asset HelloCollection. This does
not change the name of the asset in the database; rather it sets the name which the rest of
the code in the template uses to refer to the collection asset.

<ASSET.LOAD NAME="HelloCollection" TYPE="Collection"
OBJECTID="Variables.cid"/>
<ASSET.SCATTER NAME="HelloCollection" PREFIX="asset"/>

Then the following ASSET.CHILDREN tag loads a list containing the HelloArticles that
compose the collection.

<ASSET.CHILDREN NAME="HelloCollection" LIST="theArticles"
OBJECTTYPE="HelloArticle"/>

The next line uses the RENDER.FILTER tag to filter out articles that are not approved for
Export to Disk Publishing. This allows the template to be used for both Mirror Publishing
and Export to Disk Publishing.

<!--Filter out assets which aren’t approved for export to disk
publishing.-->
<RENDER.FILTER LIST="theArticles"
LISTVARNAME="ApprovedArticles" LISTIDCOL="oid"/>

In the following lines of code, the LOOP tag loops through the list of approved article and
the RENDER.LOGDEP tag logs each item in the list as a cache dependency.

3 <LOOP LIST="ApprovedArticles">
4 <RENDER.LOGDEP cid="ApprovedArticles.id" c="Article"/>

The following lines use an IF tag to check whether the current article in the list is the
article being displayed by the HelloArticle template. The ID of the article being displayed
by the HelloArticle template is contained in Variables.artID. This variable is passed
in by the HelloPage template. If the article IDs are the same, the name of the article is
displayed in bold text and is not a hyperlink.

<IF COND="Variables.artID=ApprovedArticles.id">
<THEN>
<CSVAR NAME="ApprovedArticles.name"/><P/>
</THEN>

If the current article in the list is not the article being displayed by the HelloArticle
template, then a URL is generated to create a hyperlink to that article. The URL is created

referURL The URL generated by
the
RENDER.GETPAGEURL
tag.

Variable Value Source
Content Server 7.0 Developer’s Guide

Chapter 28. The HelloAssetWorld Sample Site

HelloAssetWorld Templates
645
by the RENDER.GETPAGEURL tag in the following lines. RENDER.GETPAGEURL appends
the artID variable to the URL that it creates. This variable contains the ID of the article to
display.

 <ELSE>
 <RENDER.GETPAGEURL PAGENAME="HelloAssetWorld/Page/
HelloPageTemplate"
cid="Variables.pageID"
c="Page"
p="Variables.p"
OUTSTR="referURL"
ARGS_artID="ApprovedArticles.id"/>

These lines display the hyperlink. The REPLACEALL argument evaluates
Variables.referURL, which contains the URL for the hyperlink. The CSVAR tag, used
on line 38, displays the name of the article that the hyperlink links to.

<CSVAR NAME="ApprovedArticles.name"/>
<P/>
</ELSE>
</IF>

</LOOP>

</FTCS>
Content Server 7.0 Developer’s Guide

Chapter 28. The HelloAssetWorld Sample Site

HelloAssetWorld Templates
646
The HelloPage Template
The HelloPage template acts as a containing page. It renders the HelloPage asset, displays
a header graphic, and calls the HelloCollection and HelloArticle templates, creating the
finished page layout.

The HelloPage template uses the following variables:

Variable Value Source

tid The current template’s
ID.

The tid variable is set in the
resargs1 field of the SiteCatalog
table. The value is set automatically
when the template is created.

c The type of content
that the template
displays.

The c variable is set in the resargs1
field of the SiteCatalog table. The value
is set using the Asset Type field on
the “New Template” form.

cid The ID of the asset to
load.

The cid variable is set in the
resargs1 field of the template’s
SiteCatalog entry.

topImg:ID The ID of the
TopImage ImageFile
asset.

The topImg:ID variable is obtained
by scattering the information in the
TopImage image file asset.

topImg:alttext The alternate text for
the TopImage asset.

The topImg:alttext variable is
obtained by scattering the information
in the TopImage image file asset.

topImg:mimetype The mimetype of the
TopImage asset

The topImg:mimetype variable is
obtained by scattering the information
in the TopImage image file asset.

asset:ID The ID of the Page
asset that this
template renders.

The asset:ID variable is obtained by
scattering the information in the
HelloPage asset.

theCollection.oid The ID of the
HelloCollectionHello
collection, to be
passed to the
HelloCollection
template for display.

The collection, and hence its ID, are
associated with the Page asset.

artID The ID of the article
to display in the
HelloArticle template.

On the first page view, this is set in the
resdetails field of the
ElementCatalog entry. On subsequent
viewings, this is passed in by the
HelloCollection template.
Content Server 7.0 Developer’s Guide

Chapter 28. The HelloAssetWorld Sample Site

HelloAssetWorld Templates
647
The code for the HelloPage template follows, along with a description of what it does:

<IF COND="IsVariable.tid=true">
<THEN>

<RENDER.LOGDEP cid="Variables.tid" c="Template"/>
</THEN>
</IF>

<!--Table for formatting-->
<table border="1" cellpadding="5" cellspacing="5">

<tr>
<td colspan="2">

These lines load a HelloImage asset and display that asset using the
RENDER.SATELLITEBLOB tag.

<!--Embedded Image Asset-->

<!-- The following 2 lines line load the image file and scatter
the information in its fields. -->
<ASSET.LOAD NAME="TopImage" TYPE="HelloImage"
OBJECTID="1024605735822"/>
<ASSET.SCATTER NAME="TopImage" PREFIX="topImg"/>

<!-- This line creates a URL to display the image file.-->
<RENDER.SATELLITEBLOB BLOBTABLE="HelloImage" BLOBKEY="id"
BLOBCOL="urlfile" BLOBWHERE="Variables.topImg:id"
BLOBHEADER="Variables.topImg:mimetype" SERVICE="IMG SRC"
ARGS_alt="Variables.topImg:alttext" ARGS_WIDTH="600"
ARGS_HEIGHT="90"/>
</td>
</tr>

<tr>
<td>

Next, the code loads the HelloPage asset based on the value of Variables.cid, which is
set in the resargs1 field of the template’s SiteCatalog entry.

<!-- This loads the HelloPage asset and names it HelloPage. -->
<ASSET.LOAD NAME="HelloPage" TYPE="Variables.c"
OBJECTID="Variables.cid"/>

<!-- This scatters the fields of the HelloPage asset for use
later in the element. -->
<ASSET.SCATTER NAME="HelloPage" PREFIX="asset"/>

<!-- This finds the collection asset associated with the
HelloPage asset and puts the information the collection into a
list. -->
<ASSET.CHILDREN NAME="HelloPage" LIST="theCollection" />
Content Server 7.0 Developer’s Guide

Chapter 28. The HelloAssetWorld Sample Site

The HelloQuery Asset
648
<RENDER.LOGDEP C="Collection" CID="theCollection.oid"/>
<!-- This checks to see whether ASSET.CHILDREN really generated
a list. -->
<IF COND = "IsList.theCollection=true">

 <THEN>
 <!-- This displays the HelloCollectionTemplate
template and passes the template the ID of the collection to
display and the ID of the current page. -->
 <RENDER.SATELLITEPAGE PAGENAME="HelloAssetWorld/
Collection/HelloCollectionTemplate"
ARGS_cid="theCollection.oid" ARGS_p="Variables.asset:id"
ARGS_artID="Variables.artID"/>
 </THEN>

</IF>
</td>

<td>
<!-- This displays the HelloArticleTemplate template and passes
the template the ID of the article to display and the ID of the
current page. The artID variable is passed in by the URL.-->
<RENDER.SATELLITEPAGE PAGENAME="HelloAssetWorld/HelloArticle/
HelloArticleTemplate" ARGS_cid="Variables.artID"
ARGS_p="Variables.asset:ID"/>
</td>
</tr>
</table>

</FTCS>

The HelloQuery Asset
The HelloAssetWorld site uses a query asset named HelloQuery to retrieve HelloArticles
from the database. A content provider then creates and builds a collection, ranking the
items that the HelloQuery asset returns in the order that they will be displayed.
Content Server 7.0 Developer’s Guide

649
Chapter 29

The Burlington Financial Sample Site
The Burlington Financial sample site demonstrates site design best practices using
CS-Direct assets.

Content management can be highly abstract, especially when described in terms of assets,
queries and templates. Burlington Financial helps you to understand what the end result of
your application can be—a live, functioning web site. Developers and content managers
have immediate and easy access to the sample site's code and queries.

This chapter contains the following sections:

• Overview

• Navigation Features

• Best Practices
Content Server 7.0 Developer’s Guide

Chapter 29. The Burlington Financial Sample Site

Overview
650
Overview
Burlington Financial is a fictitious financial news site. The site emphasizes navigation
between sections, the site’s hierarchy, how the site works with CS-Direct and CS-Direct
Advantage asset types, and a real-world look-and-feel. Burlington Financial also has about
five hundred articles and over a hundred images, or enough real-world content to populate
several sections.

Burlington Financial is a fully functional sample site with the following features:

• Includes search, member login, printer-friendly articles, e-mail to a friend, topic
directory, and stylesheets

• Demonstrates a hierarchy of web site sections

• Supports component caching and Satellite Server

• Demonstrates the use of assets created with AssetMaker

• Demonstrates the use of CS-Direct Advantage Flex Assets and Engage Segment
Assets

• Includes a meaningful amount of content

• Approximates a real-world site that developers can learn from

The Burlington Financial home page is shown in the following figure:
Content Server 7.0 Developer’s Guide

Chapter 29. The Burlington Financial Sample Site

Navigation Features
651
Burlington Financial takes advantage of cacheable pagelets. These individual pagelets can
be cached and managed independently, giving developers greater performance and
flexibility on the site.

FatWire encourages you to design your site using cacheable pagelets. For more
information, see Chapter 5, “Page Design and Caching.”

Navigation Features
The following three elements are used to display the primary navigation bars in Burlington
Financial (which you can look at using Content Server Explorer):

BurlingtonFinancial/Site/TopSiteBar.xml

This element draws the hyperlinks to the home page and its top-level children at the top of
the page, just under the Burlington Financial logo.

It intentionally displays only the top-level children of the Home page, so that the row of
hyperlinks does not wrap, breaking the design of the page. The Home page appears first
and it is at the same level as its children.

BurlingtonFinancial/Site/LeftSideSiteBar.xml

This element draws a more detailed map of the major sections of the web site and looks at
the child and grandchild pages of the Home page. This element could be modified to go
more than two levels deep, although the graphic design of the site limited the space
available.

Notice that two other major pages are listed here that were not listed in the
TopSiteBar—the Wire Feed and Columnists pages are independent of the Home page
and its children, and are displayed separately.

BurlingtonFinancial/Site/BottomNavFooter.xml
Content Server 7.0 Developer’s Guide

Chapter 29. The Burlington Financial Sample Site

Navigation Features
652
This element draws the hyperlinks at the bottom of every page. Like LeftSideSiteBar,
the BottomNavFooter element also includes links to pages that are not children of the
Home page.

Although these navigation bars are computed dynamically, in a real-world web site they
would probably not change very often. For maximum performance, you could simply
replace the dynamic code in the element with a static list of hard-coded links to the top-
level pages. Later on, if you do need to change the site and add a new top-level section,
you need only modify a few elements.

If you use dynamic navigation bar elements, you should set a long cache time-out for the
navigation bar pagelets.

Breadcrumbs
This common feature in web sites is a tiny map of the path to a particular item. In
Burlington Financial, it is a conceptual path rather than the actual history of pages visited,
and is located just under the top navigation bar:

Because CS-Direct allows assets to be assigned to multiple parents at the same time, the
same article can appear as a member of a collection on the Home page and on the News
page at the same time. There is no way to identify the true parent of the article, so
Burlington Financial passes the id of the parent Page anytime it draws a hyperlink to a
child. That way, when the child asset draws itself, it already has the ID of the desired
parent. This value is passed in the variable p.

Since our templates generate different HTML based on different values for p, those
versions should be cached independently. So the variable p must be part of the page
criteria variables listed in the page entry in the SiteCatalog for that template. Because
this is such a common technique, CS-Direct automatically includes p in the list of page
criteria variables for a Template asset’s SiteCatalog page entry.

Sometimes you may want to override p and use a different parent asset. For example, the
Burlington Financial Home page has links to articles by the following columnists:

However, these articles don't belong conceptually to the Home page—rather, they belong
to the Columnists page. So you can load and pass the ID of the Columnists Page asset as

Note

If you add another Page asset to the site, and it is not a descendant of the Home
Page asset, then it will not automatically appear in any of the navigation bars used
in Burlington Financial.
Content Server 7.0 Developer’s Guide

Chapter 29. The Burlington Financial Sample Site

Best Practices
653
the parent for those hyperlinks. This way, when a visitor clicks on them, the breadcrumb
identifies Columnists as the parent. This behavior is consistent with clicking on the
Columnists link in the navigation bar, and then clicking on one of the articles there:

In other cases, it isn’t immediately clear which asset should be the parent. For example,
Burlington Financial treats the articles in the “From the Wires” box as belonging to the
current page. Stories listed on the main “Wire Feed” section page belong to the “Wire
Feed” section, and show Wire Feed as their parent.

Best Practices
The Burlington Financial sample site demonstrates Content Server best practices for
several other important features found in real-world web sites.

Searching
The database search code in Burlington Financial is very similar to the search code in the
CS-Direct application itself. It works with dynamic delivery, but not with exported static
HTML. In this case, you’ll need a different search mechanism for indexing the static
HTML files, for example the Verity search engine.

The BurlingtonFinancial/Util/SearchPost element uses SQL searching against
the Article table, or it can use the search engine index if it is installed and enabled for the
Article asset type. SQL searching is case sensitive. Using a search engine would allow
more sophisticated search capabilities, such as case-insensitive searching, word variants
and word stemming.

Keywords
The Article asset type contains a field called keyword which lets editors associate specific
terms with an Article for improved searching of the Article asset type. Burlington
Financial Article assets have one or more keywords separated by commas, for example,
“Energy, Shell Oil, OPEC.” Burlington Financial uses keywords to display lists of Hot
Topics.

Hot Topics
Burlington Financial Hot Topics demonstrate one use of query assets.

On the left side of most pages, there is a list of Hot Topics for a particular section of the
site. Hot topics are listed according to which section the visitor is viewing, as determined
by the Page assets.

In the following example, the Hot Topics in the News section are Human Genome,
History, Sanctions, Energy and California:
Content Server 7.0 Developer’s Guide

Chapter 29. The Burlington Financial Sample Site

Best Practices
654
The element BurlingtonFinancial/Common/LeftNavColumn includes the pagelet
BurlingtonFinancial/Query/ShowHotTopics. This element receives the ID of a
page asset, passed through the variable p. If it cannot find a value for p, it defaults to using
the Home page. It loads that page asset and looks for the top stories collection associated
with the page and loads it. The element then loops through each of the articles in the
collection and builds a list of keywords, pulled from the keyword field of the article
(multiple keywords for an article must be delimited by commas). After it has made a list of
the keywords, the element loops over that list, listing each keyword as a hyperlink to a
page that runs a query for that keyword, by rendering the query asset named HotTopics.

When visitors click a link, they are taken to a page that renders the query asset HotTopics,
using the HotTopicFront template. The HotTopics query does a straight SQL match
against articles that contain the selected keyword. The keyword search is not constrained
in any way—it searches all articles in the Burlington Financial site, not just those in a
particular section or category.

Each article returned by the HotTopics query inherits the parent ID of the page asset where
the visitor first started looking at the keywords. Clicking on the Shell Oil story from the
list of Energy stories under the News page causes the story to be displayed with News as
its parent page. Clicking on the same Shell Oil story from the list of Energy stories under
the World News page causes the story to be displayed with World News as its parent.

This design is not a problem in the dynamic live site; however it does cause duplicate files
to be exported to a static delivery site.

Topic Directory
At the bottom of the left navigation column, and also in the navigation links at the bottom
of each page, there is a hyperlink to the Topic Directory:
Content Server 7.0 Developer’s Guide

Chapter 29. The Burlington Financial Sample Site

Best Practices
655
This page consists of the Hot Topics pagelet for every section. Since the pagelet that is
used here is also used in the left navigation column, it is displayed in the browser very
quickly. Each topic inherits its parent page and passes it to the list of articles the query
returns.

Related Stories
The query asset used for an article’s Related Stories list is similar to the previously
described HotTopics query, but instead of getting the keywords from another page, it gets
the keyword from the article that the query is associated to. The Article template “Full”
includes the Related Stories pagelet, and passes the Article's first keyword to the query
asset. When the Related Stories query is executed, it looks for other articles with the same
keyword.

For example, from the Home page, click on the Hot Topic “Microsoft” and choose the
story “Microsoft launches worldwide campaign against counterfeit software.” This article
(cid=984156689788) has the world “Microsoft” in its keyword field. It also has the
Related Keyword query associated with it. When this Query is executed during rendering,
the SQL looks up five other Articles with the term “Microsoft” in their keyword field. The
query is designed to exclude the article that it is associated with, so you don't see the
“Microsoft Campaigns Against Counterfeit Software” subheadline in the Related Stories.

In a dynamic environment, the list of articles returned by this query can change as articles
are added to the site.
Content Server 7.0 Developer’s Guide

Chapter 29. The Burlington Financial Sample Site

Best Practices
656
Text-Only Versions
Creating a text-only version of a web page (for printing it) is very easy to implement with
CS-Direct. Using the CS-Direct rendering model, you can override a template that
displays a given asset just by changing the page name used to render it. You do not need to
pass the override template as a separate parameter. Creating a printer-friendly version of a
page is simply a matter of adding a hyperlink that uses the plain-text version of the
appropriate template.

For example, if you are pointing to an article:

http://myserver/servlet/
ContentServer?pagename=BurlingtonFinancial/Article/
Full&cid=987654321

You can change to the text-only version of the page by pointing to the text version of the
template:

http://myserver/servlet/
ContentServer?pagename=BurlingtonFinancial/Article/
FullText&cid=987654321

Burlington Financial uses the convention of adding “Text” to the end of a Template asset
name to indicate different styles of templates and elements. Some examples:

• Web format: BurlingtonFinancial/Article/Summary

• Plain text: BurlingtonFinancial/Article/SummaryText

• Web format: BurlingtonFinancial/Page/SectionFront

• Plain text: BurlingtonFinancial/Page/SectionFrontText

Plain Text Parallel Site
In most web sites, the text-only pages have hyperlinks that take you back to the full web
format pages. Or there are simply no navigable links on the printer friendly page.
Burlington Financial’s templates, though, are designed to show the visitor an entire plain
text version of the site.

After you switch to the plain text version, you can continue to navigate around the plain
text pages. However, not every single page in the Burlington Financial site is represented
in the plain text version of the site. And the plain text pages do not have all the same
content or hyperlinks as their graphics-rich versions. This was done intentionally, as a
plain-text visitor would probably prefer a less complex version of a site. Extending
Burlington Financial to include other parallel styles (WAP templates, WebTV, PDF, XML)
would be very straightforward.
Content Server 7.0 Developer’s Guide

Chapter 29. The Burlington Financial Sample Site

Best Practices
657
E-mail This Story
Another very common feature on web sites is the ability to e-mail a story. This feature is
relatively straightforward in Burlington Financial.

The BurlingtonFinancial/Util/EmailFront and BurlingtonFinancial/
Util/EmailPost elements call the article pagelet BurlingtonFinancial/Article/
Summary to display the story in summary form. A more robust version of this code would
check to make sure that the visitor entered a valid e-mail address before submitting the
form. A real site would also keep records of which stories have been e-mailed, the sender’s
e-mail address, and the recipient’s e-mail address.

AssetMaker Asset Types
AssetMaker is a CS-Direct utility for constructing basic asset types. Two sample
AssetMaker asset types are included in Burlington Financial: ImageFile and Stylesheet.
These asset types use standard elements from AssetMaker without modification. Both
have file upload fields for storing files in the database.

Burlington Financial includes JavaScript at the top of every page to do client-side browser
detection and then load one of four corresponding Stylesheet assets. The element
BurlingtonFinancial/Common/SetHTMLHeader, called at the top of each full-page
template, uses the CS-Direct element GetBlobURL to get four different BlobServer
URLs, one for each of the four different Stylesheet assets used by Burlington Financial.
The actual .css file from the Stylesheet asset is served via the BlobServer, even though it
isn’t binary data.

Mimetype
Both the imagefile and stylesheet asset types are served to the browser using the
BlobServer servlet. To ensure that the browser knows how to handle arbitrary chunks of
content, a mimetype code is saved and passed to the browser. CS-Direct includes a
MimeType table for storing these codes.

The AssetMaker also allows asset types to define their own mimetype fields. Both the
ImageFile and Stylesheet asset types include mimetype fields as part of their asset
descriptor files. You can add your own mimetype codes and extensions to the MimeType
table using Content Server Explorer or some other database tool.

Note

Before you can email users, you have to configure Content Server and Content
Centre to use the email feature.

First, in the futuretense.ini file, set these two properties:

cs.emailreturnto=<your email address>

cs.emailhost=po-1.XXXX.com (or the emailhost is)

Second, set this property in futuretense_xcel.ini:

xcelerate.emailnotification=true
Content Server 7.0 Developer’s Guide

Chapter 29. The Burlington Financial Sample Site

Best Practices
658
Collections of Collections
The collection asset type is how CS-Direct arranges content into manageable groups.
Burlington Financial also demonstrates the use of a collection whose child asset type is a
collection. This allows editors to easily rearrange groups of content on a web page simply
by re-ranking a collection. These sub-collections can be used to build a library of favorite
stories, breaking news, hot topics, etc.

In Burlington Financial, a named asset association called "HomeStoryGroups" was
created from the page asset type to the collection asset type. The page template
SectionFront looks for a collection in the StoryGroups slot. It forces the collection to be
displayed using the BurlingtonFinancial/Collection/StoryGroups template:

<ASSET.CHILDREN NAME="SectionFrontPage" LIST="StoryGroups"
CODE="HomeStoryGroups"/
<IF COND="IsList.StoryGroups=true"
<THEN
<RENDER.SATELLITEPAGE PAGENAME="BurlingtonFinancial/Collection/
StoryGroups"

ARGS_cid="StoryGroups.oid"
ARGS_p="Variables.asset:id"/

</THEN
</IF

The StoryGroups template then loops over each collection in the asset:

<LOOP LIST="theGroups"
<RENDER.SATELLITEPAGE PAGENAME="BurlingtonFinancial/Collection/
PlainList"

ARGS_cid="theGroups.oid"
ARGS_p="Variables.p"/

<img src="/futuretense_cs/bf/images/dot_rule_125.gif"
width="125" height="1"/<P/
</LOOP

This can be seen on the news page. There is a collection called NewsGroup that is
associated with the news page. This collection contains one child collection, called Energy
List, which itself contains three articles. This lets an editor add or remove items from the
News page by re-ranking the NewsGroup collection.

Membership
The Burlington Financial sample site includes a membership component that has elements
to sign up new members and log in existing members. These visitor registration elements
are not robust enough for use on a real-world web site, but can give you a starting point for
your own designs. For example, Burlington Financial has sample visitor account screens,
allowing visitors to register and set their own preferences, but does not use this
information to restrict visitor access to certain web pages, or to make recommendations
based on a member’s profile.

For more information about visitor registration in Burlington Financial and about security
in general, see Chapter 27, “User Management on the Delivery System.”
Content Server 7.0 Developer’s Guide

Chapter 29. The Burlington Financial Sample Site

Best Practices
659
Wire Feed
Both the home page template and the section front page template include a list of stories
called “From the Wires.” This represents content that flows automatically onto the site.
Large sites often subscribe to wire feed services or other content aggregators. Stories from
these sources are moved onto a site with little human intervention.

Each of the page assets that make up the major sections of Burlington Financial are
associated with a query asset. For the wire feed section, this query asset contains a query
to look for article assets whose source field is set to WireFeed. The queries also look at the
category field of each article. Each section in Burlington Financial contains certain
categories of stories, so the wire feed queries try to match those categories.

The page asset named WireFeed contains a query to return wire feed stories regardless of
their category.

Featured Funds
The fund section front page template includes a list of funds called “Featured Funds.” This
list contains funds that are selected using a Engage segment asset. Segment assets divide
visitors into groups based on common characteristics.

You build a segment asset by first creating visitor data assets. A visitor data asset stores a
single piece of information about visitors to the web site; a zip code, for example.
Segments are built by selecting visitor data assets to base them on, and then setting
qualifying values for those criteria. For example, you can create a zip code segment that
uses the value in the zip code visitor data asset to display advertisements for local
businesses.

The Featured Funds list displays funds based upon whether the web site visitor belongs to
the BFfrequentvisitor segment or the Highriskinvestor segment.

Fund Finder
Fund Finder is a form that allows you to search for funds based on the criteria that you
select. Some of the Fund Finder form dropdowns are hard-coded into the form; the Fund
Families that the form searches, however, are listed dynamically, using the CS-Direct
Advantage concept of assetsets and searchstates.

A searchstate is a set of search constraints based on the attribute values

1 <SEARCHSTATE.CREATE NAME="ss"/>
2 <ASSETSET.SETSEARCHEDASSETS NAME="as"

ASSETTYPES="ProductGroups" CONSTRAINT="ss"/>
3 <ASSETSET.GETATTRIBUTEVALUES NAME="as"

TYPENAME="PAttributes" ATTRIBUTE="FundFamily"
LISTVARNAME="fflist"/>

4
5 <P><SELECT name="FundFamily" SIZE="3" MULTIPLE="1">
6 <OPTION SELECTED="" VALUE="NoPreference"/>No Preference
7 <LOOP LIST="fflist">
8 <OPTION/><csvar NAME="fflist.value"/>
9 </LOOP>
10 </SELECT></P>
Content Server 7.0 Developer’s Guide

Chapter 29. The Burlington Financial Sample Site

Best Practices
660
Page Cache Parameters
By default, CS-Direct sets the cacheinfo property to cs.pgcachefolder,* for any
SiteCatalog page entries that it creates when a you save a Template asset. However,
there are times when you may not want pages to be cached.

Pages like BurlingtonFinancial/Util/LoginPost and BurlingtonFinancial/
Page/AccountAccess are specifically set to cs.nevercache. This is necessary since
they are visitor-specific, and you don’t want one visitor to see another visitor’s cached page
results. Real customer sites need cache fine tuning for their pages.

CS-Direct has a set of default page criteria for creating SiteCatalog entries. You can also
add additional page criteria variables, but the defaults should not be removed. For more
information about caching and page criteria, see Chapter 5, “Page Design and Caching.”
Content Server 7.0 Developer’s Guide

661
Par t 5

Management System Features
This part describes how to customize certain features in the Content Server user interface
on your Content Server management system.

It contains the following chapters:

• Chapter 30, “Customizing the User Interface”

• Chapter 31, “Coding for the InSite Editor”

• Chapter 32, “Customizing Workflow”
Content Server 7.0 Developer’s Guide

662
Content Server 7.0 Developer’s Guide

663
Chapter 30

Customizing the User Interface
Administrative and editorial users of Content Server interact with the product through
various trees that display in the user interface. You can customize the Content Server user
interface by modifying these trees. This chapter describes how to modify trees. It contains
the following sections:

• Overview of the Tree

• Trees and Security

• Tree Error Logging
Content Server 7.0 Developer’s Guide

Chapter 30. Customizing the User Interface

Overview of the Tree
664
Overview of the Tree
The tree appears as a set of tabs in the left pane of the main window of the Content Server
interface, as shown in the following illustration:

Content Server tree tabs are created by the tree applet. You can create or modify your own
trees by setting various parameters that will be passed to the tree applet. The tree applet
accepts several kinds of parameters:

• Applet-wide parameters, which control the overall appearance and behavior of the
applet

• Tree-specific parameters, which control the appearance and behavior of the tree

• Node parameters, which control the appearance and behavior of individual nodes on
the tree

• OpURL Node parameters, which allow the tree to communicate with Content Server

A set of tree tab tables in the database stores information about tree configuration,
including tab names, what roles have access to a tab, and the path to the element that
populates the tree tab with data. You enter information into these tables via the Tree Tabs
screens, which are accessed by clicking the Tree node on the Admin Tab.

Loading the Tree Tabs
For most of the default tree tabs supplied with Content Server, requests for tree data pass
through the OpenMarket/Gator/UIFramework/LoadTab element. The LoadTab
element performs several basic tasks, such as checking for session timeout.

For example, the Product tab, found in the GE sample site that is provided with CS-Direct
Advantage, completes the following steps as it loads:

1. Java code in the Product tab calls the LoadTab element.
Content Server 7.0 Developer’s Guide

Chapter 30. Customizing the User Interface

Overview of the Tree
665
2. The LoadTab element queries the TreeTab database tables to retrieve the elements
that will load the data for the Product tree’s top-level nodes. In this case, the elements
are the OpenMarket/Xcelerate/ProductGroups/LoadTree element and the
OpenMarket/Xcelerate/Product/LoadTree element.

3. The OpenMarket/Xcelerate/ProductGroups/LoadTree element and the
OpenMarket/Xcelerate/Product/LoadTree element query the database for
assets that correspond to the tree nodes and stream back node data to the tree applet.

4. The tree applet parses the node data and displays the nodes.

5. Java code in the Product tab calls an element to initialize its global pop-up menu, the
OpenMarket/Gator/UIFramework/LoadGlobalPopup element. This element
sends a GetTypes command to each tree loading element called by the Products tab.
When the tree loading elements receive this command, they return a list of asset types
whose start menu items that should appear in the global pop-up menu.

6. The OpenMarket/Gator/UIFramework/LoadGlobalPopup element finds the
start menu items for the specified asset types and streams that information back to the
tree.

Note that each asset type in the system must have a LoadTree element. The LoadTree
element is a pointer to another element that actually loads the tree. If an asset type can
have children, each of those children must have a LoadTree element. LoadTree elements
have the following path:

OpenMarket/Xcelrate/AssetType/MyAssetType/LoadTree

where MyAssetType is the name of the asset type that the LoadTree element refers to.

LoadTree elements are called based on the asset type set in the Section field of the
“Manage Tree” form.

Core asset types use one of several elements to load their trees. The following table
contains a list of these elements:

Asset Type Location Description

Flex Groups OpenMarket/Gator/UIFramework/
LoadGroupNodes

Displays a FlexGroup parent
hierarchy and FlexAsset children

Flex Assets OpenMarket/Gator/
UIFramework/LoadOrphanNodes

Displays flex assets that do not
belong to a flex group

Site Plan Tree OpenMarket/Xcelerate/
AssetType/Page/LoadSiteTree

Displays the SitePlan tree

Site Plan
Associations

OpenMarket/Gator/
UIFramework/LoadChildren

Displays asset associations in the
SitePlan tree

Active List OpenMarket/Gator/
UIFramework/LoadActiveList

Displays the Active List tree

Administrative
Tree

OpenMarket/Gator/
UIFramework/LoadAdminTree

Displays the Administrative tree

Administrative
Tree Helper
Elements

OpenMarket/Gator/
UIFramework/Admin

Loads helper elements for the
Administrative tree
Content Server 7.0 Developer’s Guide

Chapter 30. Customizing the User Interface

Overview of the Tree
666
If you want to change the appearance or behavior of nodes in your tree, create a new tree
loading element based on one of these standard elements. Your web site administrator can
then specify the element’s name and the path to that element in the Section Name and
Element Name fields of the “New Tree” form, located off the “Tree Tabs” form. See the
Content Server Administrator’s Guide for more information about adding trees and the
“New Tree” form.

See the “Node Parameters” section in this chapter for more information about modifying
tree nodes.

Applet-Wide Parameters
Applet-wide parameters are set in the TreeAppletParams.xml element. To modify the
tree applet’s behavior, change the parameter values set there, as shown in the following
table:

Table 5: Applet-Wide Parameters

Asset Types OpenMarket/Gator/
UIFramework/
LoadAdministrationAsset

Displays an asset type node at
the top level of the tree and the
names of all assets of that type
on lower levels of the tree

Parameter Description

Debug Turns debugging on and off. Valid values are true and false.
If Debug is set to true, Java console debug and error
messaging is turned on.

ServerBaseURL Sets the base string to which all the node data URL strings will
be appended. For example, if the ServerBaseURL is set to
file://localhost, and the value of the LoadURL
parameter is NodeReader.test, the URL used for loading
the tree’s child nodes will be as follows:
file://localhost/NodeReader.test

BackgroundColor Sets the background color of the tree using a decimal RGB
value. If this parameter is not set, the background color defaults
to the color of the HTML frame in which the tree is embedded.

TotalPanes Sets the number of tree tabs that will be displayed. This value is
set automatically.

URLTarget The target frame in which to display node links. The default
value is XcelAction—name of the pane on the right side of
the browser window.

Asset Type Location Description
Content Server 7.0 Developer’s Guide

Chapter 30. Customizing the User Interface

Overview of the Tree
667
Tree-Specific Parameters
Tree-specific parameters are set by the “Add New Tree Tab” form and the
OpenMarket\Gator\UIFramework\TreeTabAdd.xml element that creates the
“Add New Tree Tab” form. To modify the tree’s appearance or behavior, change the
parameter values shown in the following table by using the using the form or by altering
the TreeTabAdd element.

Table 6: Tree-Specific Parameters
Gl

Parameter Description

Title Sets the text that is displayed on the tab.

This value is set in the Title field of the “Manage Tree” form,
found on the Admin tab.

ToolTip Sets the text that is displayed when the mouse pointer hovers
over the tab index.

This value is set in the Tool Tip field of the “Manage Tree”
form, found on the Admin tab.

LoadURI The URI of the page to call to retrieve a node’s children.

This value is set in the TreeTabAdd element.

ActionURL The URL of the page that performs a pop-up menu action for a
node in the tree. The default value points to the OpURL.xml
element.

This value is set in the TreeTabAdd element.

OpenIcon The path to the icon to use when depicting an expanded node.
The default is a plus sign (+).

This value is set in the TreeTabAdd element.

CloseIcon The path to the icon to use when depicting an unexpanded
node. The default is a minus sign (-).

This value is set in the TreeTabAdd element.

LineStyle Sets whether or not lines connect the nodes of the tree. Valid
values are Angled and blank; Angled is the default. If the
parameter is set to Angled, lines connect the nodes. If the
value is left blank, no lines connect the nodes.

This value is set in the TreeTabAdd element.

RootID Sets the ID of the root node. This string is used for specifying
the node path. It defaults to the value of the Title parameter.

This value is set in the TreeTabAdd element.

GlobalItems This value is set in the GlobalItems field of the “Manage
Tree” form, found on the Admin tab.

NodeItems This value is set in the NodeItems field of the “Manage Tree”
form, found on the Admin tab.
Content Server 7.0 Developer’s Guide

Chapter 30. Customizing the User Interface

Overview of the Tree
668
Node Parameters
The node parameters determine the appearance and behavior of the nodes in your tree. To
define the appearance and behavior of these nodes, you write an element which sets the
node parameters (shown in the following table) and passes their values to the
BuildTreeNode.xml element, which creates the tree nodes.

Table 7: Node Parameters
=

Parameter Description

Label Specifies the text to be displayed for this node. The value does
not have to be unique. Default is "".

ID A string identifier that is unique within the tree, used by
Content Server to express selection paths. The ID is specified
by Content Server.

ExecuteURL The URI value of the page to be displayed when completing
the "Execute" action. This value will have the value of
ServerBaseURL prepended to it.

If the node is not executable, do not include this parameter in
the node data.

URLTarget The frame target for ExecuteURL. If ExecuteURL is not
included in the node data, it defaults to the target specified in
the Applet-wide parameters.

Description An alternative to the string specified in Label, if you choose
this option on the tree-wide pop-up menu. The default value is
"".

Level The relative level of this node, represented by a number
>= 0. A value of 0 indicates that the node is an immediate child
of the node requesting the data.

To load more than one level of nodes at a time, set this value to
a number greater than zero. The default value is 0.

Image The URI for the image to be prepended to the label. If this field
is not included in the node data, no image will be displayed for
that node.
Content Server 7.0 Developer’s Guide

Chapter 30. Customizing the User Interface

Overview of the Tree
669
LoadURL The URI for the subtree hierarchy. If this field is not included
in the node data, this node requires no additional loading.

The URL specified in this parameter must contain enough
information so that the tree applet can find that node’s
children. For example, if your hierarchy is as follows:

Product Tab > Reebok > Running Shoes

the value of LoadURL is as follows:

ContentServer?pagename=OpenMarket/Gator/
UIFramework/
LoadTab&AssetType=ProductGroups&populate=OpenM
arket/Xcelerate/AssetType/ProductGroups/
LoadTree&op=load&parent=Variables.parentid

where "parentid" is the assetid of the “Running Shoes”
asset, and "op" and "populate" are used by LoadTab to route
to your tree load element.

OKAction An action that will be displayed in the node’s pop-up menu.
This string may appear multiple times in the same node data
set.

OpURL The URL to execute a given action on the server. This value
will be prepended with the value of the ServerBaseURL
parameter.

Include this parameter in the node data unless the value of the
NodeItems parameter is a null string, and thus has no
OKAction specified.

RefreshKeys Creates a key or set of set of keys which can be used to refresh
the tree. Set the value to the ID of the current node.

Parameter Description
Content Server 7.0 Developer’s Guide

Chapter 30. Customizing the User Interface

Overview of the Tree
670
The following excerpt from the LoadAdministrationAsset element sets the values of
the node parameters and passes those values to the BuildTreeNode element.

The ListofAsset list referred to in this excerpt is a list of information on assets of a
given type. This list was generated by a SQL query that is executed elsewhere in the
element.

<CALLELEMENT NAME="OpenMarket/Gator/UIFramework/BuildTreeNode">
<ARGUMENT NAME="Label" VALUE="ListofAsset.name"/>
<ARGUMENT NAME="Description" VALUE="ListofAsset.description"/>
<ARGUMENT NAME="ID" VALUE="Variables.TreeNodeID"/>
<ARGUMENT NAME="OpURL"

VALUE="ContentServer?pagename=OpenMarket/Gator/UIFramework/
TreeOpURL&AssetType=Variables.AssetType"/>

<ARGUMENT NAME="ExecuteURL"
VALUE="ContentServer?pagename=OpenMarket/Gator/UIFramework/
TreeOpURL&AssetType=Variables.AssetType&n0_=Variables.pack
edTreeNodeID&op=displayNode"/>

<ARGUMENT NAME="OKActions"
VALUE="Status;Inspect;Edit;Delete;refresh"/>

<ARGUMENT NAME="Image" VALUE="Xcelerate/OMTree/TreeImages/
AssetTypes/Variables.AssetType.gif"/>

<ARGUMENT NAME="RefreshKeys" VALUE="ListofAsset.id"/>
</CALLELEMENT>

To customize the appearance or behavior of tree nodes, copy one of the standard elements
and modify the node arguments. Note that tree loading elements are passed the following
variables, so any tree loading element that you create or customize must take these
variables into account:

Variables Passed in by the LoadTree element:
• AssetType, which is set to the section name that was created using the “New Tree”

form

• op, which is set to init

Variables Passed in by the LoadGlobalPopup element:
• command, which is set to GetTypes

• AssetType, which is set to the section name that was created using the “New Tree”
form

• varname, which you set with a comma-separated list of asset types that you want to
display start menu items for

• popupvar, which you set to either true, if you want to add items to the global
pop-up, or false, if you do not need to add items to the pop-up
Content Server 7.0 Developer’s Guide

Chapter 30. Customizing the User Interface

Overview of the Tree
671
Node Pop-up Commands
Each node on the tree has a menu that appears when the user right-clicks with the mouse.
Commands on this menu allow you to refresh the node or load pages in the right side of
the browser window. You can add commands to a node pop-up menu that allow you to
load forms such as the status and publish forms. Any form that can be called using an asset
type and ID is a good candidate for being called by a node pop-up command.

Add a new command to the node pop-up menu by completing the following steps:

1. Add the new command, exactly as you want it to appear, into the node’s OKActions
field.

2. Into the element that the node’s OpURL refers to (usually the TreeOpURL element),
add a new IF statement that calls the form you want to load.

For example, the following code from the TreeOpURL element displays a node:

<IF COND="Variables.op=displayNode">
<THEN>
<callelement NAME="OpenMarket/Gator/UIFramework/

TreeIDFromPath">
<argument NAME="TreePath" VALUE="Variables.TreeNodePath"/>
</callelement>

<setvar NAME="id" VALUE="Variables.ID"/>
<callelement NAME="OpenMarket/Xcelerate/UIFramework/

ApplicationPage">
<argument NAME="ThisPage" VALUE="ContentDetailsFront"/>
<argument NAME="contentfunctions" VALUE="true"/>
<argument NAME="AssetType"

VALUE="Variables.AssetType"/>
</callelement>
</THEN>

Refreshing the Tree
Elements that can alter the tree are responsible for refreshing the tree so that it displays
current data. There are three different types of refresh action that you can specify:

• Self, which refreshes the children of the specified node

• Parent, which refreshes the specified node and its children

• Root, which refreshes the entire tree

There are two steps to refreshing the tree:

1. Code your tree customization elements so that the tree nodes that you wish to refresh
have RefreshKeys. RefreshKeys are keys—usually the asset ID of the current
node—which allow the refresh to take place.

2. Call the OpenMarket/Xcelerate/UIFramework/UpdateTreeOMTree element,
and pass the element the _TreeRefreshKeys_ variable, specifying the type of
refresh you want in the variable value.

You set the RefreshKeys for a node by passing the RefreshKeys argument to the
BuildTreeNode element, as shown in the code sample in the “Node Parameters” section
of this chapter.
Content Server 7.0 Developer’s Guide

Chapter 30. Customizing the User Interface

Trees and Security
672
To refresh the tree, call the OpenMarket/Xcelerate/UIFramework/
UpdateTreeOMTree element, as shown in the following example:

<CALLELEMENT NAME=”OpenMarket/Xcelerate/UIFramework/
UpdateTreeOMTree”>

<ARGUMENT NAME= “_TreeRefreshKeys_” VALUE= “Root:ActiveList”/>
</CALLELEMENT>

Trees and Security
You can specify which users can see a tree by using the Content Server tree user interface.
For more information about setting who can view a tree, see the Content Server
Administrator’s Guide.

Tree Error Logging
All tree-related error and debug messages are logged to the Java Console. You can turn
debugging on and off by supplying a value for the Debug parameter when you create a
tree.

Note that enabling debug affects performance, so error logging should generally be turned
off on the delivery system.
Content Server 7.0 Developer’s Guide

673
Chapter 31

Coding for the InSite Editor
The InSite Editor is a CS-Direct feature that enables infrequent users to find, edit, and
submit content directly from the rendered (Preview) version of an asset, which means that
they do not have to learn how to use the Content Server interface.

Enabling this feature requires two general steps:

• Setting the xcelerate.enableinsite property in the futuretense_xcel.ini
file to true.

• Coding templates that invoke the InSite Editor feature for the fields that you want
content providers to be able to edit in this way.

This chapter describes how to code templates that invoke the InSite Editor. It contains the
following sections:

• Overview

• The INSITE.EDIT Tag

• Template Element Examples
Content Server 7.0 Developer’s Guide

Chapter 31. Coding for the InSite Editor

Overview
674
Overview
When a Content Server user with InSite Editor privileges previews any asset on a
management system that has the InSite Editor configured, a separate control panel
window appears, similar to the following:

The control panel provides a subset of the CS-Direct functions that you use to work with
assets, including search and workflow functions. When a user selects an asset from the
Assignments list in the control panel, CS-Direct displays it in its rendered (Preview) form
in the browser window.

When you navigate to an asset that is rendered by a template that is coded for the InSite
Editor, a blue pencil icon appears next to the asset. For example:
Content Server 7.0 Developer’s Guide

Chapter 31. Coding for the InSite Editor

Overview
675
Then, when you click on the pencil icon, the icon changes shape and a dotted line
surrounds the asset like this:

You can click in the area surrounded by the dotted line, make the necessary changes, and
then click Save in the control panel. If the template renders more than one asset with
InSite Editor fields—a collection template, for example—you can edit them all and they
are all saved when you click the Save button.

Content providers can use the InSite Editor feature to edit and approve assets and finish
assignments only if the following conditions are true:

• The xcelerate.enableinsite property in the futuretense_xcel.ini file is
set to true on the Content Server system that they are working on.

• The value of rendermode is either preview or live. The InSite Editor does not
appear when rendermode=export.

• The template or element rendering the asset is tagged correctly.

• The content providers have the appropriate edit privileges: they have the xceleditor
ACL assigned to their user names and the assets they are working with are in a
workflow state that gives them permission to edit those assets (or the assets are not in
a workflow process at all).

• The asset was not created or edited with the CS-Desktop feature. That is, the asset has
no value in its externaldoctype column.

For information about how to use the control panel, see the InSite Editor help file.
Content Server 7.0 Developer’s Guide

Chapter 31. Coding for the InSite Editor

The INSITE.EDIT Tag
676
The INSITE.EDIT Tag
To code your templates to enable the InSite Editor, you use one additional CS-Direct tag,
the INSITE.EDIT tag. You use the tag in place of the CSVAR tag for the fields that you
want users to be able to edit with the InSite Editor.

For example, this line of code displays the contents of an asset’s description field:

<CSVAR NAME="Variables.description"/>

To have the description field rendered with the InSite Editor functionality enabled for it,
you would change the line of code to this:

<INSITE.EDIT ASSETID="Variables.cid" ASSETFIELD="description"
ASSETFIELDVALUE="Variables.description"
ASSETTYPE="Variables.c"/>

When Content Server renders the template, it interprets that line of code as follows:

• On a management system with the InSite Editor enabled
(xcelerate.insiteewebedit=true), Content Server displays the contents of
the description field with the blue pencil icon; the InSite Editor functionality is active.

• On the delivery system that the template is published to and that has the InSite Editor
disabled (xcelerate.insiteewebedit=false), Content Server interprets the
code as a CSVAR statement and displays it without the blue pencil icon.

In other words, you use the same template on both the management and the delivery
system—Content Server knows what to do in each case.

There are three variations of the INSITE.EDIT tag which accept different parameters; for
more information on these variations, see the Content Server Tag Reference.

Insite Editor can also handle fields that include embedded links. Use the INSITE.EDIT
tag to display the field’s contents.

Parameters
The INSITE.EDIT tag takes the following parameters:

ASSETID (required)
The ID of the asset whose field is to be displayed with the InSite Editor functionality.
Typically, this value is held in the cid variable. For example:

ASSETID=“Variables.cid”

ASSETFIELD (required)
The name of the field that you want to display. You use different syntax for the value of
this parameter when the asset identified by ASSETID is a basic asset than when it is a flex
asset.

For example, to specify a field named byline for a basic asset, you use the following
syntax:

ASSETFIELD="byline"

However, if the asset is a flex asset, the field is actually a flex attribute (which is also an
asset). In this case, you use the following syntax:

ASSETFIELD="Attribute_byline"
Content Server 7.0 Developer’s Guide

Chapter 31. Coding for the InSite Editor

The INSITE.EDIT Tag
677
ASSETFIELDVALUE (required)
The current or default value of the field; that is, the value of the field when the asset is
loaded. For example, this is the code for a field named byline for a basic asset:

ASSETFIELDVALUE="Variables.byline"

This is the code for an attribute named byline for a flex asset:

ASSETFIELDVALUE="Variables.Attribute_byline"

ASSETTYPE (required)
The asset type of the asset identified with the ASSETID parameter.

EWEBEDITPRO (optional)
If you are also using the eWebEditPro HTML editor from Ektron on your management
system, you can use eWebEditPro as the input type for a field when it is in InSite Editor
edit mode. By default, eWebEditPro is disabled.

To enable eWebEditPro for the field, provide this parameter and set it to true. For
example:

EWEBEDITPRO=“true”

WIDTH (optional)
By default, the width of the field in the InSite Editor edit mode is set to 100%. You can
change the width by using either a percentage or a number in pixels.

HEIGHT (optional)
By default, the height of a field displayed in the InSite Editor edit mode is 200 pixels. You
can change the height by providing the number of pixels. Note that you cannot provide a
percentage for the HEIGHT parameter.

Syntax
Following is an example of the syntax for the INSITE.EDIT tag. This tag enables the
InSite Editor for the byline field of a basic asset:

<INSITE.EDIT
ASSETID="Variables.cid"
ASSETFIELD="byline"
ASSETFIELDVALUE="Variables.byline"
ASSETTYPE=""Variables.c"
WIDTH=“75”
HEIGHT=“150”/>

If the asset is a flex asset, the same code would be written as follows:

<INSITE.EDIT
ASSETID="Variables.cid"
ASSETFIELD="byline"
ASSETFIELDVALUE="Variables.Attribute_byline"
ASSETTYPE=""Variables.c"
WIDTH=“75”
HEIGHT=“150”/>
Content Server 7.0 Developer’s Guide

Chapter 31. Coding for the InSite Editor

Template Element Examples
678
Supported Data Types and Input Types
This section describes the kinds of fields and attributes whose values can be edited with
the InSite Editor.

Basic Assets
For basic assets—the default CS-Direct asset types, the sample site article and imagefile
asset types, and any asset type that you create with AssetMaker—you can use the InSite
Editor on a field with any data type (STORAGE TYPE) other than timestamp. Those data
types are as follows:

• CHAR

• VARCHAR

• SMALLINT

• INTEGER

• BIGINT

• DOUBLE

Additionally, the input type for the field must be compatible. That is, you should enable
the InSite Editor functionality only for fields whose input style is text, textarea, or
eWebEditPro.

Flex Assets
For flex assets or flex parent assets, fields are flex attributes. You can use the InSite Editor
to display the value of the flex attributes of any type other than date or asset in the
template for a flex asset or flex parent asset.

Specifically, you can use the InSite Editor for attributes of any of the following types:

• float

• integer

• money

• string

• text

• blob

Template Element Examples
This section provides a template example for both basic and flex assets. For longer
examples, use Content Server Explorer to examine the following elements:

• ElementCatalog/BurlingtonFinancial/Article/Full (for a basic asset
type)

• ElementCatalog/BurlingtonFinancial/Article/Summary (for a basic asset
type)

• ElementCatalog/OpenMarket/Demos/CatalogCentre/GE/Templates/
blurb-story (for a flex asset type)
Content Server 7.0 Developer’s Guide

Chapter 31. Coding for the InSite Editor

Template Element Examples
679
Example for Basic Asset
This template element is for a Burlington Financial article asset. It does the following:

• Logs the template as a dependent of the page or pagelet being rendered

• Loads the asset with an ASSET.LOAD tag, which logs the asset as an exact dependent
of the page or pagelet being rendered

• Displays the urlbody field and the description field as fields that can be edited
with the InSite Editor

<?xml version="1.0" ?>
<!DOCTYPE FTCS SYSTEM "futuretense_cs.dtd">
<FTCS Version="1.1">
<!-- Article/BasicInsite
-
- INPUT
- Variables.c - asset type (Article)
- Variables.cid - id of the asset to display
- Variables.tid - template used to display the page(let)
- OUTPUT
-
-->

<!-- Log the template as a dependent of the pagelet being
rendered, so changes to the Template asset will force regeneration
of the page(let). -->

<IF COND="IsVariable.tid=true">
<THEN>
<RENDER.LOGDEP cid="Variables.tid" c="Template"/>
</THEN>

</IF>

<!-- ASSET.LOAD logs an exact dependency between the asset and the
page being rendered with this element -->

<ASSET.LOAD NAME="anAsset" TYPE="Variables.c"
OBJECTID="Variables.cid"/>

<!-- get all the primary table fields of the asset -->

<ASSET.SCATTER NAME="anAsset" PREFIX="asset"/>

<!-- Display the description and allow it to be edited through the
InSite Editor feature.-->

<INSITE.EDIT ASSETID="Variables.cid" ASSETFIELD="description"
ASSETFIELDVALUE="Variables.asset:description"
ASSETTYPE="Variables.c"/>

<!-- Display the contents of the urlbody file and allow it to be
edited through the InSite Editor feature.-->
Content Server 7.0 Developer’s Guide

Chapter 31. Coding for the InSite Editor

Template Element Examples
680
<ICS.GETVAR name="asset:urlbody" encoding="default"
output="bodyvar"/>
<INSITE.EDIT ASSETID="Variables.cid" ASSETFIELD="urlbody"

ASSETFIELDVALUE="Variables.bodyvar" ASSETTYPE="Variables.c"/>

</FTCS>

Notice the line of code directly above the last INSITE.EDIT tag. When you use the
ASSET.SCATTER tag to scatter a URL field, you must use the ICS.GETVAR method as
shown in this example.

Example for Flex Assets
This template element is for a product asset with a field named productDescription. It
does the following:

• Logs the template as a dependent of the page or pagelet being rendered

• Creates an assetset with one product asset in it.

• Displays the productDescription field as a field that can be edited with the InSite
Editor.

<?xml version="1.0" ?>
<!DOCTYPE FTCS SYSTEM "futuretense_cs.dtd">
<FTCS Version="1.1">
<!-- Products/BasicInsite
-
- INPUT
- Variables.c - asset type (Products)
- Variables.cid - id of the asset to display
- Variables.tid - template used to display the page(let)
- OUTPUT
-
-->

<!-- Log the template as a dependent of the pagelet being
rendered, so
changes to the Template asset will force regeneration of the
page(let)
-->

<IF COND="IsVariable.tid=true">
<THEN>
<RENDER.LOGDEP cid="Variables.tid" c="Template"/>
</THEN>

</IF>

<!-- Because this is a flex asset, we do not use ASSET.LOAD.
Instead, we create an assetset with the ASSETSET tag family and
name it ’as’ -->

<ASSETSET.SETASSET NAME="as" ID="Variables.cid"
TYPE="Variables.c"/>
Content Server 7.0 Developer’s Guide

Chapter 31. Coding for the InSite Editor

Template Element Examples
681
<!-- Retrieve the attribute named productDescription.-->

<ASSETSET.GETATTRIBUTEVALUES
NAME="as"
ATTRIBUTE="productDescription"
TYPENAME="PAttributes"
LISTVARNAME="productDescriptionList"/>

<!-- Display the productDescription and allow it to be edited
through the InSite Editor feature. Notice that for flex assets,
you prepend ’Attribute_’ in front of the attribute name.-->

<INSITE.EDIT
ASSETID="Variables.cid"
ASSETFIELD="Attribute_productDescription"
ASSETFIELDVALUE="productDescriptionList.value"
ASSETTYPE="Variables.c"/>

</FTCS>

Example for an Attribute of Type Blob
This example retrieves and displays a Blob.

<?xml version="1.0" ?>
<!DOCTYPE FTCS SYSTEM "futuretense_cs.dtd">
<FTCS Version="1.1">
<!-- get the URL -->

<ASSETSET.GETATTRIBUTEVALUES
 NAME="InSiteCourse"
 TYPENAME="BUAttribute"
 ATTRIBUTE="URL"
 LISTVARNAME="URLList"/>

<BLOBSERVICE.READDATA
 ID="URLList.value"
 LISTVARNAME="URLList"/>

URL:
<INSITE.EDIT

ASSETID="Variables.cid"
ASSETFIELD="Attribute_URL"
ASSETFIELDVALUE="URLList.@urldata"
ASSETTYPE="Variables.c"/>

</FTCS>
Content Server 7.0 Developer’s Guide

Chapter 31. Coding for the InSite Editor

Template Element Examples
682
Content Server 7.0 Developer’s Guide

683
Chapter 32

Customizing Workflow
A Content Server workflow process is the series of states an asset moves through on its
way to publication. The asset moves from one state to the next by taking a workflow step.
Each step that the asset takes can be associated with a timed action, such as sending an e-
mail to a user when an asset is assigned to them, or a workflow step condition, which
prevents an asset from moving on to the next step if certain conditions are not fulfilled.

You must create the workflow step condition elements which specify the conditions that
an asset must meet to move on to the next state, and the workflow action elements which
perform various actions as the asset moves from one state to the next. This chapter
describes these elements in greater detail and provide sample code for each element type.
It contains the following sections:

• Workflow Step Conditions

• Workflow Actions
Content Server 7.0 Developer’s Guide

Chapter 32. Customizing Workflow

Workflow Step Conditions
684
Workflow Step Conditions
A workflow process is composed of one or more workflow states. Workflow steps move
the asset from one workflow state to the next. Sometimes, however, there are conditions
under which the asset should not move on to the next workflow state. You must create the
element that defines the condition or conditions that prevent the asset from moving on to
the next state.

This element receives the following data when it is called:

• An IWorkflowable object called Object, which represents the asset whose state is
being changed

• An IWorkflowStep object called Step, which represents the current workflow step

• The StepUser variable, which contains the ID of the user attempting the step

• Variables specified as name-value pairs when a StepCondition is defined in the
Content Server user interface. For more information about defining StepConditions,
see the Content Server Administrator’s Guide.

The workflow step condition element should check for a condition and return a Boolean
value. If the value is false, the step will not proceed.

The following code comes from a sample workflow step condition element:

1 <?xml version="1.0" ?>
2 <!DOCTYPE FTCS SYSTEM "futuretense_cs.dtd">
3 <FTCS Version="1.1">
4 <!-- OpenMarket/Xcelerate/Actions/Workflow/StepConditions/

ExampleStepCondition
5 -
6 - INPUT
7 -
8 - OUTPUT
9 -
10 -->
11 <csvar NAME="This step condition will check if step can be

taken"/>

Line 12 sets an empty ReturnVal variable. In lines 31 and 36, this variable will be set
with the reasons why the step cannot proceed.

12 <setvar NAME="ReturnVal" VALUE="Variables.empty"/>
13
14 <!--change the value of ReturnVal to a non-empty string

later on, if you want to stop the step --> <!-- most of
the stuff below are debugging statements and also show you
some items available to you to set up a condition for
stopping the step-->

Line 16 uses the WORKFLOWABLEASSET.GETDISPLAYABLENAME tag to get the name of
the asset that is in workflow.

15 <!-- get asset -->
16 <WORKFLOWABLEOBJECT.GETDISPLAYABLENAME OBJECT="Object"

VARNAME="assetdisplayablename"/>
17 Object:<csvar NAME="Variables.assetdisplayablename"/

>

Content Server 7.0 Developer’s Guide

Chapter 32. Customizing Workflow

Workflow Actions
685
Line 19 creates a variable called StepUser which will contain the ID of the user
attempting to take the step. Line 20 uses the USERMANAGER.GETUSER tag to load the
user’s ID into the StepUser variable. Line 22 uses the CCUSER.GETNAME tag to retrieve
a human-readable user name, and line 23 uses the csvar tag to display that user name.

18 <!-- get userid -->
19 Userid: <csvar NAME="Variables.StepUser"/>

20 <USERMANAGER.GETUSER OBJVARNAME="myUserObj"

USER="Variables.StepUser"/>
21 <CCUSER.GETNAME NAME="myUserObj" VARNAME="uname"/>
22 Username: <csvar NAME="Variables.uname"/>

Line 24 uses the WORKFLOWSTEP.GETID tag to get the ID of the current workflow step.
The WORKFLOWSTEP.GETNAME tag, used in line 25, loads the step with the specified
name.

23 <!-- getstep -->
24 <WORKFLOWSTEP.GETID NAME="Step" VARNAME="sid"/>
25 Stepid: <csvar NAME="Variables.sid "/>
26 <WORKFLOWSTEP.GETNAME NAME="Step" VARNAME="sname"/>
27 Stepname: <csvar NAME="Variables.sname"/>

Lines 28 through 40 define the conditions that will stop the change of step from taking
place. The forcestop and notalloweduser variables that the conditionals check were
set as arguments when the sample step condition was defined in the Content Server
interface. In a real step condition, you would test for the condition of your choice here—
seeing whether an article asset has an associated image, for example.

28 <!-- This is the actual condition to stop the
step. The following is just an example. -->

29 <if COND="Variables.forcestop=true">
30 <then>
31 <setvar NAME="ReturnVal" VALUE="You can not

take this step because forcestop=true"/>
32 </then>
33 <else>
34 <if

COND="Variables.uname=Variables.notalloweduser">
35 <then>
36 <setvar NAME="ReturnVal" VALUE="You

are not allowed to take this step"/>
37 </then>
38 </if>
39 </else>
40 </if>
41 </FTCS>

Workflow Actions
As an asset moves through workflow, it can trigger a workflow action. A workflow action
can do anything from send an email to alert a user that he has a new asset to evaluate to
breaking a deadlock after a specified period of time has elapsed. There are five types of
workflow actions:
Content Server 7.0 Developer’s Guide

Chapter 32. Customizing Workflow

Workflow Actions
686
• Step actions, which are executed as part of a transition between workflow states.

• Timed actions, which are triggered by deadlines when the asset is in a given state, thus
associating the asset with a specific assignment.

• Deadlock actions, which are executed when an asset needs a unanimous vote in order
to move to the next state, but the voters differ on which step the asset should take. The
deadlock action will be executed whenever users choose different steps for the asset to
move to.

• Group deadlock actions, which are executed when the assets in a workflow group
need a unanimous vote in order to move to the next state, but the voters choose
different steps, creating a deadlock.

• Delegation actions, which are executed when an asset is delegated. The delegated
asset remains in its current workflow state, but is assigned to a new user.

Your workflow administrator must first define workflow actions using the Content Server
user interface. Then you must create the elements that accomplish these workflow actions.
FatWire provides several sample workflow action definitions for you to look at. For more
information about defining workflow actions, see the Content Server Administrator’s
Guide.

 The following sections describe sample workflow action elements.

Step Action Elements
A Step Action element receives the following data when it is called:

• A WorkflowEngine object called WorkflowEngine.

• An ObjectTotal variable, which represents the total number of assets whose state is
being changed.

• An IWorkflowable object called Objectnnn, which represents the assets whose
state is being changed. nnn is a number between 0 and ObjectTotal -1.

• An IWorkflowStep object called Step, which represents the workflow step being
considered.

• A StepTargetUser variable, which is a comma-separated list of the step’s target
users.

• A StepUser variable, which contains the ID of the user attempting the step.

• A Group variable, which contains the ID of the workflow group to which the assets
belong (if you are using workflow groups).

• Any variables that your workflow administrator has created in the definition for this
Step Action.

The following Step Action element approves assets for publish; most other Step Action
elements send an e-mail to the assignees.

1 <?xml version="1.0" ?>
2 <!DOCTYPE FTCS SYSTEM "futuretense_cs.dtd">
3 <FTCS Version="1.1">
4 <!-- OpenMarket/Xcelerate/Actions/Workflow/StepActions/

ApproveForPublish
5 -
6 - INPUT
Content Server 7.0 Developer’s Guide

Chapter 32. Customizing Workflow

Workflow Actions
687
7 - Variables.ObjectTotal - number of loaded
workflowasset objects

8 - Object[n] - loaded workflowasset objects, where n = 0 -
Variables.ObjectTotal

9 -targets - one or more comma separated names of PubTargets
for which to approve the asset

10 -
11 - OUTPUT
12 -
13 -->
14
15 <!-- This is an action element called by step actions

ApproveForPublish-->
16 This step action element will approve an asset for

publish.

Line 18 uses the SETCOUNTER tag to create a counter which keeps track of the number of
assets to approve. Lines 19 through 25 use the LOOP tag to loop through the assets and
retrieve the asset types and IDs.

17 <!-- get the id and assettype of the asset(s) to approve --
>

18 <SETCOUNTER NAME="count" VALUE="0"/>
19 <LOOP COUNT="Variables.ObjectTotal">
20 <WORKFLOWASSET.GETASSETTYPE OBJECT="ObjectCounters.count"

VARNAME="assettype"/>
21 <WORKFLOWASSET.GETASSETID OBJECT="ObjectCounters.count"

VARNAME="assetid"/>
22 <SETVAR NAME="idCounters.count" VALUE="Variables.assetid"/>
23 <SETVAR NAME="typeCounters.count"

VALUE="Variables.assettype"/>
24 <INCCOUNTER NAME="count" VALUE="1"/>
25 </LOOP>

Line 27 uses the STRINGLIST tag to create a comma-separated list of publish target
names. Lines 31 through 46 loop through this list, using the PUBTARGET.LOAD and
PUBTARGET.GET tags to load information about the publish targets from the PubTarget
table. This information and information about the assets to be approved are passed to the
ApprovePost element for further processing in line 37.

26 <!-- approve for each destination -->
27 <STRINGLIST NAME="publishTargets" STR="Variables.targets"

DELIM=","/>
28
29 <if COND="IsList.publishTargets=true">
30 <then>
31 <LOOP LIST="publishTargets">
32 <PUBTARGET.LOAD NAME="pubtgt" FIELD="name"

VALUE="publishTargets.ITEM"/>
33 <if COND="IsError.Variables.errno=false">
34 <then>
35 Approving for publish to <CSVAR NAME="publishTargets.ITEM"/

>

36 <PUBTARGET.GET NAME="pubtgt" FIELD="id" OUTPUT="pubtgt:id"/

>

Content Server 7.0 Developer’s Guide

Chapter 32. Customizing Workflow

Workflow Actions
688
37 <CALLELEMENT NAME="OpenMarket/Xcelerate/PrologActions/
ApprovePost">

38 <ARGUMENT NAME="targetid" VALUE="Variables.pubtgt:id"/>
39 <ARGUMENT NAME="assetTotal" VALUE="Counters.count"/>
40 </CALLELEMENT>
41 </then>
42 <else>
43 Cannot approve for publish to destination: <CSVAR

NAME="publishTargets.ITEM"/>, Error: <CSVAR
NAME="Variables.errno"/>

44 </else>
45 </if>
46 </LOOP>
47 </then>
48 <else>
49 Cannot approve for publish. This step action requires a

targets argument with one or more comma separated
publishing destination names.

50 </else>
51 </if>
52
53 </FTCS>

Timed Action Elements
Timed Action elements receive the following data when they are called:

• A WorkflowEngine object called WorkflowEngine.

• A WorkflowAssignmentTotal variable, which contains the total number of
assignments for which this action applies.

• An IWorkflowAssignment object called WorkflowAssignmentnnn, which
represents assignments to apply the action to. nnn is a number greater than zero.

• An optional Group variable, which contains the ID of the workflow group to which
the assets belong (if you are using workflow groups)

• Any variables that your workflow administrator has created in the definition for this
Timed Action.

The following excerpt is from a Timed Action element that sends an e-mail. The text of
the subject and body of this e-mail are set in the Workflow E-mail forms that you access
from the Admin tab in the Content Server user interface. The body text expects the
following variables:

• Variables.assetname, which contains the name of the current asset

• Variables.assigner, which is the name of the user who completed the previous
state in the workflow process

• Variables.instruction, which is the text that the assigner puts in the Action
to Take text box as he or she completes an assignment

1 <!-- This is a timed action element -->
2
3 <!-- get total assignments -->
4 <if COND="IsVariable.WorkflowAssignmentTotal=true">
Content Server 7.0 Developer’s Guide

Chapter 32. Customizing Workflow

Workflow Actions
689
5 <then>
6 <setvar NAME="NumOfAssignments"

VALUE="Variables.WorkflowAssignmentTotal"/>
7 </then>
8 <else>
9 <setvar NAME="NumOfAssignments" VALUE="0"/>
10 </else>
11 </if>
12
13 <!-- For each assignment object, get assignee -->
14 <setcounter NAME="COUNT" VALUE="0"/>
15 <if COND="Variables.NumOfAssignments!=0">
16 <then>
17 <loop FROM="0" COUNT="Variables.NumOfAssignments">
18 <setvar NAME="tmp"

VALUE="WorkflowAssignmentCounters.COUNT"/>
19 <WORKFLOWASSIGNMENT.GETASSIGNEDUSERID NAME="Variables.tmp"

VARNAME="assigneduserid"/>
20
21 <!-- get user -->
22 <WORKFLOWASSIGNMENT.GETASSIGNEDOBJECT

NAME="Variables.tmp" OBJVARNAME="assignedobj"/>
23
24 <!-- get asset -->
25 <WORKFLOWABLEOBJECT.GETDISPLAYABLENAME OBJECT="assignedobj"

VARNAME="assetname"/>
26
27 <!-- get deadline and format it -->
28 <WORKFLOWASSIGNMENT.GETDEADLINE NAME="Variables.tmp"

VARNAME="deadline"/>
29 <DATE.DEFAULTTZ VARNAME="tzone"/>
30 <DATE.CLOCKLIST LISTVARNAME="DueTime"

CLOCK="Variables.deadline" TIMEZONE="Variables.tzone"/>
31 <setvar NAME="time" VALUE="DueTime.fulldate

DueTime.longtime"/>
32
33 <!-- get email address --->
34 <USERMANAGER.GETUSER USER="Variables.assigneduserid"

OBJVARNAME="userobj"/>
35 <CCUSER.GETNAME NAME="userobj"

VARNAME="assigned_user_name"/>
36 <CCUSER.GETEMAIL NAME="userobj" VARNAME="EmailAddress"/>
37
38 <IF COND="IsVariable.EmailAddress=true">
39 <THEN>
40
41 <!-- load email object -->
42 <EMAILMANAGER.LOAD NAME="Variables.emailname"

OBJVARNAME="emailobject"/>
43

In lines 45 and 48, the variables in the e-mail object, subject and body, are replaced
by their values.
Content Server 7.0 Developer’s Guide

Chapter 32. Customizing Workflow

Workflow Actions
690
44 <!-- translate subject -->
45 <EMAIL.TRANSLATESUBJECT NAME="emailobject"

PARAMS="assetname=Variables.assetname" VARNAME="subject"/>
46
47 <!-- translate body -->
48 <EMAIL.TRANSLATEBODY NAME="emailobject"

PARAMS="assetname=Variables.assetname&time=Variables.ti
me" VARNAME="body"/>

49
50 <!-- send mail -->
51 <sendmail TO="Variables.EmailAddress"

SUBJECT="Variables.subject" BODY="Variables.body"/>
52 </THEN>
53 <ELSE>
54 Email address: None

55 </ELSE>
56 </IF>
57
58 <inccounter NAME="COUNT" VALUE="1"/>
59 </loop>
60 </then>
61 </if>
62
63
64 </FTCS>

Deadlock Action Elements
Deadlock Action elements receive the following data when they are called:

• A WorkflowEngine object

• An ObjectTotal variable, which represents the total number of deadlocked assets

• An IWorkflowable object called Objectnnn, which represents the deadlocked
assets

• An IWorkflowStep object called Step, which represents the workflow step

• A StepTotal variable, which contains the number of steps chosen by individual
users

• A StepUser variable, which contains the ID of the user attempting the step

• An optional Group variable, which contains the ID of the workflow group to which
the assets belong (if you are using workflow groups)

• Any variables that your workflow administrator has created in the definition for this
Deadlock Action.

The following Deadlock Action element sends an e-mail to the users who approve the
asset.

The text of the subject and body of this e-mail are set in the Workflow E-mail forms in the
Content Server administrative user interface. The body text expects the following
variables:

• Variables.assetname, which contains the name of the current asset
Content Server 7.0 Developer’s Guide

Chapter 32. Customizing Workflow

Workflow Actions
691
• Variables.header and Variables.message, which contain the text of the e-
mail’s body

1 <?xml version="1.0" ?>
2 <!DOCTYPE FTCS SYSTEM "futuretense_cs.dtd">
3 <FTCS Version="1.1">
4 <!-- OpenMarket/Xcelerate/Actions/Workflow/DeadlockActions/

SendEmailToAssignees
5 -
6 - INPUT
7 -
8 - OUTPUT
9 -
10 -->
11
12 <!-- This is an action element called by step actions

SendAssignmentEmail and SendRejectionEmail-->
13
14 <csvar NAME="This deadlock action element will send

emails"/>

Line 16 uses the EMAILMANAGER.LOAD tag to load an e-mail object.

15 <!-- load email object -->
16 <EMAILMANAGER.LOAD NAME="Variables.emailname"

OBJVARNAME="emailobject"/>

Lines 17 through 25 create a NumOfSteps variable, which contains either the total
number of assets being delegated or zero.

17 <!-- get total steps -->
18 <if COND="IsVariable.StepTotal=true">
19 <then>
20 <setvar NAME="NumOfSteps" VALUE="Variables.StepTotal"/>
21 </then>
22 <else>
23 <setvar NAME="NumOfSteps" VALUE="0"/>
24 </else>
25 </if>
26
27 <removevar NAME="Step"/>
28 <setvar NAME="Header" VALUE="The following users have

chosen the corresponding steps that has resulted in a
deadlock. Please take appropriate actions to resolve
deadlock:"/>

29 <setvar NAME="Message" VALUE="Variables.empty"/>

Lines 30 through 75 loop through the list of users who have put the asset in deadlock,
creating an e-mail for each one. Line 39 uses the USERMANAGER.GETUSER tag to load the
user information of the user specified in the ID. Lines 40 and 41 use CCUSER tags to get
the user’s name and e-mail address.

30 <!-- For each assignment object, get asignee -->
31 <setcounter NAME="COUNT" VALUE="0"/>
32 <if COND="Variables.NumOfSteps!=0">
33 <then>
Content Server 7.0 Developer’s Guide

Chapter 32. Customizing Workflow

Workflow Actions
692
34 <loop FROM="0" COUNT="Variables.NumOfSteps">
35 <!-- get assigner -->
36
37 <setvar NAME="userid"

VALUE="Variables.StepUserCounters.COUNT"/>
38 <!-- get email address --->
39 <USERMANAGER.GETUSER USER="Variables.userid"

OBJVARNAME="userobj"/>
40 <CCUSER.GETNAME NAME="userobj" VARNAME="user_name"/>
41 <CCUSER.GETEMAIL NAME="userobj" VARNAME="EmailAddress"/>

Lines 42 through 47 use the WORKFLOWSTEP and WORKFLOWSTATE tags to retrieve the
asset’s starting and ending steps and states.

42 <WORKFLOWSTEP.GETNAME NAME="StepCounters.COUNT"
VARNAME="stepname"/>

43 <WORKFLOWSTEP.GETSTARTSTATE NAME="StepCounters.COUNT"
VARNAME="startstate"/>

44 <WORKFLOWSTEP.GETENDSTATE NAME="StepCounters.COUNT"
VARNAME="endstate"/>

45
46 <WORKFLOWSTATE.GETSTATENAME NAME="Variables.startstate"

VARNAME="startstatename"/>
47 <WORKFLOWSTATE.GETSTATENAME NAME="Variables.endstate"

VARNAME="endstatename"/>
48
49
50 <setvar NAME="Message" VALUE="Variables.Message

Variables.user_name: Variables.stepname - "/>
51 <!--
52 user:<csvar NAME="Variables.user_name"/>

53 step name:<csvar NAME="Variables.stepname"/>

54 startstate name:<csvar NAME="Variables.startstate"/>

55 endstate name:<csvar NAME="Variables.endstate"/>

56 -->
57
58 <!-- get asset -->
59 <WORKFLOWABLEOBJECT.GETDISPLAYABLENAME

NAME="Variables.ObjectCounters.COUNT" VARNAME="assetname"/>

In lines 62 and 65, the variables in the e-mail object, subject and body, are replaced
by their values.

60 <!-- translate subject -->
61 <SETVAR NAME="params"

VALUE="username=Variables.user_name&header=Variables.He
ader&message=Variables.Message&assetname=Variables.
assetname"/>

62 <EMAIL.TRANSLATESUBJECT NAME="emailobject"
PARAMS="Variables.params" VARNAME="subject"/>

63
64 <!-- translate body -->
65 <EMAIL.TRANSLATEBODY NAME="emailobject"

PARAMS="Variables.params" VARNAME="body"/>
66
Content Server 7.0 Developer’s Guide

Chapter 32. Customizing Workflow

Workflow Actions
693
67 <!-- send mail -->
68 <sendmail TO="Variables.EmailAddress"

SUBJECT="Variables.subject" BODY="Variables.body"/>
69
70 <inccounter NAME="COUNT" VALUE="1"/>
71 </loop>
72 </then>
73 </if>
74 email message:<csvar NAME="Variables.Header

Variables.Message"/>

75
76
77 </FTCS>

Group Deadlock Action Elements
Group Deadlock action elements receive the following data when they are called:

• A WorkflowEngine object called WorkflowEngine.

• An ObjectTotal variable, which represents the total number of deadlocked assets.

• An IWorkflowable object called Objectnnn, which represents the deadlocked
asset. nnn is a number greater than zero.

• An IWorkflowStep object called Step, which represents the workflow step.

• A StepTotal variable, which contains the number of steps chosen by individual
users

• A StepUser variable, which contains the ID of the user attempting the step.

• A Group variable, which contains the ID of the workflow group that is deadlocked.

• Any variables that your workflow administrator has created in the definition for this
Group Deadlock Action.

The following Group Deadlock Action element sends an e-mail to the users who approve
the asset.

The text of the subject and body of this e-mail are set in the Workflow E-mail forms in the
Content Server administrative user interface. The body text expects the following
variables:

• Variables.assetname, which contains the name of the current asset

• Variables.header and Variables.message, which contain the text of the
e-mail’s body

1 <?xml version="1.0" ?>
2 <!DOCTYPE FTCS SYSTEM "futuretense_cs.dtd">
3 <FTCS Version="1.1">
4 <!-- OpenMarket/Xcelerate/Actions/Workflow/GroupActions/

SendEmailToAssignees
5 -
6 - INPUT
7 -
8 - OUTPUT
9 -
10 -->
Content Server 7.0 Developer’s Guide

Chapter 32. Customizing Workflow

Workflow Actions
694
11
12 <!-- user code goes here -->
13
14 <csvar NAME="This group deadlock action element will send

emails"/>

15 <!-- load email object -->
16 <EMAILMANAGER.LOAD NAME="Variables.emailname"

OBJVARNAME="emailobject"/>
17 <!-- get group -->
18 <WORKFLOWENGINE.GETGROUPID ID="Variables.Group"

OBJVARNAME="grpobj"/>
19 <WORKFLOWGROUP.GETNAME NAME="grpobj" VARNAME="GroupName"/>
20
21 <!-- get total steps -->
22 <if COND="IsVariable.StepTotal=true">
23 <then>
24 <setvar NAME="NumOfSteps" VALUE="Variables.StepTotal"/>
25 </then>
26 <else>
27 <setvar NAME="NumOfSteps" VALUE="0"/>
28 </else>
29 </if>
30
31 <removevar NAME="Step"/>
32 <setvar NAME="Header" VALUE="The following users have

chosen the corresponding steps that has resulted in a
deadlock for the group: Variables.GroupName. Please take
appropriate actions to resolve deadlock:"/>

33 <setvar NAME="Message" VALUE="Variables.empty"/>
34 <!-- For each assignment object, get asignee -->
35 <setcounter NAME="COUNT" VALUE="0"/>
36 <if COND="Variables.NumOfSteps!=0">
37 <then>
38 <loop FROM="0" COUNT="Variables.NumOfSteps">
39 <!-- get assigner -->
40 <setvar NAME="userid"

VALUE="Variables.StepUserCounters.COUNT"/>
41 <!-- get email address --->
42 <USERMANAGER.GETUSER USER="Variables.userid"

OBJVARNAME="userobj"/>
43 <CCUSER.GETNAME NAME="userobj" VARNAME="user_name"/>
44 <CCUSER.GETEMAIL NAME="userobj" VARNAME="EmailAddress"/>
45
46 <WORKFLOWSTEP.GETNAME NAME="StepCounters.COUNT"

VARNAME="stepname"/>
47 <WORKFLOWSTEP.GETSTARTSTATE NAME="StepCounters.COUNT"

VARNAME="startstate"/>
48 <WORKFLOWSTEP.GETENDSTATE NAME="StepCounters.COUNT"

VARNAME="endstate"/>
49
50 <WORKFLOWSTATE.GETSTATENAME NAME="Variables.startstate"

VARNAME="startstatename"/>
Content Server 7.0 Developer’s Guide

Chapter 32. Customizing Workflow

Workflow Actions
695
51 <WORKFLOWSTATE.GETSTATENAME NAME="Variables.endstate"
VARNAME="endstatename"/>

52
53 <!-- get asset -->
54 <WORKFLOWABLEOBJECT.GETDISPLAYABLENAME

NAME="Variables.ObjectCounters.COUNT" VARNAME="assetname"/>
55
56 <!-- set message -->
57 <setvar NAME="Message" VALUE="Variables.Message Asset:

Variables.assetname, User: Variables.user_name, Step:
Variables.stepname -- "/>

58
59 <!-- translate subject -->
60 <SETVAR NAME="params"

VALUE="username=Variables.user_name&header=Variables.He
ader&message=Variables.Message&assetname=Variables.
assetname"/>

61 <EMAIL.TRANSLATESUBJECT NAME="emailobject"
PARAMS="Variables.params" VARNAME="subject"/>

62
63 <!-- translate body -->
64 <EMAIL.TRANSLATEBODY NAME="emailobject"

PARAMS="Variables.params" VARNAME="body"/>
65
66 <!-- send mail -->
67 <sendmail TO="Variables.EmailAddress"

SUBJECT="Variables.subject" BODY="Variables.body"/>
68
69 <inccounter NAME="COUNT" VALUE="1"/>
70 </loop>
71 </then>
72 </if>
73 email message:<csvar NAME="Variables.Header

Variables.Message"/>

74
75 </FTCS>

Delegation Action Elements
Delegation action elements receive the following data when they are called:

• A WorkflowEngine object called WorkflowEngine.

• A CurrentUser variable, which contains the ID of the user who is delegating the
asset.

• An optional Group variable, which contains the ID of the workflow group. All objects
to be delegated must be in the same workflow group.

• An ObjectTotal variable, which represents the total number of assets being
delegated.

• An IWorkflowable object called Objectnnn, which represents the assets being
delegated. nnn represents a number greater than zero.

Delegation action elements should be coded like other Workflow Action elements.
Content Server 7.0 Developer’s Guide

Chapter 32. Customizing Workflow

Workflow Actions
696
Content Server 7.0 Developer’s Guide

697
Par t 6

Web Services
This part explains how to integrate Content Server with any client application that has a
SOAP interface.

It contains the following chapters:

• Chapter 33, “Overview of Web Services”

• Chapter 34, “Creating and Consuming Web Services”
Content Server 7.0 Developer’s Guide

698
Content Server 7.0 Developer’s Guide

699
Chapter 33

Overview of Web Services
This chapter introduces web services and explains how they work with Content Server. It
describes what is supplied.

This chapter contains the following sections:

• What Are Web Services?

• SOAP and Web Services

• Supported SOAP Version

• Supported WSDL Version

• Related Programming Technologies

As a standard part of the CS-Direct product, web services require no additional installation
or configuration.
Content Server 7.0 Developer’s Guide

Chapter 33. Overview of Web Services

What Are Web Services?
700
What Are Web Services?
Content Server enables you to create, deploy, and publish your own web services, as well
as consume web services from other applications. Web services, which are a collection of
operations that are accessible via standard XML messaging over the Internet, enable data
exchange independent of the programming language, operating system, or hardware used
by a given target system. With regard to Content Server, web services provide a standard
means to expose content and functionality for consumption by remote applications,
including ERP (enterprise resource planning), CRM (customer relationship management),
and commerce systems.

SOAP and Web Services
Integration between Content Server and other applications is accomplished by
transforming data using HTTP and XML data formats. The key XML format for web
services is SOAP (Simple Object Access Protocol). SOAP is a W3C specification that
extends HTTP to enable distributed applications to make remote-procedure calls (RPCs)
over the Internet. As a language, SOAP defines the XML elements used to describe the
parameters, return values, and so on required for RPC-style interactions. SOAP messages
are transmitted point-to-point and handled in request-and-response fashion. Content
Server, which supports SOAP, can exchange data with any application that has a SOAP
interface. When processing SOAP requests, Content Server leverages its native support
for XML and its efficient page-evaluation and delivery mechanisms.

Supported SOAP Version
Content Server supports SOAP 1.1. You will need to know the capabilities and limitations
of the SOAP protocol to write web services for Content Server. SOAP standard syntax is
described in detail at the W3C web site:

http://www.w3.org

Supported WSDL Version
WSDL (web services description language) is an XML format that describes distributed
services on the Internet. A WSDL file describes the location of the service and the data to
be passed in messages for particular operations. With regard to Content Server, these
messages contain procedure-oriented information.

Content Server 5.5.1 supports WSDL 1.1. You will need to understand the web services
description language to write web services for Content Server and use the predefined
WSDL files shipped with Content Server. The SOAP standard syntax is described in detail
at the following W3C web site:

http://www.w3.org/TR/wsdl.html

For complete information about the WSDL files supplied with Content Server, refer to the
Content Server Web Services Reference.
Content Server 7.0 Developer’s Guide

http://www.w3.org/2000/TR/SOAP/
http://www.w3.org/2000/xp/Group/

Chapter 33. Overview of Web Services

Related Programming Technologies
701
Related Programming Technologies
To write web services for Content Server, you should have a basic understanding of some
or all of the following related technologies:

• XML

• SOAP

• WSDL

• JSP

• Java

• J2EE (Java 2)

• .Net
Content Server 7.0 Developer’s Guide

Chapter 33. Overview of Web Services

Related Programming Technologies
702
Content Server 7.0 Developer’s Guide

703
Chapter 34

Creating and Consuming Web Services
This chapter explains how to integrate Content Server with remote applications over the
Internet using web services protocols. In the context of the Content Server development
framework, it teaches you how to create and consume basic web services.

This chapter contains the following sections:

• Using Predefined Web Services

• Creating Custom Web Services

• Consuming Web Services
Content Server 7.0 Developer’s Guide

Chapter 34. Creating and Consuming Web Services

Using Predefined Web Services
704
Using Predefined Web Services
Content Server includes a complete array of asset-delivery functions implemented as web
services. These services can be accessed by any technology that can produce a web-
services-enabled client. Supplied web-service capabilities are comparable to existing
Content Server APIs (XML, JSP, Java, and COM).

Each supplied service is represented by a predefined WSDL (web services description
language) file that contains descriptions of multiple web-services operations. Individual
WSDL files define the interface and methods for web-services operations that correspond
to Content Server functions. Related operations are grouped and collectively described
according to function.

The WSDL file is used to generate the code required to interact with Content Server from
a client application. You can generate client code automatically using various third-party
applications that read WSDL files, or manually by examining the WSDL description and
writing the client code from scratch. The resulting client stub constitutes a suitable
interface for interaction with Content Server. When executed, the code creates a SOAP
request based on the WSDL operation.

Most times you will have control over the client interaction with Content Server. For
access by potentially unknown client applications, however, the supplied WSDL files can
also be posted to a URL and registered via UDDI (universal description, discovery,
integration) for remote access.

Accessible Information
Any web services client that supports SOAP and follows the predefined WSDL
specifications can access the following information from the Content Server database:

• Site map of a content management site

• Blob data, such as a PDF file

• List of all the valid asset types and asset subtypes at a content management site

• List of assets that match specified search criteria

• Metadata associated with a particular asset

WSDL File Location
Predefined WSDL files for Content Server are automatically installed with the CS-Direct
application in the following location:

http://install_dir/futuretense_cs/Xcelerate/wsdl/*.wsdl

Note

For complete information about WSDL files, supported operations, and
required inputs, refer to the Content Server Web Services Reference
manual.
Content Server 7.0 Developer’s Guide

Chapter 34. Creating and Consuming Web Services

Using Predefined Web Services
705
Process Flow
The following general steps describe how a request from a web services client program is
processed using a supplied WSDL file:

1. The supplied WSDL file includes a description of the format for the request (input
data expected by Content Server) and the format for the return data. The WSDL file
maps standard data types for applications written in Java, Visual Basic, or other
programming languages to XML schema data types.

2. The client program uses instructions in the WSDL to transform data from an input
source (for example, a structured file) to an XML schema that is consistent with what
the Content Server web service interface expects.

3. The client generates a SOAP envelope that includes the required data and transmits it
to the content management site.

4. Content Server receives the SOAP message.

5. An XML parser and transformation utility map the data in the SOAP message to the
format required by Content Server.

6. Content Server invokes the appropriate CS-Direct seed classes.

7. Seeds invoke the specified Content Server action.

8. Content Server returns requested data (name/value pairs) in the output format defined
by the WSDL file to the client application.

9. The SOAP processor for the client application maps the XML schema data types to
native data types for the specific programming language used.

Consider Your Data
Data for the predefined WSDL operations is passed using RPC-style interactions (versus
exchanging entire XML documents) to your program. Data types for all possible inputs for
the predefined web services are described in the Content Server Web Services Reference
manual. These are mostly strings, but Content Server also includes classes that handle
native objects with complex data types; for example, SearchStates and ILists.

Generating the Client Interface
Use the WSDL files to generate an interface for your client application. A variety of tools
that generate client code from WSDL files are available. These tools support output for
different programming languages. Choose a tool that produces code in the target language
for your client application, and run it on the WSDL file that describes the operations you
need. The resulting client stub makes all Content Server operations available to your client
program.

Writing Client Calls
The code generated from the WSDL file provides an interface to Content Server functions.
Once available, you can call the functions from your application, as needed. These
functions, including Java example code, are described in the Content Server Web Services
Reference manual.
Content Server 7.0 Developer’s Guide

Chapter 34. Creating and Consuming Web Services

Creating Custom Web Services
706
Creating Custom Web Services
With Content Server, you can create web services that map data from any Content Server
functions that you want to expose. Because of its support for XML, Java, and JSP, the
existing Content Server development environment provides a familiar platform for
developing web services. A supplied tag set enables you to build a SOAP response and
stream SOAP encapsulated data to and from applications. As with the prepackaged web
services, the Content Server delivery capability and page-evaluation pipeline are used to
process SOAP requests. For web services, the client is a program, not a browser.

To create a custom web service, follow these general steps:

1. Consider Your Data

2. Creating a Content Server Page

3. Writing a Content Server Element

4. Creating a WSDL File

Process Flow
The following general steps describe how a request from a web services client program is
processed:

1. The client program wraps whatever inputs are required in SOAP and passes them to
Content Server.

2. The client uses instructions in the WSDL file to transform data from an input source
(for example, a structured file) to an XML schema that is consistent with what the
Content Server web service interface expects.

3. The client generates a SOAP envelope that includes the required data and transmits it
to the content management site.

4. Content Server receives the SOAP message.

5. An XML parser and transformation utility map the data in the SOAP message to the
format required by Content Server.

6. Content Server invokes the appropriate CS-Direct seed classes.

7. Seeds invoke the specified Content Server action.

8. Content Server returns requested data (name/value pairs) in the output format defined
by the WSDL file to the client application.

9. SOAP processor for the client application maps the XML schema data types to native
data types for the specific programming language used.

Consider Your Data
Data is passed using RPC-style interactions (versus exchanging entire XML documents)
to your program. Consider your data and verify that you will be dealing with simple XSI
data types. Content Server supports all W3C XSI primitive data types without
modification.
Content Server 7.0 Developer’s Guide

Chapter 34. Creating and Consuming Web Services

Creating Custom Web Services
707
Creating a Content Server Page
Each web service requires page entry in the SiteCatalog table. The page entry to the
SiteCatalog is a name that points to the element that calls the Content Server function
described by your web service. The SiteCatalog stores all valid entries for pages at your
site, including those that invoke web services.

The page is invoked by a request from the client. In turn, the response from Content Server
is encapsulated in SOAP and returned to the client. Remember that for web services the
client is a program (instead of a browser), and the response is XML (instead of HTML).

To create a Content Server page for web services

1. Enter the location of the element for your client function in the SiteCatalog table.

2. Start Content Server Explorer and log in to Content Server. For instructions, refer to
the online help or the instructions in this guide.

3. In the left pane, open the SiteCatalog table.

4. Select the folder for your site.

5. In the pagename field, create an entry for the last part of the page name for your web
service in the SiteCatalog table.

6. In the root element field, create a root entry for your web service. (Including the
SiteCatalog entry in the SiteCatalog root avoids a table lookup and ensures that the
element name of the first child element is mapped to the specified pagename.)

7. In either of the resargs fields, add the following optional arguments, if appropriate:

- cs.session=false bypasses application server session management for the life
of the SOAP request without using existing session objects or creating new
session objects on behalf of the current request. This improves performance by
reducing the application server load for native requests and requests from clients
that do not require session persistence. Although supported on any page, the
cs.session=false resarg is mainly intended for use with SOAP services.

- cs.contenttype=text/xml prepares the root element for processing.
Specifically, it causes the XML engine to properly respect namespace on tags and
prevents default HTML compression from occurring. This is required only if you
expect the request to come through a browser. Unless the web services request is
always received as a SOAP request, you must include this resarg in each
SiteCatalog entry to override the HTML compression. Provided that your input
XML is well formed, you can be sure that the content output will be proper XML.

8. In the csstatus field, enter Live, or the appropriate status at this time.

9. Choose File > Save All, or click the Save All toolbar button to save your work.

Note

Support for complex web-services data types is possible in Content Server
but requires that you create your own Java classes and deploy them on the
application server. If you plan to create your own data types, FatWire
recommends that you consult with Content Server technical support
before doing so.
Content Server 7.0 Developer’s Guide

Chapter 34. Creating and Consuming Web Services

Creating Custom Web Services
708
Writing a Content Server Element
The Content Server element contains the code for the function you want to expose. The
element handles data and formats the SOAP response. To format the SOAP response,
include the SOAP XML tags supplied with Content Server in your code. Content Server
automatically generates the XML for the SOAP envelope.

Content Server elements written for web services in XML and JSP must not contain extra
whitespace or comments because, unlike HTML, XML and its SOAP implementation
have stricter parsing requirements. Because XML and JSP pages are handled the same
way as HTML pages and are not filtered by Content Server, extra whitespace or comments
can corrupt the SOAP message. Keep in mind that although comments are removed when
the XMLdebug property is turned off, extra whitespace can still corrupt the XML stream.
Comments (XML or JSP) should appear only after the soap.message tag.

To write an element for a web service

1. Start Content Server Explorer and log in to Content Server (if you have not already
done so). For instructions, refer to the online help or this guide.

2. In the left pane, select and highlight the ElementCatalog table.

3. Create a new folder in the ElementCatalog table: choose File > New Folder.

4. Select and highlight the new folder, and right-click anywhere in the right pane and
select New from the pop-up menu.

A new row appears in the table.

5. In the elementname field, enter an appropriate name for your web service as the name
of the element.

6. In the description field, enter a short description of the element.

7. Click in the url field, and click the button that appears.

The New File dialog box appears.

8. In the Type/Ext field, select XML or JSP as the file type from the drop-down list.

9. Click OK. Content Server Explorer opens its default editor. Content Server creates a
file containing the skeleton code required of all XML or JSP elements. Enter your
element code, including the required Content Server SOAP tags. For example, you
can use the following code for XML:

<?xml version="1.0" ?><!DOCTYPE FTCS SYSTEM
"futuretense_cs.dtd">
<FTCS Version="1.2">
<!-- WebServices/helloworld
-
- INPUT
-
- OUTPUT--->
<soap.message ns="mynamespace">
 <soap.body tagname="HelloWorldOut">
 <echoStringOut xsi:type="xsd:string">
 <csvar NAME="Variables.echoString"/>
 </echoStringOut>
 </soap.body>
Content Server 7.0 Developer’s Guide

Chapter 34. Creating and Consuming Web Services

Creating Custom Web Services
709
</soap.message>

</FTCS>

10. Choose File > Save All to save your work.

Creating a WSDL File
WSDL (web services description language) files describe the web service so that a basic
web services client can be automatically generated based on information it contains. If you
are not using the predefined services provided with Content Server, you can optionally
create your own WSDL file to describe your web service.

A WSDL file includes the SOAP address, SOAP action, a description of the format for the
request (input data expected by Content Server), and the format for the return data. The
WSDL file maps standard data types for applications written in Java, Visual Basic, or
other programming languages to XML schema data types. Use any of the predefined
WSDL files for Content Server functions as a template to get started.

Writing WSDL File Elements
A WSDL file has four sections:

• Types - specifies the data format and schema definition for operations. The type
correlates with return data.

• Message - names inputs and outputs. This describes what the Content Server page
must send back.

• Operation - describes inputs and outputs.

• Binding - specifies the SOAP action and operations.

• Service - describes associated port and binding with a URL.

In these sections, specify the following key XML elements:

• target namespace

• service name

• port name

• operation name

• input parameters (corresponding to simple data types) for the operation. Simple XSI
data types (string, integer, float, and so on) return a single value.

WSDL File Example
Each WSDL file is a collection of interrelated operations, logically grouped together
according to their Content Server function. Completed web services return XML in the
form of a SOAP encapsulated response. You will need to understand web services
description language to write web services for Content Server. Content Server 5.5.1
supports WSDL 1.1.

Note

Choosing File > Save instead of File > Save All saves your file, but does not
make it available to the application server.
Content Server 7.0 Developer’s Guide

Chapter 34. Creating and Consuming Web Services

Creating Custom Web Services
710
<?xml version="1.0" encoding="utf-8"?>
<definitions xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:s="http:/
/www.w3.org/2001/XMLSchema" xmlns:s0="http://FatWire.com/someuri/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
targetNamespace="http://FatWire.com/someuri/" xmlns="http://
schemas.xmlsoap.org/wsdl/">
 <types>
 </types>
 <message name="HelloWorldIn">
 <part name="echoString" type="s:string"/>
 </message>
 <message name="HelloWorldOut">
 <part name="echoStringOut" type="s:string"/>
 </message>
 <portType name="HelloWorldPortType">
 <operation name="helloworld">
 <documentation>FOR LATER</documentation>
 <input message="s0:HelloWorldIn"/>
 <output message="s0:HelloWorldOut"/>
 </operation>
 </portType>
 <binding name="HelloWorldBinding" type="s0:HelloWorldPortType">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/
 http" style="rpc"/>
 <operation name="helloworld">
 <soap:operation soapAction="WebServices/" />
 <input>
 <soap:body use="encoded"/>
 </input>
 <output>
 <soap:body use="encoded"/>
 </output>
 </operation>
 </binding>
 <service name="HelloWorld">
 <port name="HelloWorldPort" binding="s0:HelloWorldBinding">
 <soap:address location="http://localhost:8080/servlet/
 ContentServer"/>
 </port>
 </service>
</definitions>
Content Server 7.0 Developer’s Guide

Chapter 34. Creating and Consuming Web Services

Consuming Web Services
711
Consuming Web Services
Content Server can interact with any remote application that offers a web service and that
returns a data type supported by the XML Schema.

Using the information contained in the WSDL file for a given web service, you use a
supplied Content Server invocation tag to specify the location of the web service, the
operation to invoke, and the name of the object in which the return data is to be stored. An
associated parameter tag specifies the input parameters for the particular operation.

Once the data is transmitted and stored in Content Server, it becomes available for display
or further processing. Content Server pages or APIs handle the return data according to
your custom business logic. By configuring the web service as a tag, Content Server
handles data as if it were an ordinary content tag for a native Content Server function.

If you are not using a tool that automatically creates the client, you need to read the WSDL
file and write your code by hand. Note that for automated client generation, the output
language of the client depends on the tool you select.

Locating the Web Service
The web service description should be in WSDL format. If you are not given the location
of the WSDL, you may need to search for the web service via UDDI in a web services
directory.

Gathering Information from the Remote WSDL File
Enter the URL of the WSDL file in a browser and view its contents. The WSDL file
defines a service and port for each of one or more operations. Depending on the WSDL,
you may see multiple operations that correspond to multiple servers, or multiple
operations that correspond to a single server.

In the WSDL, look for the following XML elements and record their values:

• target namespace

• service name

• port name

• operation name

• input parameters (corresponding to simple data types) for the operation. Simple XSI
data types (string, integer, float, and so on) return a single value.

Providing Information to Content Server
Information about the remote web service that is contained in the WSDL file is transmitted
to Content via SOAP tags, which you configure.

To create a Content Server page and element that includes SOAP tags

1. Create a Content Server page and element.
Content Server 7.0 Developer’s Guide

Chapter 34. Creating and Consuming Web Services

Consuming Web Services
712
2. In the element, include the following SOAP tags:

a. For the webservices.invoke tag, set parameters for the target namespace,
service name, and port name for the web service. Also set the object parameter,
which specifies the name of the object that will contain the return data.

b. For the webservices.parameter tag, set parameters that represent inputs for
the web service operation.

SOAP Tag Example
The following element includes the Content Server SOAP tags for consuming web
services:

<webservices:invoke
 wsdl="http://soapinterop.java.sun.com/round2/base?WSDL"
 target="http://soapinterop.org/"
 service="Round2Base"
 port="RIBaseIFPort"
 operation="echoString"
 object="echostringjsp">
 <webservices:parameter type="string" value="hello world jsp"/>
</webservices:invoke>
<%=ics.GetObj("echostringjsp")%>
Content Server 7.0 Developer’s Guide

713
Par t 7

Engage
This part describes how to use Engage to design an online site that gathers information
about your site visitors and customers and to then use that information to personalize the
information that is displayed for each visitor.

It contains the following chapters:

• Chapter 35, “Creating Visitor Data Assets”

• Chapter 36, “Recommendation Assets”

• Chapter 37, “Coding Engage Pages”
Content Server 7.0 Developer’s Guide

714
Content Server 7.0 Developer’s Guide

715
Chapter 35

Creating Visitor Data Assets
Engage lets you design online sites that gather information about your site visitors and
customers, and then to use that information to personalize the product placements and
promotional offerings that are displayed for each visitor.

Customizing your online sites begins with visitor data. The definitions of visitor data types
are treated as assets in the Content Server database. There are three kinds of visitor data
assets: visitor attributes, history attributes, and history types.

This chapter describes the visitor data assets and presents procedures for creating them. It
contains the following sections:

• About Visitor Data Assets

• Creating Visitor Data Assets

• Verifying Your Visitor Data Assets

• Approving Visitor Data Assets
Content Server 7.0 Developer’s Guide

Chapter 35. Creating Visitor Data Assets

About Visitor Data Assets
716
About Visitor Data Assets
You create visitor data assets so that you can use them to group your site visitors into
segments. There are three kinds:

• Visitor attributes

• History attributes

• History types

When you create visitor data assets, you create entries in the visitor data tables in the
Content Server database and you reserve a place in the database to store information of
that kind for your site visitors.

Visitor Attributes
Visitor attributes hold types of information that specify one characteristic only (scalar
values). For example, you can create visitor attributes named “years of experience,” “job
description,” or “number of children.”

When the visitor changes the data, the new data overwrites the old data. Engage does not
assign a timestamp to the data that is stored as a visitor attribute and does not store
revisions. For example, if a visitor changes his entry for “job description” from “butcher”
to “baker,” the information that the visitor was once a butcher is overwritten. You cannot,
for example, create a segment based on bakers who used to be butchers.

 For historical data, you must use history types.

History Attributes and History Definitions
History attributes are individual information types that you group together to create a
vector of information that Engage treats as a single record. This vector of data is the
history definition. For example, a history definition called “purchases” can consist of the
history attributes “SKU,” “itemname,” “quantity,” and “price.”

Engage references data stored as a history definition as a whole or an aggregate. It assigns
a timestamp to each instance of the recorded definition and keeps each of those records.
This means that you can sum or count history definitions and you can determine the first
time or the last time a history definition was recorded for a visitor. Using the example in
the preceding paragraph, you can create a segment based on the amount of money a visitor
spends on specific items during a set period of time.

History definitions store historical data.

Segments
Segments are assets that divide visitors into groups based on common characteristics.
Segments are built by determining which visitor data assets to base them on and then
setting qualifying values for those criteria.

When you create visitor data assets, you create fields. These fields can be used in two
places:

• As criteria for segments. That is, as configuration options in the Engage Segment
Filtering forms (because you define segments with the visitor data assets). In other
words, the choices you make about the data types for the attributes determine their
Content Server 7.0 Developer’s Guide

Chapter 35. Creating Visitor Data Assets

About Visitor Data Assets
717
appearance and behavior in the Segment forms. When you create these assets, you are
customizing the Segment forms.

• On your public site pages. That is, as form fields or hidden fields on registration pages
and other pages.

Segments are the key to personalizing merchandising messages with Engage. When
visitors browse your site, the information they submit is used to qualify them for segment
membership. When the site displays a page with a recommendation or promotion,
Engage determines which segments a visitor belongs to and displays the product
recommendations or promotional messages that are designated for those segments.

For help with creating segments, see the Content Server User’s Guide.

Categories
Engage uses categories to group visitor attributes and history definitions into useful links
on the Segment forms. The visitor data assets are listed under categories that are displayed
across the top of the forms. For example:

Because visitor attributes and history definitions are such different types of assets, you
must use separate categories for them. You create categories when you enter text in the
Category field on a visitor attribute or history definition form. If the name you enter is not
in use yet, Engage creates a new category.

Developing Visitor Data Assets: Process Overview
There are five general steps for creating and using visitor data assets (fields):

1. A cross-functional design team including developers and marketers determines what
kind of data you want to gather about your site visitors.

2. You (the developers) create and define the necessary visitor attributes, history
attributes, and history definitions by using the forms in Engage.

3. The marketers use the Segment Filtering forms in Engage to categorize groups of
visitors based on these visitor attributes, history attributes, and history definitions.

4. You program the appropriate site pages with the Engage XML or JSP object methods
to collect and store the data, using either server-side validation or Javascript to
validate the input on the pages. For example, you can create an online registration
form for visitors to fill out by using JavaScript to validate the input and the Engage
XML or JSP tags to process and store that information in the Content Server database.

5. When visitors browse your site, the information they submit is used to qualify them
for segment membership. If your site is using promotions and recommendations based
on segments, the message displayed for the visitor is personalized based on the
segments that he or she qualifies for.
Content Server 7.0 Developer’s Guide

Chapter 35. Creating Visitor Data Assets

Creating Visitor Data Assets
718
Creating Visitor Data Assets
Before you begin creating visitor data assets, be sure that you have completed the
following tasks:

• Met with the marketing and design teams to determine the kinds of data that you want
to collect about visitors.

• Examined the Segment Filtering forms so that you understand the context in which the
visitor data assets that you create are used by the marketers. Additionally, note that the
visitor data assets are listed by their descriptions rather than by their names in the
Segment Filtering forms.

You can use the following data definitions for your visitor and history attributes:

• string – can hold up to 255 characters

• boolean – true and false are the only legal values

• short – valid range of values is 0 through 255

• integer – valid range of values is 0 through 65,535

• long – valid range of values is 0 through 65,535

• double – valid range of values is 0 through 4,294,967,295

• date – format is yyyy-mm-dd hh:mm:ss.s

• money – format is currency; valid range of values is unlimited

• binary – for visitor attributes only; used for binary data such as image files or cart
objects

Creating Visitor Attributes
Use the procedures in this section to create visitor attributes with the Engage forms.

Step 1: Name and Define the Visitor Attribute
1. If necessary, log in to the Content Server interface, and if given a choice, select a site.

2. Click New on the button bar.

3. Select ScalarVals from the list of asset types. (Visitor Attribute asset types must be
enabled for your site.)

The “Visitor Attribute” form appears.

Note

Binary visitor attributes can record binary data for individual visitors. Visitor
attributes of this type are not displayed in the Segment Filtering forms and
cannot be used to define a segment. Creating an attribute of type binary
reserves space in the Content Server database that you use to store objects by
using the XML object method VDM.SAVESCALAROBJECT or its JSP
equivalent vdm:savescalarobject to convert an object from the Content
Server name space into a binary form.
Content Server 7.0 Developer’s Guide

Chapter 35. Creating Visitor Data Assets

Creating Visitor Data Assets
719
4. In the Name field, enter a unique, descriptive name for the attribute (field). You can
enter up to 32 alphanumeric characters, including spaces. The first character must be a
letter.

5. In the Description field, enter a brief description of the attribute (field). You can enter
up to 128 alphanumeric characters but you should keep this description as short as you
can because attributes are listed by their descriptions rather than their names in the
Segment Filtering forms.

6. In the Category field enter the category for the attribute. The text that you enter in this
field determines where the attribute is listed in the Segment Filtering forms. You can
enter up to 32 alphanumeric characters.

Step 2: Configure the Data Type
1. In the Type field select a data type.

1. If you selected string, in the Length field enter the maximum number of characters
allowed for input in the attribute (field). You can enter a value up to 255.

2. In the Null allowed field, select true to allow null values or false to require input for
the attribute when it is used. For example, an attribute with a Boolean data type cannot
allow a null value.

3. If you selected false in the Null allowed field, in the Default Value field enter a
default value that is appropriate for the attribute’s data type. For example, if the data
type is “integer” the default value must be a number.

Note

If Visitor Attribute does not appear in the menu list, it means that your login/
password combination does not give you administrator rights. Contact the site
administrator and request that the admin user profile be assigned to your user
name.

Note

Categories for visitor attributes must be different from the categories for
history definitions.
Content Server 7.0 Developer’s Guide

Chapter 35. Creating Visitor Data Assets

Creating Visitor Data Assets
720
Step 3: Configure the Constraint Criteria
The constraint options that are available for validating input into the attribute depend on
the data type that you designated for the attribute.

Option 1: Configure the attribute to accept free-form text
In the Constraint type field select none from the drop-down list. For example, a visitor
attribute named “residence” and of type string might accept unconstrained text as input.

Option 2: Configure the attribute to accept input from a range of values
To configure the attribute to accept a specific range of values, the data type must be
integer, short, long, double, or money.

1. In the Constraint type field and select range.

The form displays range fields.

2. In the Lower range limit field and specify the smallest possible value that can be
accepted in the attribute when it is used as a field. This value cannot be a negative
number.

3. In the Upper range limit field, enter the largest possible value that can be accepted in
the attribute when it is used as a field. (For a short data type, you can enter a value up
to 255; for integer, up to 65,535; for double, up to 4,294,967,295; for money,
unlimited.)

For example, an attribute named “age” can be restricted to accept only values between
1 and 110.

Option 3: Configure the attribute to offer a set list of values in a
drop-down list
1. In the Constraint type field and select enumeration.

The form displays text boxes for adding options.

2. In the Add Enumerated Value field, enter the name of the first option. For example,
an attribute named “gender” can have “female” as an option.

3. Click Add.

The option is moved to the list.

Note

If you selected binary as the data type, you cannot specify a default value for
the attribute.
Content Server 7.0 Developer’s Guide

Chapter 35. Creating Visitor Data Assets

Creating Visitor Data Assets
721
4. Repeat these steps for each of the options that you want to make available for this
attribute (field).

Step 4: Save the Attribute
1. (Optional) If more than one site is set up and you have access to those sites, specify

whether you want to share this attribute with the other sites. In the Other
Publications list, select the name of a site and click the arrow button to move it to the
Selected list.

2. When you are finished configuring the visitor attribute, click Save.

Engage creates an entry for this attribute in the visitor data asset tables in the Content
Server database and reserves a place in the database to store information of that type
for your site visitors.

Engage then displays a summary of the attribute in the “Inspect” form.

You can now use this visitor attribute in a segment.

Creating History Attributes
The purpose of history attributes is different from the purpose of visitor attributes: you
create history attributes to be used by history definitions. You cannot use them in the
Segment Filtering forms until they are used to define a history definition.

Use the procedures in this section to create history attributes by using the Engage forms.

Step 1: Name and Define the History Attribute
1. If necessary, log in to the Content Server interface, and if given a choice, select a site.

2. Click New on the button bar and select History Attribute from the list.

Note

After a visitor attribute is used to define a segment, deleting the attribute
invalidates the segment. Be sure to correct your segments if you delete an
attribute.

Note

You cannot edit or delete a history attribute after it has been used to define a
history definition. You also cannot remove it from the history definition. If you
must change a history attribute after it has been used to define a history definition,
it is best to stop using the history definition. Create a new history attribute, create a
new history definition, and then start using the new history definition.
Content Server 7.0 Developer’s Guide

Chapter 35. Creating Visitor Data Assets

Creating Visitor Data Assets
722
The “History Attribute” form appears.

3. In the Name field, enter a unique, descriptive name for the attribute (field). You can
enter up to 32 alphanumeric characters, including spaces. The first character must be a
letter.

4. In the Description field, enter a brief description of the attribute (field). You can enter
up to 128 alphanumeric characters but you should keep this description as short as you
can because attributes are listed by their descriptions rather than their names in the
Segment Filtering forms.

Step 2: Specify that the Attribute Can Be a Filter Criterion
1. If you want this attribute to be a required field when the history definitions that use it

are used to define a segment, click in the Must be specified field and select true.

2. Click in the Filter by field and select true.

If you do not set Filter by to true, the marketers cannot use the attribute (field) as a
constraint for any history definition that it belongs to when they create segments.

If the data type for this attribute is numeric, then by default the attribute is included in
the list of attributes that can be selected for a Total constraint in a segment—whether
you set Filter by to true or to false. However, if you want to use a numeric attribute as
a constraint in any other way, you must set Filter by to true.

Step 3: Configure the Data Type
1. Click in the Type field and select a data type.

2. If you selected string, in the Length field enter the maximum number of characters
allowed for input in the attribute (field).

Note

If History Attribute does not appear in the menu list, it means that your
login/password combination does not give you administrator rights. Contact
the site administrator and request that the admin user profile be assigned to
your user name.
Content Server 7.0 Developer’s Guide

Chapter 35. Creating Visitor Data Assets

Creating Visitor Data Assets
723
3. Click in the Null allowed field and select true to allow null values or false to
require input for the attribute when it is used. For example, an attribute with a Boolean
data type cannot allow a null value.

4. If you selected false in the Null allowed field, in the Default Value field enter a
default value that is appropriate for the attribute’s data type. For example, if the data
type is “integer” the default value must be a number.

Step 4: Configure the Constraint Criteria
The constraint options available for validating input into the attribute depend on the data
type you designated for the attribute.

Option 1: Configure the attribute to accept free-form text
Click in the Constraint type field and select none from the drop-down list. For example, a
history attribute named “Street Name” and of type string might accept unconstrained text
as input.

Option 2: Configure the attribute to accept input from a range of values
To configure the attribute to accept a specific range of values, the data type must be
integer, short, long, double, or money.

1. In the Constraint type field, select range.

The form displays range fields.

2. In the Lower range limit field, specify the smallest possible value that can be
accepted in the attribute when it is used as a field. This value cannot be a negative
number.

3. In the Upper range limit field, enter the largest possible value that can be accepted in
the attribute when it is used as a field. (For a short data type, you can enter a value up
to 255; for integer, up to 65,535; for double, up to 4,294,967,295; for money,
unlimited.)

For example, an attribute named “Number of Items” can be restricted to accept only
values between 1 and 50.

Option 3: Configure the attribute to offer a drop-down list of specific values
1. In the Constraint type field, select enumeration.

The form displays text boxes for adding options.

2. In the Add Enumerated Value field, enter the name of the first option. For example,
an attribute named “Browser” can have “Netscape” as an option.

3. Click Add.
Content Server 7.0 Developer’s Guide

Chapter 35. Creating Visitor Data Assets

Creating Visitor Data Assets
724
4. Repeat these steps for each of the options that you want to make available for this
attribute (field).

Step 5: Save the History Attribute
When you are finished configuring the history attribute, click Save.

Engage creates an entry for this attribute in the visitor data asset tables in the Content
Server database and reserves a place in the database to store information of that type for
your site visitors.

You can now use this history attribute to define a history definition.

Creating History Definitions
History definitions are made up of history attributes. Therefore, there must be at least one
history attribute created before you can create a history definition.

Use this procedure to create history definitions by using the Engage forms:

1. If Engage is not open, log in.

2. Click New and select History definition from the list.

The “History definition” form appears:

Note

If History definition does not appear in the menu list, it means that your
login/password combination does not give you administrator rights. Contact
the site administrator and request that the admin user profile be assigned to
your user name.
Content Server 7.0 Developer’s Guide

Chapter 35. Creating Visitor Data Assets

Verifying Your Visitor Data Assets
725
3. In the Name field, enter a unique, descriptive name for the history definition (record).
You can enter up to 32 alphanumeric characters, including spaces. The first character
must be a letter.

4. In the Description field, enter a brief description of the history definition (record).
You can enter up to 128 alphanumeric characters but you should keep this description
as short as you can because history definitions are listed by their descriptions rather
than their names in the Segment Filtering forms.

5. In the Category field, enter a category for the history definition. The text that you
enter in this field determines how the history definition is sorted and displayed in the
Segment Filtering forms. You can enter up to 32 alphanumeric characters.

6. In the Fields area, select the history attributes that make up this history definition.
Select an attribute and then click the right arrow to move it to the list on the right. Use
control + click to select more than one attribute at the same time.

7. Click Save.

Engage creates an entry for this history definition (record) in the visitor data asset
tables in the Content Server database and reserves a place in the database to store
information of that type for your site visitors.

Engage then displays a summary of the history definition in the “Inspect” form.

You can now use this history definition in a segment.

Verifying Your Visitor Data Assets
To determine that you correctly set up your visitor attributes, history attributes, and history
definitions, examine the Segment Filtering forms and decide whether the visitor assets that
you created were configured correctly:

• Create segments that use each of the visitor attributes and history definitions that you
created.

• Determine that the constraint definitions are correct and that the input ranges are
accepting the correct range of input.

For help with creating segments, see the Content Server User’s Guide.

Note

Categories for history definitions must be different from the categories for
visitor attributes.

Note

After a history attribute is used to define a history definition, you can no
longer edit or delete that history attribute.
Content Server 7.0 Developer’s Guide

Chapter 35. Creating Visitor Data Assets

Approving Visitor Data Assets
726
Approving Visitor Data Assets
When your visitor data assets are ready, approve them so that they can be published to the
delivery system.

When a history definition is published, the history attributes that are used to define it are
also published. That means that you have to approve all the history attributes in a history
definition before the history definition can be published.

To approve any asset, select Approve for Publish from the drop-down list in the icon bar
in the asset’s “Edit” or “Inspect” form.

The procedure for approving any asset, including visitor attributes, history attributes, and
history definitions, is presented in the Content Server User’s Guide.
Content Server 7.0 Developer’s Guide

727
Chapter 36

Recommendation Assets
Recommendations are assets that determine which products or content should be featured
or “recommended” on a rendered page. These assets are a set of rules that might be based
on the segments the visitors qualify for, and, in some cases, relationships between the
product and/or content assets.

This chapter describes how recommendations work and how to create a custom element
that returns assets to be recommended. It includes the following sections:

• Overview

• Creating a Dynamic List Element
Content Server 7.0 Developer’s Guide

Chapter 36. Recommendation Assets

Overview
728
Overview
A recommendation asset collects, assesses, and sorts CS-Direct Advantage product and
content assets and then recommends the most appropriate flex assets, such as assets for the
current visitor. How does it determine which are the most appropriate assets? By
consulting the list of segments that the visitor belongs to.

The CS-Direct Advantage product and content flex assets are rated for their importance to
each segment. When a recommendation asset is called from a template, Engage
determines which segments the current visitor qualifies for, and then selects the assets that
are identified by the recommendation as having the highest rating for those segments.
These are the assets that are “recommended” to the visitor.

There are three kinds of recommendations:

• Static Lists – return a static list of recommended items

• Dynamic Lists – return a list of recommended items that is generated by a dynamic
list element that you create

• Related Items – return a list of recommended items based on relationships between
flex assets, such as products.

Engage uses a recommendation’s configuration options and the asset ratings to constrain
the list when the list contains more items than the template is programmed to display. For
related items recommendations, Engage also uses asset relationships to constrain the list.
For all recommendations, Engage eliminates assets that are rated 0 for the current visitor.

The recommendation asset is the only Engage asset that can be assigned a template. You
code your recommendation templates to render the items that the recommendation returns
in an appropriate way on the rendered page.

The template tells the recommendation how many assets to return, and the
recommendation asset determines which assets to select and return to the template based
on the way it is configured and on the segments that the current visitor belongs to.

There are several XML and JSP object methods (tags) that you can use to code templates
for recommendations. For information about coding templates when you are using
Engage, see Chapter 37, “Coding Engage Pages.” For information about all of the Engage
tags see the Content Server Tag Reference.

Development Process
Following are the basic steps for setting up recommendations:

1. Developers and designers meet with the marketing team to define all the
merchandising messages that you want to display on your site and to plan how to
represent those messages using recommendation and promotion assets.

2. The developers and designers use the XML or JSP object methods to design and code
templates for the recommendations. Chapter 37, “Coding Engage Pages,” explains
how to code these templates.

3. If the web site will use dynamic list recommendations, the developers code the
dynamic list elements that return the assets to recommend. The “Creating a Dynamic
List Element” section of this chapter explains how to code dynamic list elements.
Content Server 7.0 Developer’s Guide

Chapter 36. Recommendation Assets

Creating a Dynamic List Element
729
4. The marketing team uses the Engage recommendation wizard to create and then
configure the recommendations. They assign the appropriate template to the
appropriate recommendation.

5. Using the Engage product and content asset forms, the marketers rate how important
the assets are to each segment, and, therefore, to the individual visitors who become
members of those segments. (Typically, you assign ratings to flex parents, such as
product parents, instead of to individual assets.)

6. For each “related items” recommendation, the marketers configure the relationships
maintained by those recommendations by assigning related assets in the flex asset or
flex parent forms. (Typically, you configure relationships among flex parents, such as
product parents, instead of individual assets.)

Creating a Dynamic List Element
If your web site uses dynamic list recommendations, you must code the dynamic list
elements that return lists of recommended assets. A dynamic list element is an instance of
the CSElement asset type; this ensures that the dynamic list element will be transferred to
the delivery system when the web site that uses it is published.

A dynamic list element must return a list named AssetList. The set of assets that
becomes your AssetList must have the following traits:

• It must contain only assets of the types that you want to recommend.

• It must contain the IDs of the assets that you want to recommend.

• It should contain the assets’ confidence ratings, although this is optional.

The following sample code is an excerpt from a dynamic list element:

1 <SEARCHSTATE.CREATE NAME="ssprod"/>
2 <SEARCHSTATE.ADDSIMPLESTANDARDCONSTRAINT NAME="ssprod"

TYPENAME="PAttributes" ATTRIBUTE="BrowseCategory"
VALUE="Fund Type"/>

Line 2 adds a constraint to the ssprod searchstate, filtering it to find items with a browse
category of Fund Type.

3 <ASSETSET.SETSEARCHEDASSETS NAME="asprod"
CONSTRAINT="ssprod" ASSETTYPES="Products"/>

Line 3 adds another constraint to the ssprod searchstate, creating an assetset composed
entirely of Product assets.

4 <ASSETSET.GETASSETLIST NAME="asprod"
LISTVARNAME="AssetList"/>

Finally, line 4 turns the assetset created in line 3 into the AssetList list.

When you have completed coding your dynamic list elements, provide their names and
information about what sort of content they return to the users who will create the
recommendation assets.

For information about creating recommendation assets, see the Content Server User’s
Guide.
Content Server 7.0 Developer’s Guide

Chapter 36. Recommendation Assets

Creating a Dynamic List Element
730
Content Server 7.0 Developer’s Guide

731
Chapter 37

Coding Engage Pages
This chapter presents information about designing an online site that gathers visitor
information and personalizes promotional messages for each visitor based on that
information.

This chapter contains the following sections:

• Commerce Context and Visitor Context

• Identifying Visitors and Linking Sessions

• Collecting Visitor Data

• Templates and Recommendations

• Shopping Carts and Engage

• Debugging Site Pages

Note

This chapter refers to specific XML tags that you use to accomplish the tasks
being described. In all cases, there are also equivalent JSP tags. The XML and JSP
tags are all documented in the Content Server Tag Reference.
Content Server 7.0 Developer’s Guide

Chapter 37. Coding Engage Pages

Commerce Context and Visitor Context
732
Commerce Context and Visitor Context
During a visitor’s session at an Engage site, a visitor context is created for that visitor. Five
types of session objects are placed in the visitor context:

• Current shopping cart

• List of segments that the visitor belongs to

• List of promotions that the visitor qualifies for

• Time object that is used for calculating time-based rules for segments and promotions

• Utility object that gives you, the developer, access to product attributes

The commerce context encompasses the visitor context and gives you access to it.

There are two sets of XML and JSP object methods that serve as your interface to these
contexts:

• Commerce context methods, which you use to place objects in the visitor context.

• Visitor Data Manager methods, which you use to gather, store, and retrieve visitor data
and to associate a visitor’s data with the correct visitor.

Identifying Visitors and Linking Sessions
Engage creates a unique visitor ID for each visitor for each session. It stores these IDs in
the VMVISITOR table in the Content Server database. The data gathered for a visitor
during that session is identified by that visitor ID. To link the data gathered from one
session to the data from another, your site pages must assign aliases that link those visitor
IDs.

You use the following Visitor Data Manager object method to create an alias:

<VDM.SETALIAS KEY="keyvalue" VALUE="aliasvalue"/>

When you use this tag, Engage associates the visitor session ID with the alias, and writes
them both to the VMVISITORALIAS table.

The values in this table link the data that is gathered in separate sessions to the same
visitor because the alias provides a link to the visitor IDs that are recorded for that visitor.
In the illustration above, the data recorded in the session associated with the visitor ID
Content Server 7.0 Developer’s Guide

Chapter 37. Coding Engage Pages

Collecting Visitor Data
733
973717492772 is linked to the data associated with the visitor ID 973717564355 because
they have aliases with the same key/value pair.

All visitor information that is associated with sessions that are linked through common
aliases — that is, aliases with the same key/value pairs — can be accessed during the
current session. It is considered current visitor information.

You can create aliases with cookies, with login IDs, or with any other unique identifier
that your site uses to recognize visitors.

The VMVISITORALIAS table grows quickly. For information about managing it and the
other visitor data tables, see the Content Server Administrator’s Guide.

Collecting Visitor Data
To collect visitor data, you must program your online pages to gather it, validate it, and
then write it to the Content Server database.

There are three Visitor Data Manager object methods that write this information to the
database:

• <VDM.SETSCALAR ATTRIBUTE="attribute" VALUE="value"/> records visitor
attributes.

• <VDM.RECORDHISTORY ATTRIBUTE="attribute" LIST="valuelist"/>
records history definitions.

• <VDM.SAVESCALAROBJECT ATTRIBUTE="attribute"
OBJECT="objectname"/> records visitor attributes of type binary. The demo site
delivered with Engage uses this method to store shopping carts across sessions and to
store saved searches for visitors.

These are the tables that store the visitor data:

Note

Because these tags write information to the database, they can be a factor in the
performance of your delivery system. Be sure to use them efficiently,

XML or JSP Object
Method

Database Table That It Writes To

VDM.SETSCALAR

vdm:setscalar

VMVISITORSCALARVALUE

VDM.SAVESCALAROBJECT

vdm:savescalarobject

VMVISITORSCALARBLOB

VDM.RECORDHISTORY

vdm:recordhistory

VMz------------

(These tables are dynamically generated for each
history definition. Engage creates a unique table
for each one.)
Content Server 7.0 Developer’s Guide

Chapter 37. Coding Engage Pages

Collecting Visitor Data
734
These tables grow quickly. For information about managing them, see the Content Server
Administrator’s Guide.

There are also a number of Visitor Data Manager object methods that retrieve this
information from the Content Server database. See Chapter 10, “Error Logging and
Debugging.”

Coding Site Pages That Collect Visitor Data
This section presents an overview of the general steps that you follow when you code your
site pages to collect visitor data:

1. Create forms to capture the data that you need your visitors to manually provide. It is a
good practice to create form fields with names that match the names of the attributes
that you created. (See Chapter 35, “Creating Visitor Data Assets,” for more
information.)

Attributes are listed by their descriptions rather than by their names in the Engage
Segment forms. Be sure that you do not confuse their attribute names with attribute
descriptions when you are creating form fields or writing values to the Content Server
database.

2. Create a “submit” page that validates the data that the visitor entered in the fields
(either by using JavaScript or with a server-side validation method). The input data
must comply with the constraints that you set for the attributes. For example, if you
created a visitor attribute of type string with a length of 30, be sure that the form does
not try to submit data from the form field with a length of 31.

3. Program the “submit” page to write the validated data to the Content Server database.
Be sure to use the names of the attributes and history definitions and not their
descriptions. Here are some examples:

Example 1: Visitor Attributes
<!-- Write the registration information to the database.-->

<VDM.SETSCALAR ATTRIBUTE=“name” VALUE=“Variables.name”/>

<VDM.SETSCALAR ATTRIBUTE=“age” VALUE=“Variables.age”/>

<VDM.SETSCALAR ATTRIBUTE=“jobdesc” VALUE=“Variables.jobdesc”/>

Example 2: History Definition
Because history definitions hold multiple values as an aggregate, you must create a list
of the data before you can write it to the database. In this example, a form writes an
order to the Content Server database:

<!-- Write the order details to a list. -->
<!-- assume that Variables.order_id is set to the order id -->
<!-- assume that Variables.wasCouponUsed is set to 1 (yes) or 0
(no) -->
<!-- assume that Variables.shippingtype is set to UPS or FedEx
-->

Note

For information about these and other Engage XML and JSP tags, see the Content
Server Tag Reference.
Content Server 7.0 Developer’s Guide

Chapter 37. Coding Engage Pages

Collecting Visitor Data
735
<!-- assume that Variables.order_price is set to the total
amount of the
order -->

<LISTOBJECT.CREATE NAME=“histList” COLUMNS=“orderid,
shippingtype, price, couponUsed”/>
<LISTOBJECT.ADDROW NAME=“histList” orderid=“Variables.order_id”
shippingtype="Variables.shippingtype"
price=“Variables.order_price”
couponUsed=“Variables.wasCouponUsed”/>
<LISTOBJECT.TOLIST NAME=“histList” LISTVARNAME=“itemList”/>

<!-- Write the list to the history definition named
visitorOrderHistory in the Content Server database.-->
<VDM.RECORDHISTORY ATTRIBUTE=“visitorOrderHistory”
LIST=“itemList”/>

And you can use that record to determine information about how many orders a visitor
had made, when their first or last purchase was, and the total amount they’ve spent.

Example 3: Visitor Attribute of Type Binary
Binary visitor attributes allow you to convert an object from the Content Server name
space into a binary form. The sample site delivered with Engage uses two visitor
attributes of type binary: one to store shopping carts across sessions and one to store
saved searches.

To see these examples, use Content Server Explorer to examine ElementCatalog/
OpenMarket/Demos/CatalogCentre/GE/Navigation/stylesheet.xml and
ElementCatalog/OpenMarket/Demos/CatalogCentre/GE/myge.xml

4. If you want to gather data about visitor behavior (clickstream information, for
example), you can program your pages to gather that without using input forms. For
example, the demo site delivered with Engage uses a history definition to record the
number of times a visitor browses the site.

For this examples, use Content Server Explorer to examine ElementCatalog/
OpenMarket/Demos/CatalogCentre/GE/Navigation/stylesheet.xml

5. Whenever visitor data is written to the database, segments and promotions can also
change. Therefore, after any change to visitor data, be sure to recalculate the segments
and promotions lists. There are two Commerce Context object methods that you can
use:

COMMERCECONTEXT.CALCULATEPROMOTIONS

COMMERCECONTEXT.CALCULATESEGMENTS

COMMERCECONTEXT.CALCULATEPROMOTIONS recalculates both the segments that
the visitor belongs to and the promotions that apply to those segments.

6. Whenever visitor data is written to the database, ratings for assets can also change.
Therefore, after any change to visitor data, be sure to refresh the ratings of any assets
that are in an existing asset set.

Use the ASSETSET.ESTABLISHRATINGS tag to refresh the asset ratings of the assets
in a set.
Content Server 7.0 Developer’s Guide

Chapter 37. Coding Engage Pages

Templates and Recommendations
736
Templates and Recommendations
The key Commerce Context object method for invoking a recommendation asset is this
one:

<COMMERCECONTEXT.GETRECOMMENDATIONS
COLLECTION=“recommendationname” [LIST=“inputlist” VALUE=“rating”
MAXCOUNT=“assetcount”] LISTVARNAME="assetlist"/>

This method retrieves and lists the assets that match the recommendation constraints
passed to the method. It uses the following arguments:

• COLLECTION – the name of the recommendation. If you plan to use the same template
for several recommendations, code the template to supply the identity of the
recommendation through a variable.

• LIST – the name of the list of assets; this is the name that you want to be used as the
input for the calculation.

You use this argument when the recommendation named by COLLECTION is a
context-based recommendation. Columns are assettype and assetid. You can
create this list by creating a list object and adding rows for each asset that you want to
use as input. For an example, use Content Server Explorer to examine
ElementCatalog/OpenMarket/Demos/CatalogCentre/GE/cart.xml.

• VALUE – the default rating for assets that do not have one. If you do not declare a
value, unrated assets are assigned a default rating of 50 on a scale of 0-100. FatWire
recommends that you keep this value set to 50. For more information about the system
default rating, see the recommendation asset section in the Content Server User’s
Guide.

• MAXCOUNT – (optional) the maximum number of assets to return. Use this value to
constrain the list of recommended assets.

• LISTVARNAME – the name that you want to assign to the list of assets. Its columns are:
assettype and assetid.

If the segment list and the promotion list have not yet been created and placed in the
visitor context, this object method invokes the methods that calculate them. +Remember
that promotions do not have templates—they override the template that a recommendation
is using. If there are any promotions that apply to the current visitor and that override the
recommendation named by the COLLECTION argument, the object method returns the ID
of the promotion asset rather than the items identified by the recommendation asset.

Note

For information about these and other Engage XML and JSP object methods, see
the Content Server Tag Reference.
Content Server 7.0 Developer’s Guide

Chapter 37. Coding Engage Pages

Templates and Recommendations
737
Before you begin coding the templates for recommendations, be sure to complete the
following tasks:

• Meet with the marketing team to define all the merchandising messages that you want
to display on your site and plan how to represent those messages in recommendations
and promotions.

For example, do you want to display a list of links to other products? What
information should the link include? The product name only or also the price? What
will be displayed when a recommendation returns a promotion rather than a list of
assets?

• Determine where and on which pages the recommended assets from each
recommendation will be displayed.

Creating Templates for Recommendations
To use templates to render items that are returned by recommendation assets, you must
complete at least the following basic steps:

1. Create a template element that invokes a recommendation asset. Use the object
method described in the preceding section.

2. Code the template to display the items that are returned by the recommendation. The
returned items are stored in a variable designated by the LISTVARNAME argument.
This list includes the asset IDs and asset types of those items. Use that information to
extract the asset attributes that you want to display. (Name, price, SKU, for example.)

You can use the ASSETSET.SETLISTEDASSETS and ASSETSET.GETASSETLIST
object methods to sort and display the returned assets and their attributes.

For an example, use Content Server Explorer to examine ElementCatalog/
OpenMarket/Demos/CatalogCentre/Templates/GE/recommendation.xml.

3. Open Engage. Under New, select Template. Create a corresponding Template asset
for this template element. Enter a name that describes what the element does so that
when you create a recommendation asset you know which template to assign to it.
Identify the path to the element (its location in the ElementCatalog) in the Element
Name field.

4. Publish the Template asset when other assets are published.

5. Render the recommendations on the appropriate site pages.

Note

The COMMERCECONTEXT.GETSINGLERECOMMENDATION object method returns
one recommended asset based on the recommendation criteria passed to the
method. Typical uses for this method are to feature one product or to put one
product on sale. See the Content Server Tag Reference for information about this
object method and its JSP equivalent.
Content Server 7.0 Developer’s Guide

Chapter 37. Coding Engage Pages

Shopping Carts and Engage
738
Shopping Carts and Engage
The shopping cart interface is a CS-Direct Advantage feature. However, when you are
using Engage, there are a number of additional facts and tips to keep in mind while you
code your shopping cart pages:

• If your site uses promotions, you must code your cart pages to apply the discounts
from the promotions.

Use the COMMERCECONTEXT.DISCOUNTCART and
COMMERCECONTEXT.DISCOUNTTEMPCART object methods to apply promotional
discounts to the shopping cart.

• It is good practice to clear existing discounts from the cart before applying them again.

• You can store carts across sessions by writing them to the database as a visitor
attribute of type binary (a scalar object). Be sure to write the cart object to the database
each time the cart is modified.

• If your site uses a visitor login feature, there can be conditions under which you
should merge shopping carts. For example, a visitor adds products to her cart before
she logs in. Then, when she logs in, Engage finds a stored cart that also has items in it.
In such a case, you would want to merge the carts.

For information about the CART object methods and their JSP equivalents, see the Content
Server Tag Reference.

For an example of a Engage shopping cart, use Content Server Explorer to examine
ElementCatalog/OpenMarket/Demos/CatalogCentre/GE/cart.xml.

Debugging Site Pages
During your development phase, you must verify that session linking is set up correctly,
that specific attributes obtain the value that you expect, and that recommendations return
the items that you expect. There are several Engage object methods that you can use to
retrieve and review information and values by writing information to a browser window or
to the JRE log, or by examining it with the Page Debugger utility.

This section lists the Visitor Data Manager object methods that you will probably use the
most. For information about these and any other XML and JSP object methods, see the
Content Server Tag Reference.

Session Links
Use the following Visitor Data Manager object methods to verify that pages that handle
session linking are creating the aliases correctly:

• <VDM.GETALIAS KEY="keyvalue" VARNAME="varname"/>

Retrieves an alias

• <VDM.GETCOMMERCEID VARNAME="varname"/>

Retrieves the visitor’s commerce ID from session data.

• <VDM.GETACCESSID KEY=“pluginname” VARNAME="varname"/>

Retrieves the visitor’s access ID from session data.
Content Server 7.0 Developer’s Guide

Chapter 37. Coding Engage Pages

Debugging Site Pages
739
Visitor Data Collection
Use the following Visitor Data Manager object methods to retrieve values stored for
specific visitor attributes, history attributes, and history definitions (records):

• <VDM.GETSCALAR ATTRIBUTE="attribute" VARNAME="varname"/>

Retrieves a specific visitor attribute.

• <VDM.LOADSCALAROBJECT ATTRIBUTE= “attribute” VARNAME=
“varname”/>

Retrieves (materializes) an object stored as a visitor attribute of type binary.

• <VDM.GETHISTORYCOUNT ATTRIBUTE="attribute"
VARNAME="varname"[STARTDATE="date1" ENDDATE="date2"
LIST="constraints"]/>

Retrieves the number of history definition records that were recorded for the visitor
that match the specified criteria.

• <VDM.GETHISTORYSUM ATTRIBUTE="attribute" VARNAME="varname"
[STARTDATE="date1" ENDDATE="date2" LIST="constraints"]
FIELD=”fieldname”/>

Sums the entries in a specific field for the specified history definition.

• <VDM.GETHISTORYEARLIEST VARNAME="varname" [STARTDATE="date1"
ENDDATE="date2" LIST="constraints"]/>

Retrieves the timestamp of the first time the specified history definition was recorded
for this visitor.

• <VDM.GETHISTORYLATEST VARNAME="varname"[STARTDATE="date1"
ENDDATE="date2" LIST="constraints"] />

Retrieves the timestamp of the last time (that is, the most recent time) the specified
history definition was recorded for this visitor.

Recommendations and Promotions
Use the following Commerce Context object methods to verify pages that display
recommendations and promotions:

• <COMMERCECONTEXT.CALCULATESEGMENTS/>

Lists the segments that the visitor belongs to. It examines the available visitor data,
compares it to the data types that define the segments, and then lists the segments that
are a match.

• <COMMERCECONTEXT.GETPROMOTIONS LISTVARNAME=“promotionlist”/>

Creates the list of promotions that the current visitor is eligible for

• <COMMERCECONTEXT.GETRATINGS ASSETS=”assetlist”
LISTVARNAME=”ratinglist” DEFAULTRATING=”defaultrating”/>

Calculates the ratings of the assets in a named list according to how important the
asset is to this visitor based on the segments that the visitor belongs to.

• <COMMERCECONTEXT.GETSEGMENTS LISTVARNAME=”segmentlist”/>

Retrieves the list of segments that the current visitor belongs to.
Content Server 7.0 Developer’s Guide

Chapter 37. Coding Engage Pages

Debugging Site Pages
740
Content Server 7.0 Developer’s Guide

741
Appendices
This part contains the following appendices:

• Appendix A, “Creating a Hierarchical Flex Family”

• Appendix B, “Content Server URL Assemblers”

• Appendix C, “White Space and Compression”
Content Server 7.0 Developer’s Guide

742
Content Server 7.0 Developer’s Guide

743
A p p e n d i x A

Creating a Hierarchical Flex Family
This appendix provides a tutorial to help you create a flex family, a simple three-level
hierarchy that is based on single-valued definitions (and for the time being, ignores
attributes and their inheritance). When you complete the tutorial, you will have a basic
understanding of the flex asset model and how it is used to create hierarchical content in
Content Server. You will also have a model from which to create similar hierarchies.

This appendix contains the following sections:

• Overview

• Procedures

• Next Steps
Content Server 7.0 Developer’s Guide

Appendix A. Creating a Hierarchical Flex Family

Overview
744
Overview
This section describes the flex family that you will be creating.

Hierarchical Organization
The flex family that you will be creating in this tutorial consists of three levels:

• A top-level parent (named Parent 1 [Level 1] in our example).

• A second-level parent (named Parent 2 [Level 2] in our example).

• Assets, at the third level. One asset is placed directly under its level 1 parent; another
asset is placed directly under its level 2 parent; the third asset is placed under both the
level 1 parent and the level 2 parent.

In the Content Server interface, the hierarchy looks exactly as shown in Figure A. The
representation is formulaic; Figure B shows how it translates to a real-world model,
represented by the GE Lighting sample site.

 Product asset

 Subtype

Level 1

Level 2

Level 3

A. Formulaic Data Model
(This tutorial)

B. Real-World Data Model
(GE Lighting Sample Site)

 Type of product on the GE Lighting sample site

Also type of product
(Parent 1 [Level 1])

Also Subtype
(Parent 2 [Level 2])
Content Server 7.0 Developer’s Guide

Appendix A. Creating a Hierarchical Flex Family

Overview
745
On the sample site (Figure B),

• “Parent 1 [Level 1]” is named “Compact Fluorescent,” a type of lighting product.

• “Parent 2 [Level 2]” is named “Double BIAX and 2-Pin,” a subtype of lighting
product (under “Compact Fluorescent”).

• “Asset 2” is named “10574”, a product asset of the subtype “Double BIAX and
2-Pin.”

• Asset 1 does not exist on the GE Lighting site (no asset was placed under level 1,
“Compact Fluorescent”). The same holds for Asset_12 (no asset was placed under
both levels 1 and 2).

Flex Family Specifications
Table A-1 lists the flex family members that you will be creating in this tutorial. Note that
flex filters are optional components; they are not included in this tutorial

Table A-1: Flex Family Members

Flex Family Member Name Instances

Based on
Parent

Definition
Based on Flex

Definition

Flex Attribute Type My Attribute Attribute_1a

Attribute_2

a. Suffixes 1, 2 and _12 refer to levels of the hierarchy (“_12” denotes both levels 1 and 2). For
example, “Asset 1” denotes an asset that is placed under level 1. “Asset_12” denotes an asset
that is placed under both levels 1 and 2.

Flex Parent Definition Type My Parent
 Definition

Level 1 Def
Level 2 Def

—
Level 1 Def

Flex Definition Type My Flex
 Definition

Flex Def 1
Flex Def 2
Flex Def_12

Level 1 Def
Level 2 Def
Level 1 Def and
 Level 2 Def

Flex Parent Type My Parent Parent 1 [Level 1]
Parent 2 [Level 2]

Level 1 Def
Level 2 Def

Flex Asset Type My Asset Asset 1
Asset 2
Asset_12

Flex Def 1
Flex Def 1
Flex Def_12

Flex Filter Type — — — —
Content Server 7.0 Developer’s Guide

Appendix A. Creating a Hierarchical Flex Family

Procedures
746
Procedures
In this tutorial, you will be creating a small flex family with generic names for its family
members. This approach will help you visualize the “formula” for building hierarchies.

At the end of this tutorial, you will change the names of selected family members to real-
world names to understand how a formulaic data model translates to a business-related
data model. You will also add more parents and assets to the hierarchy, giving them real-
world names as you create them.

Step 1: Create a Flex Family
In this step, you will create a flex family by naming its required members.

To create the flex family

1. Open your browser and enter the address:

http://your_server/Xcelerate/LoginPage.html

2. Enter your login name and password and click Login.

3. Select the site for the flex family (HelloAssetWorld in our example).

4. On the Admin tab, expand Flex Family Maker and double-click Add New Family.

5. In the “Flex Family Maker” form, fill in the fields exactly as shown below:

6. Click Continue.

7. In the next form, fill in the fields for each new member of the family as follows:

a. Click in the Description field and enter the same name as in step 2 above, but
separate the words in the name with spaces.

The name that you enter will be used throughout the CS interface to identify the
asset type.

b. Click in the Plural field and enter the plural form of the name used in the
preceding step.

c. Click Add New Flex Family.

8. Wait for Content Server to create the flex family and return the message indicating
that the flex family members (asset types) were successfully installed.

9. Go to the next step.

Field Name Enter Comments

Flex Attribute MyAttribute In this step, you are
naming the database tables
that CS will create for the
flex family. The names
must not contain spaces.

Flex Parent Definition MyParentDefinition

Flex Definition MyFlexDefinition

Flex Parent MyParent

Flex Asset MyAsset

Flex Filter
Content Server 7.0 Developer’s Guide

Appendix A. Creating a Hierarchical Flex Family

Procedures
747
Step 2: Enable the New Flex Asset Types
In this step, you will enable the flex family members for the HelloAssetWorld sample site.
You will also create start menu items for the members, so that you can create and search
for their instances in subsequent steps.

To enable the new flex asset types

1. On the Admin tab, expand the Sites node and complete the following steps:

a. Expand HelloAssetWorld (the sample site where the flex family will be enabled),
or a site of your choice.

b. Under that site, expand Asset Types and double-click Enable.

1) From the list, select the asset types that you just created (MyAsset,
MyAttribute, MyFlexDefinition, MyParent, MyParentDefinition).

2) Click Enable Asset Types.

c. In the “Enable Asset Types” form:

1) Make sure that all Start Menu options are selected (so that, later, you can
create and search for instances of the family members.)

2) Click Enable Asset Types.

2. Wait for Content Server to display the message indicating that the asset types have
been enabled for the site.

3. Go to the next step.

Note

If the HelloAssetWorld sample site is not installed on your system, you
can enable the flex family for a site of your choice.
Content Server 7.0 Developer’s Guide

Appendix A. Creating a Hierarchical Flex Family

Procedures
748
Step 3: Add a “Flex Family” Tab to Content Server’s Tree
In this step, you will add a tab that tracks the creation of your flex family. You will set up
this tab to display selected members of the flex family as you finish creating them.

To add the tree tab

1. On the Admin tab, double-click the Tree node.

2. In the “Tree Tabs” form, scroll to the bottom and click Add New Tree Tab.

3. In the “Add New Tree Tab” form, fill in the fields as follows:

4. Click Save.

5. Refresh the screen.

6. Click the “Sample Flex Family” tab and make sure its contents are identical to the
display below:

7. Go to the next step.

Field Name Enter or Select Comments

Title Sample Flex Family Name of the tab.

Tooltip Sample Flex Family Description of the tab.

Sites HelloAssetWorld
(or the site you chose in
Step 2: Enable the New
Flex Asset Types)

Site on which to enable the flex
family.

Required Roles Any

Tab Contents My Parent Definition
My Parent
My Flex Definition
My Asset

Note: Click Add Selected
Items and use the Display
Order arrow to arrange
the members in the order
shown above.
Content Server 7.0 Developer’s Guide

Appendix A. Creating a Hierarchical Flex Family

Procedures
749
Step 5: Create Parent Definition Assets
In this step, you will create two parent definitions. The first parent definition establishes
the top level of the hierarchy; the second parent definition establishes the second level.

To create the first parent definition asset

1. From the button bar, click New.

2. From the list of options that appears, select New My Parent Definition.

3. In the next form:

a. Fill in the fields as follows:

b. Click Save.

To create the second parent definition asset

1. From the button bar, click New.

2. From the list of options that appears, select New My Parent Definition.

3. In the next form:

a. Fill in the fields as follows:

Field Name Enter or Select Comments

Name Level 1 Def This is our name for the
definition of the first level of
the hierarchy.

Description Level 1 Def

Parent Select Style Select Boxes

My Parent Definitions No parent definitions are
selected (or available) in this
field. Therefore, this parent
definition establishes the first
level of the hierarchy.

Field Name Enter or Select Comments

Name Level 2 Def This is our name for the
definition of the second
level of the hierarchy.

Description Level 2 Def

Parent Select Style Select Boxes
Content Server 7.0 Developer’s Guide

Appendix A. Creating a Hierarchical Flex Family

Procedures
750
b. Click Save.

4. Refresh the screen.

5. Click the “Sample Flex Family” tab and expand its contents to make sure they are
identical to the display below:

6. Go to the next step.

My Parent Definitions Level 1 Def

Note: Under “Single
Value,” click the
Required arrow to move
your selection to the
“Selected” list box.

Choosing Level 1 Def
subordinates the current
parent definition to
Level 1 Def. Chaining
definitions in this
manner establishes
Level 2 Def as the
second level.

When parents are
created and based on the
current parent definition
(Level 2 Def), they are
subordinated to parents
that are based on
Level 1 Def.

Field Name Enter or Select Comments
Content Server 7.0 Developer’s Guide

Appendix A. Creating a Hierarchical Flex Family

Procedures
751
Step 6: Create Flex Parent Assets
In this step, you will create two flex parent assets, and base them on the flex parent
definitions that you created in the previous step. The first parent asset will occupy the top
level of the hierarchy. The second parent asset will occupy the second level of the
hierarchy.

To create the top-level parent of the hierarchy

1. From the button bar, click New.

2. From the list of options that appears, select New My Parent.

3. In the form that appears, fill in the fields as follows:

4. In the next form, click Save.

To create the second-level parent of the hierarchy

1. From the button bar, click New.

2. From the list of options that appears, select New My Parent.

Field Name Enter or Select Comments

Name Parent 1 [Level 1] This is our name for a
level 1 parent in the
hierarchy (in our
example, the name is
genericized simply to
help you identify the
level).

Note: At the end of this
tutorial, you will change
the name to a business-
specific name (“Outdoor
Sports Equipment,” in
our example, which
describes the inventory
of a company dealing
with sports gear.)

My Parent Definition Level 1 Def Choosing Level 1 Def
places the parent you are
creating at the top level
of the hierarchy.
Content Server 7.0 Developer’s Guide

Appendix A. Creating a Hierarchical Flex Family

Procedures
752
3. In the form that appears, fill in the fields as follows:

4. In the next form, click Save.

5. Refresh the screen.

6. Click the “Sample Flex Family” tab and expand its contents to make sure they are
identical to the display below:

Field Name Enter or Select Comments

Name Parent 2 [Level 2] This is our name for a
level 2 parent in the
hierarchy (in our
example, the name is
genericized simply to
help you identify the
level).

Note: At the end of this
tutorial, you will change
the name to a business-
specific name,
“Mountain Climbing” in
our example (an
appropriate name given
that Parent 1 [Level 1]
is “Sports Equipment”).

My Parent Definition Level 2 Def Selecting Level 2 Def
places the parent you are
creating at the second
level of the hierarchy.

Note

Before going to the next step, review the figure on page 753. The figure
summarizes how the objects that you created—parent definitions and
parents based on the definitions—relate to each other.
Content Server 7.0 Developer’s Guide

Appendix A. Creating a Hierarchical Flex Family

Procedures
753

Parent Definitions and Parents

This parent definition
places this parent

at the top level of the
hierarchy.

This parent definition
places this parent

at the second level of the
hierarchy.
Content Server 7.0 Developer’s Guide

Appendix A. Creating a Hierarchical Flex Family

Procedures
754
Step 7: Create Flex Definition Assets
In this step, you will create three flex definition assets:

• The first flex definition asset will be used to place assets under Parent 1 [Level 1].

• The second flex definition asset will be used to place assets under Parent 2 [Level 2].

• The third flex definition asset will be used to place the asset under both levels of the
hierarchy.

To create the first flex definition asset

1. From the button bar, click New.

2. From the list of options that appears, select New My Flex Definition.

3. In the form that appears, fill in the fields as follows:

4. Click Save.

To create the second flex definition asset

1. From the button bar, click New.

2. From the list of options that appears, select New My Flex Definition.

3. In the form that appears, fill in the fields as follows:

Field Name Enter or Select Comments

Name Flex Def 1

My Parent Definitions Level 1 Def

Note: Under “Single
Value,” click the Required
arrow.

Choosing Level 1 Def
and Single Value means
that when you use the
current flex definition to
create flex assets, the
assets can be placed
under only one parent that
use Level 1 Def as its
parent definition. In our
example, the asset will be
placed under Parent 1
[Level 1].

Note: Selecting a
“Multiple Values” option
would allow you to place
the asset under any and
all parents that use
Level 1 Def as their
parent definition.
Content Server 7.0 Developer’s Guide

Appendix A. Creating a Hierarchical Flex Family

Procedures
755
4. Click Save.

To create the third flex definition asset

1. From the button bar, click New.

2. From the list of options that appears, select New My Flex Definition.

3. In the form that appears, fill in the fields as follows:

Field Name Enter or Select Comments

Name Flex Def 2

My Parent Definitions Level 2 Def

Note: Under “Single
Value,” click the Required
arrow.

Choosing Level 2 Def and
Single Value means that
when you use the current
flex definition to create
flex assets, the assets can
be placed under only one
parent that uses
Level 2 Def as its parent
definition. In our
example, the asset will be
placed under Parent 2
[Level 2].

Note: Selecting a
“Multiple Values” option
would allow you to place
the asset under any and all
parents that use
Level 2 Def as their
parent definition.

Field Name Enter or Select Comments

Name Flex Def_12

Parent Definitions Level 1 Def
Level 2 Def

Note: Under “Single
Value,” click the Required
arrow.

Choosing Level 1 Def
and Level 2 Def and
Single Value means that
when you use the current
flex definition to create
flex assets, the assets
will be placed under only
one parent that uses
Level 1 Def and under
only one parent that uses
Level 2 Def as parent
definitions.

In our example, the
assets will be placed
under Parent 1 [Level 1]
and Parent 2 [Level 2]).
Content Server 7.0 Developer’s Guide

Appendix A. Creating a Hierarchical Flex Family

Procedures
756
4. Click Save.

5. Refresh the screen.

6. Click the “Sample Flex Family” tab and expand its contents to make sure they are
identical to the display below:

Note: Selecting a
“Multiple Values”
option would allow you
to place the asset under
any and all parents that
use Level 1 Def and
Level 2 Def as their
parent definitions.

Note

Before going to the next step, review the figure on page 757. This figure
summarizes how the objects that you created—flex definitions—relate to
the parent definitions they are based upon.

Field Name Enter or Select Comments
Content Server 7.0 Developer’s Guide

Appendix A. Creating a Hierarchical Flex Family

Procedures
757
Flex Definitions and Parent Definitions

is based on this parent definition.

(When used to create assets, this
flex definition places the assets
under Parent 1 [Level 1].)

This flex definition

This flex definition is based on this parent definition.

(When used to create assets, this
flex definition places the assets
under Parent 2 [Level 2].)

This flex definition is based on both these parent
definitions.

(When used to create assets, this
flex definition places the assets
under both Parent 1 [Level 1] and
Parent 2 [Level 2].)
Content Server 7.0 Developer’s Guide

Appendix A. Creating a Hierarchical Flex Family

Procedures
758
Step 8: Create Flex Assets
In this step, you will complete the flex family by adding the third level of the hierarchy—
the flex assets. You will create three assets:

• The first asset you will place under Parent 1 [Level 1].

• The second asset you will place under Parent 2 [Level 2].

• The third asset you will place under both Parent 1 [Level 1] and Parent 2 [Level 2].

To create the first flex asset

1. From the button bar, click New.

2. From the list of options that appears, select New My Asset.

3. In the form that appears, fill in the fields as follows:

4. In the next form, click Save.

To create the second flex asset

1. From the button bar, click New.

2. From the list of options that appears, select New My Asset.

3. In the form that appears, fill in the fields as follows:

4. In the next form, click Save.

Field Name Enter or Select Comments

Name Asset 1

My Flex Definition Flex Def 1

Note: Under “Single
Value,” click the Required
arrow.

Choosing Flex Def 1
will place the asset you
are creating under
Parent 1 (Level 1].

Field Name Enter or Select Comments

Name Asset 2

My Flex Definition Flex Def 2

Note: Under “Single
Value,” click the Required
arrow.

Choosing Flex Def 2
will place the asset you
are creating under
Parent [Level 2].
Content Server 7.0 Developer’s Guide

Appendix A. Creating a Hierarchical Flex Family

Procedures
759
To create the third flex asset

1. From the button bar, click New.

2. From the list of options that appears, select New My Asset.

3. In the form that appears, fill in the fields as follows:

4. In the next form, click Save.

5. Refresh the screen.

6. Click the “Sample Flex Family” tab and expand its contents to make sure they are
identical to the display below:

Field Name Enter or Select Comments

Name Asset_12

Flex Definition Flex Def_12

Note: Under “Single
Value,” click the Required
arrow.

Choosing Flex Def_12
will place the asset you
are creating under both
Parent [Level 1] and
Parent [Level 2].

Note

The next figure summarizes how the objects that you created—assets—
relate to the flex definitions they are based upon.
Content Server 7.0 Developer’s Guide

Appendix A. Creating a Hierarchical Flex Family

Procedures
760
Flex Definitions and Assets

places this asset
(based on the definition)
under Parent 1 [Level 1].

This flex definition

places this asset
(based on the definition)
under Parent 2 [Level 2].

This flex definition

places this asset
(based on the definition)
under Parent 1 [Level 1]
and Parent 2 [Level 2].

This flex definition
Content Server 7.0 Developer’s Guide

Appendix A. Creating a Hierarchical Flex Family

Procedures
761
Step 9: Translate the Formulaic Data Model into a Real-World
Data Model

In this step, you will rename the parent definitions, parents, and assets in order to translate
the formulaic data model you just created into a real-world model. (In practice, instead of
renaming flex family members, you would name them directly in their business context, as
you create them.)

In our example, the real-world model describes a business that deals with sports gear. The
flex parents and assets, after you finish renaming them, will be listed in your tree tab as
shown in the figure below:

To create the real-world model:

1. Rename the parent definitions as follows:

a. In the “Sample Flex Family Tree,” double-click Level 1 Def. Click the Edit
button, replace the parent’s name with Level 1 Def (Type of Sports Equipment),
and click Save Changes.

b. In the same manner, replace the name of Level 2 Def with Level 2 Def (Sport).

2. Rename the parents as follows:

a. In the “Sample Flex Family Tree,” double-click on Parent 1 [Level 1]. Click the
Edit button, replace the parent’s name with Outdoor Sports Equipment, and
click Save Changes.

b. In the same manner, replace the name of Parent 2 [Level 2] with Mountain
Climbing.

3. Rename the assets as follows:

a. In the “Sample Flex Family Tree,” double-click on Asset 1. Click the Edit button,
and replace the asset’s name with Our Awesome Catalog.

b. In the same manner, replace the name of Asset 2 with High Altitude Gear.

c. Replace the name of Asset_12 with Special Orders.
Content Server 7.0 Developer’s Guide

Appendix A. Creating a Hierarchical Flex Family

Procedures
762
4. Click the “Sample Flex Family” tree tab and make sure its contents are identical to the
display below:

5. At this point, you can hide the parent definitions and flex definitions, and display just
the parents and assets (especially for content providers who need to work with them).
If you need instructions, follow the steps below:

a. On the Admin tab, double-click the Tree node.

b. In the “Tree Tabs” form, click Sample Flex Family.

c. At the top of the form, click Edit.

d. In the “Tab Contents” field, go to the “Selected” list box and Ctrl-click
My Parent Definition and My Flex Definition.

e. Click Remove.

f. Save.

g. Refresh the screen.

h. Click the “Sample Flex Family” tab and make sure its contents are identical to the
display below:
Content Server 7.0 Developer’s Guide

Appendix A. Creating a Hierarchical Flex Family

Procedures
763
Step 10: Develop Your Real-World Model
In this step, you will develop your data model by creating a new parent and its asset,
giving each a real-world name. You will do the following:

• Create a second level-2 parent and name it White Watering.

• Create the parent’s asset (a catalog) and name it Rafts, Canoes, and Kayaks.

Your display will look identical to the one below (the new members are circled).

If you need instructions for developing your model, follow the steps below:

1. To create the level-2 parent:

a. From the button bar, click New.

b. From the list of options that appears, select New My Parent.

c. In the form that appears, fill in the fields as follows:

d. In the next form, click Save.

Note

At the conclusion of this procedure are suggestions for further developing the real-
world model, using advanced techniques. Our example illustrates the creation of n:1
parent-child relationships through the use of multi-valued parent and flex definitions.
Guidelines, rather than step-by-step instructions are provided to help you through the
development process and let you test your understanding of the process.

Field Name Value

Name White Watering

My Parent Definition Level 2 Def (Sports)
Content Server 7.0 Developer’s Guide

Appendix A. Creating a Hierarchical Flex Family

Procedures
764
2. To create the parent’s asset:

a. From the button bar, click New.

b. From the list of options that appears, select New My Asset.

c. In the form that appears, fill in the fields as follows:

d. In the next form, go to the My Parent field and select White Watering.

e. Click Save.

f. Refresh the screen and display the “Sample Flex Family” tree tab. Its content
should be identical to the display below (new entries are circled):

Field Name Value

Name Rafts, Canoes, and Kayaks

My Flex Definition Flex Def 2
Content Server 7.0 Developer’s Guide

Appendix A. Creating a Hierarchical Flex Family

Procedures
765
Suggestions and Guidelines for Creating a Multi-Valued Model
Multi-valued parent and flex definitions allow n:1
parent-child relationships. The model at the right
provides an example. As an exercise in
understanding the CS implementation, we suggest
that you reproduce the example. These are the
steps (should you need guidelines, follow the
“Guidelines” section, instead):

Steps
1. Create a new level-1 parent named Indoor

Sports Equipment.

2. Create a level-2 parent named Tennis.
Because it is played as an indoor and an
outdoor sport, you will place Tennis under
both Indoor Sports Equipment and Outdoor
Sports Equipment, as shown in the inset.

3. Create an asset named Racquets and place it under the Tennis parent, as shown.

Guidelines
1. Create a new level-1 parent and name it

Indoor Sports Equipment.

For guidelines, see Step 6: Create Flex Parent
Assets (page 751).

2. Create a new level-2 parent, name it Tennis,
and place it under both level-1 parents
(Indoor Sports and Outdoor Sports).

The guidelines are:

a. Change Level Def 2 (Sport) to have an
optional and multi-valued level 1. (This
re-definition makes it possible to place a
level-2 parent under any and all level-1
parents). For reference, use the procedure
in Step 5: Create Parent Definition Assets
(page 749).

b. Create the level-2 parent (Tennis). For
reference, use the procedure in Step 6:
Create Flex Parent Assets (page 751). In the My Parent field, make sure to select
both options (Indoor Sports Equipment and Outdoor Sports Equipment).
Content Server 7.0 Developer’s Guide

Appendix A. Creating a Hierarchical Flex Family

Next Steps
766
3. Create a new asset named Racquets and
place it under the Tennis parent (both
entries).

The guidelines are:

a. Change Flex Def_12 to have optional
and multi-valued parent definitions.
(This re-definition makes it possible to
place an asset under any and all level-1
and level-2 parents.) For reference, use
the procedure in Step 7: Create Flex
Definition Assets (page 754).

b. Create the asset (Racquets).
For reference, use the procedure in
Step 8: Create Flex Assets (page 758).
When populating the asset form, go to
the My Parent field and select Tennis for Level 2 Def (Sport).

Next Steps
At this point you have created a rudimentary data model. From here, you can expand the
data model by creating additional parents to occupy a given level, creating additional
levels (by chaining flex parent definitions), and so on. You can also create associations
among assets, write template code to format the assets, and test the publishing options that
display the assets to site visitors. For information on these operations, see Chapter 16,
“Designing Flex Asset Types.”
Content Server 7.0 Developer’s Guide

767
A p p e n d i x B

Content Server URL Assemblers
This appendix explains Content Server URL assemblers, which manage URL assembly
and disassembly, and provide an interface that you can use to define the appearance of
URLs.

This appendix contains the following sections:

• Overview of Content Server URL Assemblers

• Assemblers Installed with Content Server

• Working with Assemblers
Content Server 7.0 Developer’s Guide

Appendix B. Content Server URL Assemblers

Overview of Content Server URL Assemblers
768
Overview of Content Server URL Assemblers
URL assemblers, in conjunction with URL generation tags, are used to generate Content
Server URLs and to disassemble the URLs they generate.

URL Assembly
Content Server URL generation tags (<satellite.link>, <satellite.blob>,
<render.getpageurl>, <render.getbloburl>, <render.satelliteblob>) are
used to construct a link to a Content Server resource, such as a page or a blob. The data,
such as tag attributes and nested argument tags which you specify when using the tag, is
converted into an abstract object called a URL definition. The URL definition is passed
into the URL assembler. The URL assembler then converts the definition into a string
URL that is returned.

Two assemblers are installed with Content Server, but you have the option of creating your
own assemblers in order to directly control the appearance of your URLs. Before you can
use the assemblers you create, you must first register them with Content Server.

The assembler that is configured as the default is used to create all Content Server URLs.
You can change the default assembler. You can also override the use of this default
assembler in individual link tags.

Assembler Discovery and Disassembly
Because an assembler can create a URL in any form that the assembler’s author dictates, it
may be impossible for the URL to be decoded into parameters by an application server
when an assembled link is requested. For decoding to take place, the assembler must be
able to disassemble the string URL into its definition. Assemblers are therefore reversible,
that is, capable of disassembling any URLs that they assembled.

If a URL has been created using an assembler other than the default assembler, then the
default assembler cannot disassemble the URL. At that point, the next highest ranked
assembler attempts to disassemble the URL. If it succeeds in creating a definition, then the
assembler engine is said to have “discovered its assembler,” and the definition is
converted into parameters for processing. If the next highest ranked assembler fails to
disassemble the URL, the third highest ranked assembler is called upon to disassemble it.
This process continues until the URL is successfully disassembled. Note that this process
requires an assembler to be able to recognize the URLs it assembled as its own, and all
other URLs as foreign.

See “Creating Assemblers” on page 769 and “Registering and Ranking Assemblers” on
page 770 for more information about creating, registering, and ranking assemblers.
Content Server 7.0 Developer’s Guide

Appendix B. Content Server URL Assemblers

Assemblers Installed with Content Server
769
Assemblers Installed with Content Server
The two assemblers that are installed with Content Server are Query Assembler and
QueryAsPathInfo Assembler.

Query Assembler
The Query Assembler creates URLs with query strings. It is the default assembler, and it is
automatically registered in Content Server. Therefore, until you make any modifications
(such as changing the default assembler or overriding the default in link tags), Query
Assembler will be used to generate all URLs.

QueryAsPathInfo Assembler
The QueryAsPathInfo Assembler does not use query strings. Instead, the
QueryAsPathInfo Assembler encodes the query string and appends it to the end of the
servlet name. The benefit of this assembler is that it creates URLs that can be indexed by
search engines. The QueryAsPathInfo Assembler is not automatically registered with
Content Server.

Working with Assemblers
This section explains how to create and register your own assemblers. This section also
explains how to modify link tags to override the use of the default assembler.

Creating Assemblers
The Content Server URL Assembly module enables you to create your own assemblers.
This option gives you direct control of the appearance of your URLs.

To create an assembler

1. Write a java class that implements the com.fatwire.cs.core.uri.Assembler
interface. For information on this class, see the JavaDocs that are located at the
following URL:

http://e-docs.fatwire.com/CS

2. Compile the class into a .jar file.

3. Deploy your class into the Content Server web application and the web application for
each remote Satellite Server you have installed.

This usually means copying the .jar file you just created into your web application’s
WEB-INF/lib folder. For remote Satellite Servers, this means copying it to the
resin/webapp/ROOT/WEB-INF/lib folder.

4. Register your new assembler in the ServletRequest.properties file on both
Content Server and all of your remote Satellite Servers (see “Registering and Ranking
Assemblers” on page 770 if you need instructions).

5. Restart Content Server and all of your remote Satellite Servers.
Content Server 7.0 Developer’s Guide

Appendix B. Content Server URL Assemblers

Working with Assemblers
770
Registering and Ranking Assemblers
Before an assembler can be used to create URLs, it must first be registered with Content
Server. The registration is done by listing assembler class names with corresponding short
forms in a property file. The registration also includes a ranking that indicates in which
order the assemblers should be used.

To register an assembler

1. Invoke the Property Editor.

2. Open the ServletRequest.properties file.

3. Click the URI Assembler tab to access the assembler properties.

4. Specify the classname and shortform of the assembler you want to register.

The third element in the property name indicates the ranking of the assembler. The
assembler with the ranking of 0 is the highest ranked (and default) assembler, the
assembler with the ranking of 1 is the next highest ranked, and so on.

If you want to configure the new assembler to be the default assembler, enter the
classname and shortform values in the properties that have 0 as their ranking.

For example, the syntax to register the QueryAsPathInfo assembler as the default
assembler would be as follows:

5. Depending on the ranking of the new assembler, you may need to adjust the rankings
of the other assemblers. Verify that all of the assemblers are configured and ranked
correctly in the property file. If they are not, make any necessary changes.

6. Choose File > Save to save your changes and close the Property Editor.

7. Repeat steps 1–6 for each remote Satellite Server you have installed.

8. Restart Content Server and all of your remote Satellite Servers.

Property Name Property Value

uri.assembler.0.classname com.fatwire.cs.core.uri.
QueryAsPathInfoAssembler

uri.assembler.0.shortform pathinfo

uri.assembler.1.classname com.fatwire.cs.core.uri.
QueryAssembler

uri.assembler.1.shortform query

Note

Make sure that the Query Assembler is always registered, even if you
have lowered its ranking, because it is used within CS-Direct. The Query
Assembler must be registered with the shortform value of query.
Content Server 7.0 Developer’s Guide

Appendix B. Content Server URL Assemblers

Working with Assemblers
771
Modifying Link Tags
Content Server link tags can be modified to use an assembler other than the default
assembler. The link tags accept an attribute, assembler, which take an assembler short
form as a value.

For example, to override the default assembler with the QueryAsPathInfo assembler in an
individual link tag, the syntax would be as follows:

<satellite.link pagename=“example” assembler=“pathinfo” />
Content Server 7.0 Developer’s Guide

Appendix B. Content Server URL Assemblers

Working with Assemblers
772
Content Server 7.0 Developer’s Guide

773
A p p e n d i x C

White Space and Compression
When Content Server streams a text page, the page may contain a significant amount of
“white space”—spaces, carriage returns and tabs—that have no effect on the data that is
consumed by the client. The white space is visible when the source code is viewed by the
consumer, and this is not desirable. Furthermore, excessive white space needlessly
increases the size of the response, which ultimately increases bandwidth use.
Consequently, it is beneficial to eliminate white space whenever possible.

This appendix contains the following sections:

• White Space and JSP

• White Space and XML

• Compression

• JSP Design
Content Server 7.0 Developer’s Guide

Appendix C. White Space and Compression

White Space and JSP
774
White Space and JSP
The JSP specification requires that all white space be preserved. Thus, a page that looks
like this:

<%@ page import="my class name"%>
<%@ page import="my class 2"%>
<cs:ftcs>
<p>Hello world!</p>
</cs:ftcs>

will have three carriage returns and a tab preceding the <p> because the text is displayed
on third line after the JSP has been interpreted. With more complicated pages, the problem
is compounded.

White Space and XML
Content Server’s XML processing language, being a proprietary set of xml-compliant tags,
does not adhere to the white space preserving rules of JSP. As such, a CS XML page like
this:

<? XML version 1.0 ?>
<FTCS>
<p>Hello World!</p>
</FTCS>

will display <p> as the first characters of output, because our xml parser will strip all of
the white space (unless xml debug is enabled, in which case all the white space is
preserved).

Compression
Because white space is an artifact of writing well-formatted code, its presence is an
unfortunate side effect of programming practices that benefit the developer. The impact on
the consumer and the customer is minimal except for bandwidth. To address bandwidth,
the output of all text-based pages can be compressed. Compressing the output is done on
the server side, and decompression is done by the consumer’s user-agent (browser). The
compression/decompression is completely transparent to the end user. This sort of
compression can yield up to an 80% reduction in bandwidth use. One commonly-used
compression mechanism is the mod-gzip extension to the Apache web server. This module
will automatically gzip all output to the user agent provided that it can decompress it.
Configuration is minimal and its effectiveness is quite high. It can be obtained from
SourceForge (http://sourceforge.net/projects/mod-gzip/). Similar tools are
available for other common web servers such as IIS.

Another possibility is to do the compression at the application server layer, and leave the
web server alone. This is best done by connecting a standard servlet filter to Satellite
Server (or to Content Server if Satellite Server is not being used). The servlet filter is
invoked in a prescribed order prior to and/or after the invocation of the specified servlet,
and during invocation it can compress the output prior to sending it to compatible user-
agents, exactly the same way mod-gzip works. One such compression filter can be found
at SourceForge (http://sourceforge.net/projects/pjl-comp-filter/).
Content Server 7.0 Developer’s Guide

Appendix C. White Space and Compression

JSP Design
775
If you are interested in compression but need assistance, contact FatWire Professional
Services.

JSP Design
If compression is not an option, consider altering your JSP pages so that they do not
require compression to address the white space problem. This can be done by changing the
code above to this:

<%@ page import="my class name"
%><%@ page import="my class 2"
%><cs:ftcs><p>Hello world!</p></cs:ftcs>

While this is not as elegant (or readable), it will result in page output without any white
space whatsoever prior to the <p> tag. An intermediate solution may be something like
this:

<%@ page import="my class name"
%><%@ page import="my class 2"
%><cs:ftcs>
<p>Hello world!</p>
</cs:ftcs>

For extensive examples of how to address white space issues in JSP, refer to our
WebServices elements in the ElementCatalog. They are included with CS Direct.
Content Server 7.0 Developer’s Guide

Appendix C. White Space and Compression

JSP Design
776
Content Server 7.0 Developer’s Guide

777

Index
A
access ID 738

accounts
coding account management forms 630

ACL (access control list)
and caching 115
and live site security 626
and site visitors 626
identifying a visitor’s ACL 628
SiteGod 630
SystemACL table 229

ACL tag family 626

Add Enumerated Value field 720

addData element 393

adding
mimetypes 313
rows to tables 248

ADF, See asset descriptor files

administrator rights 719

aliases 733

AMap tables 216

APIs
Directory Services 620

AppendSelectDetails element 289

approval dependencies 534
ASSET.LOAD 540
ASSETSET tag family 540

collection assets 548
exact 536
exists 535
none 536
publishing 534
RENDER.FILTER 542
RENDER.GETPAGEURL 541
RENDER.LOGDEP 542

approval templates 537
designating 499

arguments
for Documentation Transformation filter

class 215
in XMLPost configuration files 375

article assets 198
coding templates for 545

asset descriptor files 198
and embedded links 299
basic format of 282
coding 294
fine-tuning 306
uploading 302

asset types
attribute editor 196, 211
collection 195
core 195
creating basic asset types 292
creating flex asset types 324
CSElement 195
defined 194
defining columns for basic asset types 284
defining their database columns 284
Content Server 7.0 Developer’s Guide

Index
778
deleting basic asset types 315
enabling fields for 299
naming 283
page 195
query 195
registering elements for 304
sample site 198
SiteEntry 195
template 195

ASSET.CHILDREN 548

assetid 736

AssetMaker
and embedded links 299
creating basic asset types 198, 278
in Burlington Financial 657

AssetPublication table 520

AssetPublicationTree table 202

AssetRelationTree table 199, 202, 227

assets 95
See also template, query, collection,

imagefile, stylesheet, page, flex attribute,
flex asset, flex definition, flex filter, flex
parent, and flex parent definition

adding mimetypes for 313
and tags 221
basic 42, 194
child 575
CS-Direct Advantage 207
database tables for basic assets 202
database tables for flex assets 216
defined 194
deleting 515
designing 193
differences between basic and flex 222
Engage 196
flex 49, 194
flex family 207
flex filter 208
getting field values 95
held 534
importing 392
indexing 220
listing children 95
loading 94
loading basic 94
retrieving field values 95
sharing 515
summary of basic and flex 222

which model to use 197

assetsets 219
and flex attribute asset types 555
and searchstates 554
attributes of type blob 560
attributes of type text 559
attributes of type url 562
creating 557
getting attribute values 558
list objects 563
overview 52, 553

AssetStubCatalog table 279

assettype column 736

AssetType table 278

Associated queries field (collection assets) 518

Association
form 199
table 199

associations 199
creating fields for 309
deleting association fields 311
flex assets 341

attribute editors 196, 211
checkbox 352
code syntax for 351
components of 348
creating 361
custom 363
editing 368
elements 359
elements for 357
eWebEditPro 353
pick asset 354
presentationobject.dtd 348
pull-down 354
radio buttons 355
textarea 356
textfield 357
XMLPost configuration file 396
XMLPost source file 396

attributes 55, 208
categories 717
creating 319
deciding how many types 319
flex filter assets 319
foreign 332
history 196, 721
Content Server 7.0 Developer’s Guide

Index
779
inheritance of values 211
of type asset 320
visitor 196, 718

authpassword variable 101

authusername variable 101

B
basic asset model

advantages 197
data structure 202
overview 198
parent-child relationships 199

basic assets
and embedded links 299

BIGINT data type 232, 285

binary visitor attributes 718, 735
and storing carts across sessions 738
collecting visitor data 733
retrieving 739

blob (binary large object) 568
BlobServer URLs 560
caching 119
code example for displaying 577
coding elements for 547
creating URLs for 91
displaying value of 561
flex attributes of type blob 560

BLOB data type 285

BlobServer 547
BLOBSERVICE tags 561
servlet 33
URL for attribute of type blob 560
URLs 568

BulkLoader
and DB2 427
command line 437
configuration file 430
configuration file sample 435
custom extraction mechanism 438
description 424
flat tables 426
IDataExtract 439
IFeedback 447
input table 427
IPopulateDataSlice 443
java interfaces 438

mapping table 429

Burlington Financial sample site
AssetMaker assets 657
bfmembers table 633
caching 660
collection assets 658
database searching 653
email to a friend page 588
home page 574
mimetypes 657
navigation elements 651
navigational bar 590
overview 46, 53, 650
plain text link 581
query assets 653, 655
section pages 579
site plan 63
today’s date function 593
visitor authentication 633, 658
Wirefeed query 585

C
c variable 101

cache
and pagecriteria 122
CacheManager 122
debugging 175
the cache key 122
viewing the contents of 121

Cache Criteria 497

cache criteria 474, 497

cache key
overview 122

cached elements
calling 90

cacheinfo column 660

CacheManager
and mirror publishing 539
and preview 539
Satellite Server 538

caching
cache key 122
compositional dependencies 538
disable individual pages 571
flushing resultsets 273
load on database 271
Content Server 7.0 Developer’s Guide

Index
780
overview 37
properties 274
resultsets 39, 270

calculating
approval dependencies 534
promotions 735
segments 735

calling
CSElement asset 458, 543
element 458
page name 458
SiteEntry asset 458, 543
uncached elements 90, 91

CALLSQL
example of 272

CatalogManager
servlet 33, 244
tag attributes 244

CatalogMover
command line interface 156
connecting to Content Server 150
exporting database tables 152
exporting to ZIP files 153
importing database tables 154
menu commands 151
overview 149
starting 149

catalogs
See also database tables

categories 717, 719, 725
adding 311

category
column 200, 206
field 520

Category field
collection asset 518
page asset 526
query asset 522
stylesheet asset 524

Category table 228, 278

cc.contentkey property 228

CGI
programming 103

CHAR data type 231, 285

characters, special 87

checkbox
attribute editor for flex attributes 352
input type for basic asset fields 286

child assets
basic assets 199

child nodes 591

child templates
example 581

cid variable 101

codes, status 519

coding
account creation form 629
asset descriptor files 294
attribute editor assets 351
error tracking 180, 181, 570
login forms 627
source files for XMLPost 383

coding elements
error tracking 179
for basic assets 545
for blobs 547
for collections 548
for flex assets 553
for imagefile assets 547
for page assets 551
for query assets 549
for recommended assets 737
logging dependencies 539
shopping cart 738
that collect visitor data 734
workflow elements 683

collecting visitor data 55, 733
coding pages 734
debugging 187, 739

COLLECTION argument 736

collection assets 195
and query assets 516, 521
approval dependencies 548
coding elements for 548
compositional dependencies 549
creating 517
definition 516
example code for creating links 579
example element code 575
in Burlington Financial 658
Content Server 7.0 Developer’s Guide

Index
781
sharing 518

column constraint types 232

columns
defining for basic asset types 284

commerce context 732
defined 732
tags 732

commerce ID 738

compositional dependencies 534
and page generation 538
ASSET.LOAD 539
ASSETSET tag family 540
CacheManager 538
collection assets 549
query assets 550
RENDER.LOG 541
RENDER.UNKNOWNDEPS 543

conditionals 93, 107

configuration files
XMLPost 372
XMLPost and flex asset types 395

connecting to Content Server 148

Constraint type field 720, 723

constraints
adding to searchstates 565
deleting from searchstate 566
range 565

Content Server
database overview 38
session variables maintained by 162
SOAP interface 700

Content Server context
creating with the ftcs tag 79
ICS object 78
overview 78

Content Server Desktop
overview 54

Content Server Direct
overview 42

Content Server Direct Advantage
asset types 207
overview 49

Content Server Explorer 148

creating variables in 103
overview 148
registering a foreign table 239
when to use 266

Content Server Management Tools
creating content tables 237
creating object tables 234
when to use 266

content tables 228
creating 237
managing the data in 239
working with 244

ContentDetails element 289

ContentEditor ACL 630

ContentForm element 289

ContentServer servlet 33

context variable 101

cookies 165, 733
attributes 165
example 166
removing 165

CookieServer servlet 33

core asset tags
ASSET.CHILDREN 95
ASSET.GET 95
ASSET.LOAD 94
ASSET.SCATTER 95

counter variables 110

createdby column 204

createddate column 204

creating 91
assetsets 557
association fields 309
attribute editors 361
basic asset types 292
BlobServer URL embedded in HTML

tag 568
BlobServer URLs 92, 560, 568
categories 311
collection assets 517
content tables 237
CSElement assets 481, 493
entries for attribute drop-down lists 720, 723
flex asset types 324
Content Server 7.0 Developer’s Guide

Index
782
flex attributes 319
flex attributes of type asset 320
flex definition assets 337
flex family 324
flex filter assets 333
flex parent assets 339
history attributes 721
history definitions 724
hyperlinks to assets in a collection 579
object tables 234
page assets 526
parent definition assets 335
product sets 344
searchstates 557
sources 312
stylesheet assets 524
template assets 462
tree tables 236
URLs for hyperlinks 91, 567
user accounts programmatically 630
visitor attributes 718

CS
.dtd file 86
creating the Content Server context 79
JSP actions 82
JSP declarations 83
JSP directives 83
JSP expressions 83
JSP scriptlets 83
JSP syntax 82
JSP tag libraries 84
the Content Server context 78
using directives in CS 83
XML and the FTCS tag 87
XML overview 86
XML standard beginning 86
XML version and encoding 86

CS tags
for basic and flex assets 89

cs.timeout 162

CSElement assets 195, 455
as root element for SiteEntry asset 493
calling 543
creating 481, 493
deleting 500
editing 499
entry in ElementCatalog table 490
how to invoke one from an element 458
name to use when calling 487
previewing 501

sharing 500
where used 461

ct variable 101
used in page names 583

currentAcl session variable 162

currentACL variable 101

currentUser session variable 162

custom extraction mechanism,
BulkLoader 438

customizing
asset type elements 306
attribute editors 363
PostUpdate element 307
PreUpdate element 307

D
data 705

adding rows 248
coding data entry forms 248
deleting rows 251
design of 193
listing 246
querying for 246
retrieving from tables that do not hold

assets 244
writing to tables that do not hold assets 244

data types 722
BIGINT 285
BLOB 285
CHAR 285
Content Server 231
CS-Direct (AssetMaker) 285
CS-Direct Advantage (flex attributes) 210
DOUBLE 285
INTEGER 285
LONGVARCHAR 285
SMALLINT 285
specifying for attribute 719
TIMESTAMP 285
valid input for 718
VARCHAR 285
web services 705, 707

database tables
AMap tables 216
AssetPublication 520
AssetRelationTree 199
bfmembers 633
Content Server 7.0 Developer’s Guide

Index
783
content tables 228
default columns for basic asset types 203
defined 226
deleting 267
editing rows 254
exporting 152
for basic assets 198, 202
for flex assets 216
foreign tables 228
identifying the type 230
importing 154
Mimetype 313
Mungo 560
Mungo tables 216, 218
MungoBlobs 560
object tables 226
overview 38
retrieving data from non-asset tables 244
SiteCatalog 122
SitePlanTree 62
StatusCode 520
system tables 229, 240
SystemInfo 38
tree tables 227
types of 226
visitor data 733
VMVISITORALIAS 732
VMVISITORSCALARBLOB 733
VMVISITORSCALARVALUE 733
VMz 733
working with tables that do not hold

assets 244

DATETIME data type 231

DB2
and BulkLoader 427

Debug Listener 182

debugging 171
promotions 739
recommendations 739
recommendations and promotions 188
session links 187, 738
visitor data collection 187, 739

DebugServer servlet 33

Default Arguments for Preview field 501

default storage directory, see defdir

default template 581

Default Value field 719

DefaultReader username 162

defdir 303
column 233
defined 233
specifying for new basic asset types 296

definitions, See flex parent definitions or flex
definitions

deleteAsset element 420

deleting
assets 515
assets with XMLPost 420
association fields 311
basic asset types 315
constraint from a searchstate 566
CSElement assets 500
history attributes 721
page assets 531
rows from tables 251
SiteEntry assets 500
template assets 500

delivery system 32
user management on 620

dependencies
See also approval dependencies and

compositional dependencies
approval 534
code that logs 539
compositional 534

dependency log 534

description column 203

Description field
page assets 517, 522, 524, 526
templates 468

descriptions
visitor data assets 718

development process
recommendations 728
visitor data assets 717

development system 32

DIR tag family 621

directory
entry 620
groups 620
hierarchies 620
Content Server 7.0 Developer’s Guide

Index
784
operations 622

directory operations
code samples 622
error handling 624
troubleshooting 625

Directory Services API 620

discounts 56

Document Transformation filter 334

Document Transformer Name argument 215,
334

DOUBLE data type 232, 285

drop-down fields
examples 300
history attributes 723

dynamic publishing
Mirror to Server 48, 534
overview 36

E
ED status code 519

editing
attribute editors 368
CSElement assets 499
flex assets with XMLPost 418
history attributes 721
rows in tables 254
SiteEntry assets 499
template assets 499

eid variable 102

ElementCatalog table 229

elements 548
beginning 86
coding 533
customizing asset type elements 306
editing search elements for basic asset

types 314
ending 86
examples 574
ExecuteQuery 518, 549, 587
for asset types 307
for attribute editors 357
for flex asset types 323
no cache criteria 457
registering with AssetMaker 278
required tags 86

that work with attribute editors 348
when use non-asset elements 462

embedded links
and basic assets 299
and flex assets 356
displaying 676

enabling
standard fields for basic asset types 299

encoding
XML 86

encryption 627

end date 521

enddate
column 205
field 299

Engage
asset types 196
debugging 187, 188

entities 87

entry
directory 620

enumerated lists 720, 723

errdetails variable 180

errno variable 101, 179, 181, 570

error logging 171, 570

error tracking 179, 180, 181, 570

events
SystemEvent table 229

eWebEditPro
attribute editor for flex attributes 353
creating eWebEditPro field for basic asset

types 298
input type for basic asset fields 287

exact dependency 536

ExecuteQuery element 518, 549, 587

exists dependency 535

expiration
of cookies 166
of sessions 162

Export to Disk publishing 48, 537
Content Server 7.0 Developer’s Guide

Index
785
approval templates 537

exporting
database tables 152
to ZIP files 153

externaldoctype column 206

F
field (column) types

database-specific 232

filename
column 205
field 299

Filename field
page assets 527

files
futuretense.txt 172

Filter by field 722

firewalls
and XMLPost 373

flex asset model
overview 207
parent-child relationships 208
when to use 197

flex assets
and embedded links 356
assetset examples 737
associations 341
designing 318
displaying attribute values of 556
flex asset types 50, 207
flex definitions 213
importing 392
importing with BulkLoader 426
searchstate examples 554
tag families to use 553

flex attributes 208
blob type and assetsets 560
blob type and flex filters 333
checkbox attribute editor 352
data types 210
displaying their values 556
eWebEditPro attribute editor 353
example XMLPost configuration file 399
example XMLPost source file 400
extracting values of with assetsets 558
foreign attributes 332

importing 397
inheritance of values 211
pick asset attribute editor 354
pull-down attribute editor 354
radio button attribute editors 355
text attributes and assetsets 559
text field attribute editor 357
textarea attribute editor 356
types of and assetsets 555
url type and assetsets 562

flex definitions 208
approval templates 538
as business rules 212
assigning flex filter assets to 339
create hierarchy on tree tabs 212
creating 337
deciding how many types 321
example XMLPost source file 404
importing 401

flex families 207
creating 324

flex filter assets 208, 214
assigning to flex definition assets 339
assigning to flex parent definition assets 337
creating 333
defined 215
input and output attributes 333

flex filter classes
defined 214
Document Transformation 334
registering 345

flex parent definitions 208, 211
assigning flex filter assets to 337
setting hierarchical place 322
specifying attribute inheritance 322

flex parents 208, 211
creating 339
specifying for flex asset when importing 414

FlushServer servlet
overview 41

foreign attributes 332

foreign tables 228
managing data in 240
registering 239

forms 103

ft_ss variable 101
Content Server 7.0 Developer’s Guide

Index
786
ftcmd variable 101

full-text search 52, 220, 554

futuretense.ini file 158, 172, 178

futuretense.txt 172, 173

G
GAProductSet attribute 344

GE Lighting sample site
content asset types 209
overview 53
product asset types 209

generic field (column) types 231

getting
the children of a basic asset 548
values from asset fields 95

groups
directory 620

H
hash name of resultset 271

held assets 534

Hello Asset World sample site 635

HelloCS
servlet 34

hierarchy
directory 620

history attributes 55, 196
creating 721

history definitions 55, 196
creating 724
example code 734
retrieving data stored as 739

HTML tags
including an XML variable in 578, 581, 592
substituting XML variables in 106
with BlobServer URL embedded in 568

hyperlinks 567
creating 91

I
ICS Object

overview 78

ics.disable cache 571

id column 203, 218

IDataExtract interface 439

identifying
a foreign table 239
type of database table 230
visitors 732

IDs
access 738
visitor 732

IFeedback interface 447

IList object
tags 246

ILists
web services 705

image assets 198
coding templates for 545

IMAGE data type 231

imagefile assets 198
adding mimetypes for 313
coding templates for 547
example element code 577

implicit objects
and CS 82

importing assets
assets with upload fields 381
attribute editors 396
attributes of type URL 411
basic assets 369
determining how to store multiple field

values 380
flex assets 392, 426
flex attributes 397
flex definitions 401
running the BulkLoader utility 437
running XMLPost 384
setting the asset type 375
setting the sites 377, 378
setting workflow 377, 378
source file examples 383
specifying the posting element 375

importing database tables 154

importing ZIP files 155
Content Server 7.0 Developer’s Guide

Index
787
inheritance
flex assets 318

iniFile session variable 163

Input Attribute Name argument 215, 335

input table
BulkLoader 427

input types
CS-Direct (basic asset types) 285

InSite Editor
and Flex Assets 678
coding for 673
INSITE.EDIT tag 676
overview 54, 674
template examples 678

Insite Editor
embedded links 676

INTEGER data type 231, 285

Inventory servlet 41, 121
introduction 121
overview 41

invoking
XMLPost 384

IPopulateDataSlice 443

J
J2EE standard and CS 31

JDBC drivers 426

JDBC-ODBC bridge 426

JSP
and variables 106
ICS Object 78
implicit objects and CS 82

JSP element
adding tag libraries 81

JSP tag libraries
changing default tag libraries 81

L
link asset

overview 195

linking sessions 732
debugging 187, 738

LIST argument 736

list file
XMLPost 385

list objects
created for assetsets 563

list variables 109
looping through 109

lists
creating 246
looping through lists 93
users in a directory 622

LISTVARNAME argument 736

loading
basic assets 94

LoadSiteTree element 290

LoadTree element 290

log files 172
futuretense.txt 172, 173

logging
dependencies 541

logging out
web site visitors 163

login forms 627

LONGVARCHAR data type 285

LOOP 109

looping through lists 109

Lower range limit field 720, 723

M
maintaining state 103

management system 32

mapping table 429

MAXCOUNT argument 736

merging property files 159

Microsoft Word
integration with 54

Mimetype field (Stylesheet) 525

MimeType table 313
Content Server 7.0 Developer’s Guide

Index
788
mimetypes 313
in Burlington Financial 657

Mirror to Server publishing 48, 534

modifyData element 418

modular design
examples 574

moving page assets 529

Mungo tables 216, 218, 560

MungoBlobs table 560

N
name column

default column for all asset tables 203

Name field
collection assets 517
page assets 526
query assets 522
template assets 467

named associations 199

names
object 94

naming
asset types 283
history attributes 721
visitor attributes 718

ncode column 227

nid column 227

nodes
child 227, 591
IDs 591
parent 227
tree table 227

none dependency 536

NOT NULL constraint 232

nparentid column 227

nrank column 227

Null allowed field 719

NULL constraint 232

NUMERIC data type 232

O
object ID

as parameter used for loading assets 94, 575

object names 94

object tables 226
creating 234
managing the data in 236
working with 244

oid column 227

otype column 227

Output Attribute Name argument 215, 335

Output Document Extension argument 215,
335

ownerid column 218

P
p variable 101

page (online)
defined 459

page assets 62, 195, 525
coding templates for 551
creating 526
defined 459
deleting 531
moving in the site tree 529
placing 528

page caching
CacheManager 538
compositional dependencies 538
guidelines 128
overview 37
SystemItemCache table 229
SystemPageCache table 229

Page Debugger 181, 187, 738
commands 184
continue to cursor 186
go 186
overview 160
step into 185
step out 186
step over 185

page entries
for template assets 478
Content Server 7.0 Developer’s Guide

Index
789
page name
defined 459

pagecriteria 474
and the Cache Key 122

pagelets
cacheable 457
defined 459

pagename variable 101

pagenames
specifying in an XMLPost configuration

file 375

pages
modular design 37
rendering 37

parametric search 52, 220

parent definitions, see flex parent definition
assets

parents
See also flex parent assets
basic assets 199, 309

parser
errors detected 87

password variable 101

path
column 205
field 299

Path field
page assets 527

pick asset attribute editor 354

PL status code 519

Place form 528

Place Page workflow function privilege 530

placing page assets 528

posting elements
addData 393
debugging 389
deleteAsset 420
modifyData 418
specifying in an XMLPost configuration

file 375

posting, see importing assets

PostUpdate element 290
customizing 307

precedence
of variables 108

presentationobject.dtd 348

PreUpdate element 290
customizing 307

previewing
CacheManager 539
CSElement and SiteEntry assets 501
template assets 501

primary key
content tables 228
object tables 226

PRIMARY KEY NOT NULL constraint 232

product discounts 56

product sets 344

promotions
calculating 735
debugging 739
definition 56, 196
duration of 204
recalculating 735

properties
database 241
debugging 172, 178
in XMLPost configuration files 372
loading property files 241
resultsets 274
xmldebug 166

property
as column and field for basic asset type 278

Property Editor
setting properties 158
starting 158

property files
database properties 241
editing 158
futuretense.ini 172, 178
merging 159

property variables 105

proxy servers
XMLPost 372
Content Server 7.0 Developer’s Guide

Index
790
pubid
defined 520
queries 523

Publication table 64

PublicationTree table 64

publishing
approval 534
approval dependencies 534
defined 457
dynamic vs. static 36
Export to Disk 537
Mirror to Server 534
overview 34, 47

pull-down
attribute editor 354

Q
queries

code examples 254
Java examples 258, 261, 265
JSP examples 256, 260, 264
overview 270
SystemSQL table 230
tags 246
XML examples 254, 260, 262, 263

query assets 195
coding elements for 549
compositional dependencies 550
defined 518
ExecuteQuery element 518, 549
for collections 521
in Burlington Financial 653, 655
sample element code 585
sample query 519
sharing 523
templates 521

R
radio buttons

attribute editor 355
input type for basic asset fields 287

range
searchstates 565

Rank field (place pages) 529, 530

ratings
updating before calculating 735

recalculating
segments and promotions 735

recommendations
debugging 739
definition 196
flex assets 728
overview 55
process of developing 728
testing 188

referURL variable 569

registering
a foreign table 239
elements for basic asset types 304
elements with AssetMaker 278
flex filter classes 345
transformation engine 345

relationships
AssetRelationTree table 199
collections 199
parent-child (basic) 199
parent-child (flex) 208
stored as nodes 227

RemoteContentPost element 370

remotepost, See XMLPost

rendering
defined 457
overview 37, 47

rendermode variable 102

resargs1 103

resdetails1 103

reserved characters 87

reserved variable names 100

Result of query field (query assets) 522

resultsets
cache flushing 273
hash names of 271
load on database 271
overview 39, 270
properties 274

revision tracking
deleting database tables 267
error numbers 181
overview 39, 48
Content Server 7.0 Developer’s Guide

Index
791
RF status code 520

rich-text search 52, 220, 554

root element
defined 37
for addrow page 249
for page entry 478

Rootelement field (template) 478

rows
updating with CATALOGMANAGER 244

running
BulkLoader utility 437
XMLPost 384

S
Satellite Server

overview 40

Satellite servlet
caching with 117
overview 41

saving
binary data 718

scalar objects 738

scattering assets 95

scope
and variables 100
searchstates 555

search elements
editing 314

search engines
overview 49
supported 35

searches
Burlington Financial 653
database 52, 220
directory search 622
full-text 52, 220, 554
parametric 52, 220
rich-text 52, 220, 554

SearchForm element 289

searchstates 219
building 554
overview 52
range constraints 565

resultset caching 273
scope of 555
unfiltered 557
web services 705
wildcards 566

security
overview 39

segments 55
and personalization 716
calculating 735
definition 196
list of 728
overview 55
recalculating 735

seid variable 102

select
input type for basic asset fields 286

SelectSummary SQL statement 291

SelectSummarySE SQL statement 291

SELECTTO
example of 272

servlets
BlobServer 33
CatalogManager 33, 244
ContentServer 33
CookieServer 33
DebugServer 33
FlushServer (Satellite Server) 41
HelloCS 34
Inventory (Satellite Server) 41
Satellite (Satellite Server) 41
TreeManager 33

session linking 732
debugging 187, 738

session objects
list of 732

session variables 103, 162
creating 104
login and logout 163
outputting 105
setting 89, 104

sessions 162
debugging 175
example of 163
lifetime of 162
Content Server 7.0 Developer’s Guide

Index
792
overview 39
tips 168

sharing
assets 515
collection assets 518
CSElement assets 500
query assets 523
SiteEntry assets 500
stylesheet assets 525
template assets 500

shopping carts 738
overview 53

SimpleSearch element 289

site design assets
deleting 515
sharing 515

Site Plan tab 46, 62

site tree 528

site variable 101

SiteCatalog table 229
page entries for templates 478

SiteEntry assets 195, 455
calling 543
deleting 500
editing 499
how to invoke one from an element 458
previewing 501
selecting a CSElement for 493
sharing 500
where used 461

SiteGod ACL 630

sitepfx variable 101

SitePlanTree table 60, 64, 202
and the Site Plan tab 62
definition 227
example code that displays information

from 590

sites
defined 59, 60
developing within 62
example elements 574
examples of 61
overview 46
Publication table 64
Publication Tree table 64

setting in an XMLPost configuration
file 377, 378

site plan 62
SitePlanTree table 60, 64

SMALLINT data type 231, 285

SOAP
defined 700
supported version 700

SOAP tags
consuming web services 711
example 712
parameters 712

source 520
adding with asset descriptor file 297
column 284
creating for basic assets 312
field 200

source files, XMLPost
described 383
example for attribute editor 396
flex attribute 400
flex definition 404
for flex asset types 395
identifying them 385
tags 379

Source table 228

special characters 87

SQL queries
query assets 519
standard ones created for new basic asset

types 307

SQL query field (query assets) 522

SSL authentication 627

start date 521

startdate
column 204
field 299

state
maintaining 103

static publishing
Export to Disk 48, 537

status 519
column 203
Content Server 7.0 Developer’s Guide

Index
793
status codes 519

StatusCode table 228, 520

stylesheet assets 198
adding mimetypes for 313
creating 524
sharing 525

Stylesheet field 524

subtypes
approval templates 538
column 205

systable column 230

system design
page caching guidelines 128

system tables 229, 240

SystemACL table 229

SystemEvent table 229

SystemInfo table 38, 229
defdir column 233
systable column 230

SystemItemCache table 229

SystemPageCache table 229

systems
delivery 31
development 31
management 31
testing 31

SystemSQL table 230

SystemUserAttr table 230

SystemUsers table 230

T
tablename variable 101

tables, See database tables

tags
in XMLPost source files 379
in XMLPost source files for flex assets 407

template assets 195, 455, 460, 736
approval templates for Export to Disk 537
creating 462
default approval templates 499

deleting 500
displaying fields with embedded links 676
editing 499
entry in SiteCatalog table 478
previewing 501
recommendations 737
setting variables for 474, 497
sharing 500
subtypes 538

template column 206

template field
page asset 518, 522, 526

testing
recommendations 188
visitor data assets 188

testing system 32

text
input type for basic asset fields 285
text field attribute editor 357

text box, See text area

TEXT data type 231

textarea
attribute editor for flex attributes 356
input type for basic asset fields 286

tid variable 102

Tile element 290

timeouts
sessions 162, 168

TIMESTAMP data type 285

transformation engines
defined 214
registering 345

tree tables 227
creating 236
managing the data in 237
nodes 227
working with 245

tree tabs
flex definitions and hierarchy 212

TreeManager
commands 245
servlet 33
Content Server 7.0 Developer’s Guide

Index
794
Type field 722

types
constraint 720, 723
data 719, 722
fields (columns) 231
history type 55

U
unfiltered searchstate 557

UNIQUE NOT NULL constraint 232

UP status code 520

updatedby column 204

updateddate column 204, 520

updatetype variable 307

updating
rows with CATALOGMANAGER 244

upload fields 286
and XMLPost 381
examples for basic asset types 298
for basic asset fields 286
stylesheet 524

uploading
asset descriptor files 302

Upper range limit field 720, 723

URL column 233

urlexternaldoc column 206

urlexternaldocxml column 206

URLs 91
adding variables to 102
BlobServer 560
Content Server log file 176
Content Server URL 457
for hyperlinks 567

user management
on delivery system 620

user name 163
default 162
for XMLPost 376
session variable 162

username variable 101

users

account creation form 629
USER tags 627

V
validating

data from input forms 734

VALUE argument 736

VARCHAR data type 285

variables
and JSP 106
and scope 100
appending to URLs 102
assigning one to another 105
authpassword 101
authusername 101
best practices 108
c 101
Cache Criteria (pagecriteria) 474, 497
cid 101
context 101
counters 110
creating with Content Server Explorer 103
ct 101, 583
currentACL 101
displaying variable values 105
eid 102
errdetails 180
errno 101, 179, 181, 570
evaluating 89, 105
ft_ss 101
ftcmd 101
HTML forms 103
in HTML 106
lists 109
outputting values 105
p 101
pagename 101
password 101
precedence of 108
referURL 569
rendermode 102
reserved names 100
resolving 90, 107
retrieving variable values 105
seid 102
session 103
session (see session variables)
setting 89
site 101
sitepfx 101
Content Server 7.0 Developer’s Guide

Index
795
tablename 101
tid 102
updatetype 307
username 101
using in an HTML tag 578, 581, 592

visitor attributes 55, 196
binary 735, 738
creating 718
example code 734
retrieving 739

visitor context, defined 732

visitor data
collecting 733
tables 733

visitor data assets 716
descriptions 718
development process 717
testing 188, 725

visitor data collection
debugging 187, 188, 739

visitor data manager 732
tags 732

visitor segments 55

visitors
authentication 626, 633, 658
collecting data for 733
elements that collect data for 734
identifying 732
IDs 732

VMVISITORALIAS table 732

VMVISITORSCALARBLOB table 733

VMVISITORSCALARVALUE table 733

VMz tables 733

VO status code 520, 572

W
web services

complex data types 707
consuming 711
creating custom web services 706
defined 700
generating client code 705
ILists 705
locating remote services 711

predefined functions 704
process flow 705
remote procedure calls 706
required technologies 701
searchstates 705
supported data types 705
using predefined web services 704
writing a page 707
writing an element 708
writing function calls 705

webservices.invoke tag 712

webservices.parameter tag 712

workflow
and page assets 530
assigning to imported assets 377, 378
coding workflow elements 683
overview 48

writing
history definition data 733

WSDL
defined 700
W3C site 700

WSDL files
Content Server 704
creating 709
example 709
for remote applications 711
generating client code 705
location 704
sections 709
XML elements 711

X
XML

and Satellite Server 118
debugging 174, 177
encoding 86
entities 87
errors 87
special characters 87

XML elements
WSDL 711

XMLPost utility 308
and flex attributes 397
and upload fields 381
attributes of type URL 411
configuration file example 381
Content Server 7.0 Developer’s Guide

Index
796
configuration file examples 396, 403, 405,
410

configuration files 372
configuration properties 372
deleting assets 420
determining how to store multiple field

values 380
editing flex assets 418
example source files 396, 400
file encoding 383
flex asset types 392
flex definitions 401
proxy servers 372
running it 384
setting the posting element 375
setting the sites 377, 378

setting workflow 377, 378
source file example 383
source file examples 404
source file properties 377
specifying which asset type to import 375
tags for source files 379
troubleshooting 389
under program control 386
username 376

Y
ZIP files

exporting 153
importing 155
Content Server 7.0 Developer’s Guide

	Developer’s Guide
	Contents
	About This Guide
	Who Should Use This Guide
	How This Guide Is Organized
	Related Publications

	Overview
	Overview of Content Server
	Content Server Product Family
	Product Summary
	Third-Party Components
	J2EE Compliance
	Content Server Systems

	The Content Server Core
	Servlets and Java APIs
	Page-Generation Components
	Database Management Functions
	Sessions and Cookies
	Event Management Features

	Satellite Server
	Handling the HTTP Requests
	Satellite Server Servlets and APIs

	CS-Direct
	Basic Asset Model
	Standard CS Interface
	Content Server Clients (Interface Options)
	Sites and the Site Plan
	Sample Sites
	Template, CSElement, and SiteEntry Assets
	Custom CS-Direct XML and JSP Tags
	Approval and Publishing
	Revision Tracking
	Workflow
	Searching and Search Engines

	CS-Direct Advantage
	Flex Asset Model
	Assetsets and Searchstates: Searching the Online Site
	Shopping Carts and Commerce Context
	GE Lighting Sample Site
	Custom CS-Direct Advantage XML and JSP tags

	Content Server Clients (Interface Options)
	Engage
	Visitor Data and Segments
	Recommendations
	Promotions
	Persistent, Linked Visitor Sessions
	Custom Engage XML and JSP tags

	Content Server Portal Interface

	Overview of Sites
	Content Management Sites
	Online Sites
	Developers and the Content Management Site
	Sites and the Site Plan
	Sites and the Database

	Content Server Development Process
	Step 1: Set Up the Team
	Step 2: Create Functional and Design Specifications
	Functional Requirements
	Page Design
	Caching Strategy
	Security Strategy (Access Control)
	Separate Format from Content (Elements from Assets)
	Data Design

	Step 3: Set Management System Requirements
	Step 4: Implement the Data Design
	Step 5: Build the Online Site
	Step 6: Set Up the Management System
	Import Content as Assets
	Import Catalog Data and Flex Asset Data
	Instruct the Editorial Team About Site Design

	Step 7: Set Up the Delivery System
	Step 8: Publish to the Delivery System

	Programming Basics
	Programming with Content Server
	Choosing a Coding Language
	The Content Server Context
	The ICS Object
	The FTCS tag

	Content Server JSP
	Content Server Standard Beginning
	JSP Implicit Objects
	Syntax
	Actions
	Declarations
	Scriptlets and Expressions
	JSP Directives
	Content Server Tag Libraries

	Content Server XML
	Content Server Standard Beginning
	XML Entities and Reserved Characters
	XML Parsing Errors

	Content Server Tags
	Tags That Create the Content Server Context
	Tags That Handle Variables
	Tags That Call Pages and Elements
	Tags That Create URLs
	Tags That Control Caching
	Tags That Set Cookies
	Programming Construct Tags
	Tags That Manage Compositional and Approval Dependencies
	Tags That Retrieve Information About Basic Assets
	Tags That Create Assetsets (Flex Assets)
	Tags That Create Searchstates (Flex Assets)

	Variables
	Reserved Variables
	Setting Regular Variables
	Setting Session Variables
	Working With Variables
	Variables and Precedence
	Best Practices with Variables

	Other Content Server Storage Constructs
	Built-ins
	Lists
	Counters

	Values for Special Characters

	Page Design and Caching
	Modular Page Design
	Caching
	Content Server Caching
	BlobServer and Caching
	Satellite Server Caching

	Viewing the Contents of the Satellite Server Cache
	CacheManager
	The SiteCatalog Table
	The Cache Key
	Caching Properties

	Double-Buffered Caching
	Implementing Double-Buffered Caching
	Setting cscacheinfo
	Coding for Caching
	Caching and Security

	Intelligent Cache Management with Content Server
	Content Server’s Rendering Engine Cache
	CacheManager
	Enabling CacheManager
	Tier 1 Cache Configuration Properties
	Tier 2 Cache Configuration Properties

	Advanced Page Caching Techniques
	Overview
	Configuring the Content Server Cache
	Configuring the Blob Server Cache
	Configuring the Satellite Server Cache
	CacheInfo String Syntax
	CacheInfo String: First Part
	CacheInfo String: Second Part
	Page Timeout
	Absolute Moment in Time
	TimePattern
	Wildcard
	Blank

	Content Server Tools and Utilities
	Content Server Explorer
	Connecting to a Content Server Database

	CatalogMover
	Starting CatalogMover
	Connecting to Content Server
	CatalogMover Menu Commands
	Exporting Tables
	Importing Tables
	Command Line Interface

	Property Editor
	Starting the Property Editor
	Setting Properties
	Merging Property Files

	Page Debugger
	XMLPost

	Sessions and Cookies
	What Is a Session?
	Session Lifetime
	Session Variables Maintained by Content Server
	Logging In and Logging Out

	Sessions Example
	FeelingsForm Element
	SetFeeling Element
	Meat Element

	What Is a Cookie?
	CookieServer
	Cookie Tags

	Cookie Example
	Start.xml
	ColorForm
	CreateCookie
	DisplayWelcome
	Running the Cookie Example

	Tips and Tricks
	Satellite Server Session Tracking
	Flushing Session Information

	Error Logging and Debugging
	Overview
	Error Log File Contents
	Additional Error Message Locations
	XML Syntax and Runtime Error Checking

	Debugging Properties
	Using Error Codes with Tags
	Tag Examples Using Error Codes
	Error Number Rules

	Using the Page Debugger
	Invoking the Page Debugger
	Page Debugger Commands

	Debugging Content Server Applications
	Debugging Engage
	Property Messages

	Data Design
	Data Design: The Asset Models
	Asset Types and Asset Models
	Two Data Models
	Default (Core) Asset Types
	Which Asset Model Should You Use to Represent Your Content?

	The Basic Asset Model
	Basic Asset Types from the Burlington Financial Sample Site
	Relationships Between Basic Assets
	Category, Source, and Subtype
	Basic Asset Types and the Database

	The Flex Asset Model
	The Flex Family
	Sample Site Flex Families
	Flex Attributes
	Flex Parents and Flex Parent Definitions
	Flex Assets and Flex Definition Assets
	Flex Filters
	Flex Families and the Database

	Assetsets and Searchstates
	Search Engines and the Two Asset Models
	Tags and the Two Asset Models
	Summary: Basic and Flex Asset Models
	Where the Asset Models Intersect
	Where the Asset Models Differ

	Summary: Asset Types

	The Content Server Database
	Types of Database Tables
	Object Tables
	Tree Tables
	Content Tables
	Foreign Tables
	System Tables
	Identifying a Table’s Type

	Types of Columns (Fields)
	Generic Field Types
	Database-Specific Field Types
	Indirect Data Storage with the Content Server URL Field

	Creating Database Tables
	Creating Object Tables
	Creating Tree Tables
	Creating Content Tables
	Registering a Foreign Table

	How Information Is Added to the System Tables
	Property Files and Remote Databases
	Property Files for Remote Databases
	Accessing the Property File for a Remote Database

	Managing Data in Non-Asset Tables
	Methods and Tags
	Writing and Retrieving Data
	Querying for Data
	Lists and Listing Data

	Coding Data Entry Forms
	Adding a Row
	Deleting a Row
	Querying a Table
	Querying a Table with an Embedded SQL Statement

	Managing the Data Manually
	Deleting Non-Asset Tables

	Resultset Caching and Queries
	Overview
	Database Queries
	How Resultset Caching Works
	Reducing the Load on the Database

	How Content Server Identifies a Resultset
	Specifying the Table Name
	SELECTTO
	EXECSQL
	CALLSQL
	Search Forms in the Content Server Interface
	Query Asset
	SEARCHSTATE

	Flushing the Resultset Cache
	Enabling Resultset Caching
	Table-Specific Properties
	Planning Your Resultset Caching Strategy

	Summary

	Designing Basic Asset Types
	The AssetMaker Utility
	How AssetMaker Works
	Asset Descriptor Files
	Columns in the Asset Type’s Database Table
	Elements and SQL Statements for the Asset Type

	Creating Basic Asset Types
	Overview
	Before You Begin
	Step 1: Code the Asset Descriptor File
	Step 3: Upload the Asset Descriptor File in to Content Server
	Step 4: Create the Asset Table (continued from Step 3)
	Step 5: Configure the Asset Type
	Step 6: Enable the Asset Type on Your Site
	Step 7: Fine-Tune the Asset Descriptor File
	Step 8: (Optional) Customize the Asset Type Elements
	Step 9: (Optional) Configure Subtypes
	Step 10: (Optional) Configure Association Fields
	Step 11: (Optional) Configure Categories
	Step 12: (Optional) Configure Sources
	Step 13: (Conditional) Add Mimetypes
	Step 14: (Optional) Edit Search Elements to Enable Indexed Search
	Step 15: Code Templates for the Asset Type
	Step 16: Move the Asset Types to Other Systems

	Deleting Basic Asset Types
	Images and eWebEditPro

	Designing Flex Asset Types
	Design Tips for Flex Families
	Visitors on the Delivery System
	Users on the Management System
	How Many Attribute Types Should You Create?
	Designing Flex Attributes
	How Many Definition Types Should You Create?
	Designing Parent Definition and Flex Definition Assets
	Summary

	The Flex Family Maker Utility
	The Flex Asset Elements

	Creating a Flex Asset Family
	Overview
	Before You Begin
	Step 1: Create a Flex Family or a New Flex Family Member
	Step 2: Enable the New Flex Asset Types
	Step 3: Create Flex Attributes
	Step 4: (Optional) Create Flex Filter Assets
	Step 5: Create Parent Definition Assets
	Step 5: Create Flex Definition Assets
	Step 6: Create Flex Parent Assets
	Step 8: Code Templates for the Flex Assets
	Step 9: Test Your Design (Create Test Flex Assets)
	Step 10 (optional): Create Flex Asset Associations
	Step 11: Move the Asset Types to Other Systems

	Editing Flex Attributes, Parents, and Definitions
	Editing Attributes
	Editing Parent Definitions and Flex Definitions
	Editing Parents and Flex Assets

	Using Product Sets
	What Is a Product Set?
	Creating Product Sets

	Custom Filter Classes or Transformation Engines
	Registering a New Filter Class
	Registering a New Transformation Engine

	Designing Attribute Editors
	Overview
	The presentationobject.dtd File
	The Attribute Editor Asset
	The Attribute Editor Elements

	Creating Attribute Editors
	Customizing Attribute Editors
	Example: Customized Attribute Editor

	Editing Attribute Editors

	Importing Assets of Any Type
	The XMLPost Utility
	Overview

	XMLPost Configuration Files
	Configuration Properties for XMLPost
	Configuration Properties for the Posting Element
	Configuration Properties for the Source Files
	Sample XMLPost Configuration File

	XMLPost Source Files
	Sample XMLPost Source File
	XMLPost and File Encoding

	Using the XMLPost Utility
	Before You Begin
	Running XMLPost from the Command Line
	Running XMLPost as a Batch Process
	Running XMLPost Programmatically

	Customizing RemoteContentPost and PreUpdate
	Setting a Field Value Programmatically
	Setting an Asset Association

	Troubleshooting XMLPost
	Debugging the Posting Element

	Importing Flex Assets
	Overview
	Importing the Data Structure Flex Asset Types
	Importing the Flex Assets
	Importing Flex Assets: The Process

	XMLPost and the Flex Asset Model
	Internal Names vs. External Names

	Importing the Structural Asset Types in the Flex Model
	Attribute Editors
	Flex Attributes
	Flex Definitions and Flex Parent Definitions
	Flex Parents

	Importing Flex Assets with XMLPost
	Configuration File Properties and Source File Tags for Flex Assets
	Sample Flex Asset Configuration File for addData
	Sample Flex Asset Source File for addData
	Sample Flex Asset Configuration File for RemoteContentPost
	Sample Flex Asset Source File for RemoteContentPost

	Editing Flex Assets with XMLPost
	Configuration Files for Editing Flex Assets
	Source Files for Editing Flex Assets

	Deleting Assets with XMLPost
	Configuration Files for Deleting Assets
	Source Files for Deleting Assets

	Importing Flex Assets with the BulkLoader Utility
	Overview of BulkLoader
	BulkLoader Features
	How BulkLoader Works
	Using the BulkLoader Utility

	Importing Flex Assets from Flat Tables
	Step 1: Use XMLPost to Import Structural Assets
	Step 2: Create the Input Table (Data Source)
	Step 3: Create the Mapping Table
	Step 4: Create the BulkLoader Configuration File
	Step 5: Run the BulkLoader Utility
	Step 6: Review Feedback Information
	Step 7: Approve and Publish the Assets to the Delivery System

	Importing Flex Assets Using a Custom Extraction Mechanism
	IDataExtract Interface
	IPopulateDataSlice
	IFeedback Interface

	Approving Flex Assets with the BulkApprover Utility
	Creating a Configuration File
	Using BulkApprover

	Site Development
	Creating Template, CSElement, and SiteEntry Assets
	What’s New in This Chapter
	Pages, Pagelets, and Elements
	Elements, Pagelets, and Caching
	Calling Pages and Elements
	Page vs. Pagelet

	CSElement, Template, and SiteEntry Assets
	Template Assets
	CSElement Assets
	SiteEntry Assets
	What About Non-Asset Elements?

	Creating Template Assets
	Pre-requisites
	Procedures for Creating Template Assets

	Creating CSElement Assets
	Pre-requisites
	Procedures for Creating CSElement Assets

	Creating SiteEntry Assets
	Pre-requisites
	Procedures for Creating SiteEntry Assets

	Managing Template, CSElement, and SiteEntry Assets
	Designating Default Approval Templates (Export to Disk Only)
	Editing Template, CSElement, and SiteEntry Assets
	Sharing Template, CSElement, and SiteEntry Assets
	Deleting Template, CSElement, and SiteEntry Assets
	Previewing Template, CSElement, and SiteEntry Assets

	Using Content Server Explorer to Create and Edit Element Logic
	Creating Templates and CSElements
	Editing Templates and CSElements

	Creating Templates to Support Graphical Page Design
	Overview
	Implementation
	Template Context
	Guidelines for Creating Master Templates
	Tracking Changes to Master Pages

	Creating Collection, Query, Stylesheet, and Page Assets
	Previewing Assets
	Approving Assets
	Sharing Assets
	Deleting Assets
	Collection Assets
	Before You Begin
	Creating Collection Assets
	Sharing Collection Assets

	Query Assets
	Query Assets and Other Assets
	How the Query Is Stored
	Commonly Used Fields for Queries
	Before You Begin
	Creating Query Assets
	Sharing Query Assets
	Previewing and Approving Query Assets

	Stylesheet Assets
	Creating Stylesheet Assets
	Sharing Stylesheet Assets

	Page Assets
	Creating a Page Asset
	Placing Page Assets
	Moving Page Assets in the Site Tree
	Placing Page Assets and Workflow
	Editing Page Assets
	Deleting Page Assets

	Coding Elements for Templates and CSElements
	About Dependencies
	The Publishing System and Approval Dependencies
	Page Generation and Compositional Dependencies

	About Coding to Log Dependencies
	ASSET.LOAD and asset:load
	The ASSETSET (assetset) Tag Family
	RENDER.GETPAGEURL and render:getpageurl
	RENDER.LOGDEP (render:logdep)
	RENDER.FILTER and render:filter
	RENDER.UNKNOWNDEPS and render:unknowndeps

	Calling CSElement and SiteEntry Assets
	Coding Elements to Display Basic Assets
	Assets That Represent Simple Content
	Associations
	ImageFile Assets or Other Blob Assets
	Basic Assets That Can Have Embedded Links
	Collections
	Query Assets
	Page Assets

	About Coding Elements that Display Flex Assets
	Assetsets
	Searchstates
	Assetsets, Searchstates, and Flex Attribute Asset Types
	Scope

	Coding Templates That Display Flex Assets
	Example Data Set for the Examples in This Section
	Examples of Assetsets with One Product (Flex Asset)
	Special Cases: Flex Attributes of Type Text, Blob, and URL
	Examples of Assetsets with More Than One Product (Flex Asset)

	Creating URLs for Hyperlinks
	RENDER.GETPAGEURL (render:getpageurl)
	RENDER.SATELLITEBLOB (render:satelliteblob)
	RENDER.GETBLOBURL (render:getbloburl)
	Using the referURL Variable

	Handling Error Conditions
	Using the Errno Variable
	Ensuring that Incorrect Pages Are Not Cached

	Template Element Examples for Basic Assets
	Example 1: Basic Modular Design
	First Element: Home
	Second Element: MainStoryList
	Third Element: LeadSummary
	Fourth Element: TeaserSummary
	Back to LeadSummary
	Back to MainStoryList
	Back to Home

	Example 2: Coding Links to the Article Assets in a Collection Asset
	First element: SectionFront
	Second element: PlainList

	Example 3: Using the ct Variable
	First Element: SectionFront
	Second Element: TextOnlyLink
	ColumnistFront

	Example 4: Coding Templates for Query Assets
	First Element: Home
	Second Element: WireFeedBox
	Third Element: ExecuteQuery
	Back to WireFeedBox

	Example 5: Displaying an Article Asset Without a Template
	First Element: Full
	Second Element: AltVersionBlock
	Third Element: EmailFront

	Example 6: Displaying Site Plan Information
	First Element: Home
	Second Element: SiteBanner
	Third Element: TopSiteBar
	Back to SiteBanner

	Example 7: Displaying Non-Asset Information
	First Element: Home
	Second Element: ShowMainDate

	Configuring Sites for Multilingual Support
	Overview
	Dimensions
	Dimension Sets
	Multilingual Support Across Sites
	Translations and Multilingual Sets
	Asset Relationships
	Approval Dependencies

	Working with Locale Filtering
	Handling Asset Relationships Through Locale Filtering
	Included Locale Filters
	Custom Locale Filters
	Compositional Dependencies
	Adding Filtering Support to Your Site

	Planning Multilingual Support for a Site
	Configuring Multilingual Support for a Site
	Configuration Quick Reference
	Enabling the “Dimension” and “DimensionSet” Asset Types
	Enabling the “Locale” Subtype of the “Dimension” Asset Type
	Creating a Locale
	Sharing a Locale to Another Site
	Creating and Configuring a Dimension Set
	Sharing a Dimension Set to Another Site
	Configuring a Locale Filter
	Configuring the Fallback Hierarchy of the Hierarchical Filter
	Bulk-Assigning a Default Locale to Assets in a Site

	User Management on the Delivery System
	The Directory Services API
	Entries
	Hierarchies
	Groups
	Directory Services Tags
	Directory Operations
	Error Handling
	Troubleshooting Directory Services Applications

	Controlling Visitor Access to Your Online Sites
	ACL Tags
	User Tags
	Content Server and Encryption

	Creating Login Forms
	Prompt for Login (PromptForLogin.xml)
	Root Element for the Login Page

	Creating User Account Creation Forms
	PromptForNewAccount
	Root Element for the CreateAccount Page

	Visitor Access in the Burlington Financial Sample Site
	Membership Table
	Users and Passwords
	Member Accounts
	Membership Processing Elements

	The HelloAssetWorld Sample Site
	Overview
	HelloAssetWorld Templates
	HelloAssetWorld Asset Types

	Modified Asset Types
	The HelloArticle Asset Type
	The HelloImage Asset Type

	HelloAssetWorld Templates
	The HelloArticle Template
	The HelloCollection Template
	The HelloPage Template

	The HelloQuery Asset

	The Burlington Financial Sample Site
	Overview
	Navigation Features
	Breadcrumbs

	Best Practices
	Searching
	Keywords
	Hot Topics
	Topic Directory
	Related Stories
	Text-Only Versions
	Plain Text Parallel Site
	E-mail This Story
	AssetMaker Asset Types
	Mimetype
	Collections of Collections
	Membership
	Wire Feed
	Featured Funds
	Fund Finder
	Page Cache Parameters

	Management System Features
	Customizing the User Interface
	Overview of the Tree
	Loading the Tree Tabs
	Refreshing the Tree

	Trees and Security
	Tree Error Logging

	Coding for the InSite Editor
	Overview
	The INSITE.EDIT Tag
	Parameters
	Syntax
	Supported Data Types and Input Types

	Template Element Examples
	Example for Basic Asset
	Example for Flex Assets
	Example for an Attribute of Type Blob

	Customizing Workflow
	Workflow Step Conditions
	Workflow Actions
	Step Action Elements
	Timed Action Elements
	Deadlock Action Elements
	Group Deadlock Action Elements
	Delegation Action Elements

	Web Services
	Overview of Web Services
	What Are Web Services?
	SOAP and Web Services
	Supported SOAP Version
	Supported WSDL Version
	Related Programming Technologies

	Creating and Consuming Web Services
	Using Predefined Web Services
	Accessible Information
	WSDL File Location
	Process Flow
	Consider Your Data
	Generating the Client Interface
	Writing Client Calls

	Creating Custom Web Services
	Process Flow
	Consider Your Data
	Creating a Content Server Page
	Writing a Content Server Element
	Creating a WSDL File

	Consuming Web Services
	Locating the Web Service
	Gathering Information from the Remote WSDL File
	Providing Information to Content Server

	Engage
	Creating Visitor Data Assets
	About Visitor Data Assets
	Visitor Attributes
	History Attributes and History Definitions
	Segments
	Categories
	Developing Visitor Data Assets: Process Overview

	Creating Visitor Data Assets
	Creating Visitor Attributes
	Creating History Attributes
	Creating History Definitions

	Verifying Your Visitor Data Assets
	Approving Visitor Data Assets

	Recommendation Assets
	Overview
	Development Process

	Creating a Dynamic List Element

	Coding Engage Pages
	Commerce Context and Visitor Context
	Identifying Visitors and Linking Sessions
	Collecting Visitor Data
	Coding Site Pages That Collect Visitor Data

	Templates and Recommendations
	Creating Templates for Recommendations

	Shopping Carts and Engage
	Debugging Site Pages
	Session Links
	Visitor Data Collection
	Recommendations and Promotions

	Appendices
	Creating a Hierarchical Flex Family
	Overview
	Hierarchical Organization
	Flex Family Specifications

	Procedures
	Step 1: Create a Flex Family
	Step 2: Enable the New Flex Asset Types
	Step 3: Add a “Flex Family” Tab to Content Server’s Tree
	Step 5: Create Parent Definition Assets
	Step 6: Create Flex Parent Assets
	Step 7: Create Flex Definition Assets
	Step 8: Create Flex Assets
	Step 9: Translate the Formulaic Data Model into a Real-World Data Model
	Step 10: Develop Your Real-World Model
	Suggestions and Guidelines for Creating a Multi-Valued Model

	Next Steps

	Content Server URL Assemblers
	Overview of Content Server URL Assemblers
	URL Assembly
	Assembler Discovery and Disassembly

	Assemblers Installed with Content Server
	Working with Assemblers
	Creating Assemblers
	Registering and Ranking Assemblers
	Modifying Link Tags

	White Space and Compression
	White Space and JSP
	White Space and XML
	Compression
	JSP Design

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

