
Content Server Enterprise Edition
Version: 5.5

Web Services Reference

Document Revision Date: Oct. 31, 2003

FATWIRE, INC. PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. In no event shall FatWire be liable for any loss of
profits, loss of business, loss of use of data, interruption of business, or for indirect, special, incidental, or consequential
damages of any kind, even if FatWire has been advised of the possibility of such damages arising from this publication.
FatWire may revise this publication from time to time without notice. Some states or jurisdictions do not allow disclaimer of
express or implied warranties in certain transactions; therefore, this statement may not apply to you.

Copyright © 2003 FatWire, inc. All rights reserved.

This product may be covered under one or more of the following U.S. patents: 4477698, 4540855, 4720853, 4742538,
4742539, 4782510, 4797911, 4894857, 5070525, RE36416, 5309505, 5511112, 5581602, 5594791, 5675637, 5708780,
5715314, 5724424, 5812776, 5828731, 5909492, 5924090, 5963635, 6012071, 6049785, 6055522, 6118763, 6195649,
6199051, 6205437, 6212634, 6279112 and 6314089. Additional patents pending.

FatWire, Content Server, Content Server Bridge Enterprise, Content Server Bridge XML, Content Server COM Interfaces,
Content Server Desktop, Content Server Direct, Content Server Direct Advantage, Content Server DocLink, Content Server
Engage, Content Server InSite Editor, Content Server Satellite, and Transact are trademarks or registered trademarks of
FatWire, inc. in the United States and other countries.

iPlanet, Java, J2EE, Solaris, Sun, and other Sun products referenced herein are trademarks or registered trademarks of Sun
Microsystems, Inc. AIX, IBM, WebSphere, and other IBM products referenced herein are trademarks or registered
trademarks of IBM Corporation. WebLogic is a registered trademark of BEA Systems, Inc. Microsoft, Windows and other
Microsoft products referenced herein are trademarks or registered trademarks of Microsoft Corporation. UNIX is a
registered trademark of The Open Group. Any other trademarks and product names used herein may be the trademarks of
their respective owners.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/) and software
developed by Sun Microsystems, Inc. This product contains encryption technology from Phaos Technology Corporation.

You may not download or otherwise export or reexport this Program, its Documentation, or any underlying information or
technology except in full compliance with all United States and other applicable laws and regulations, including without
limitations the United States Export Administration Act, the Trading with the Enemy Act, the International Emergency
Economic Powers Act and any regulations thereunder. Any transfer of technical data outside the United States by any
means, including the Internet, is an export control requirement under U.S. law. In particular, but without limitation, none of
the Program, its Documentation, or underlying information of technology may be downloaded or otherwise exported or
reexported (i) into (or to a national or resident, wherever located, of) Cuba, Libya, North Korea, Iran, Iraq, Sudan, Syria, or
any other country to which the U.S. prohibits exports of goods or technical data; or (ii) to anyone on the U.S. Treasury
Department’s Specially Designated Nationals List or the Table of Denial Orders issued by the Department of Commerce. By
downloading or using the Program or its Documentation, you are agreeing to the foregoing and you are representing and
warranting that you are not located in, under the control of, or a national or resident of any such country or on any such list
or table. In addition, if the Program or Documentation is identified as Domestic Only or Not-for-Export (for example, on the
box, media, in the installation process, during the download process, or in the Documentation), then except for export to
Canada for use in Canada by Canadian citizens, the Program, Documentation, and any underlying information or technology
may not be exported outside the United States or to any foreign entity or “foreign person” as defined by U.S. Government
regulations, including without limitation, anyone who is not a citizen, national, or lawful permanent resident of the United
States. By using this Program and Documentation, you are agreeing to the foregoing and you are representing and
warranting that you are not a “foreign person” or under the control of a “foreign person.”

Web Services Reference
Document Revision Date: Oct. 31, 2003
Product Version: 5.5

FatWire Technical Support
Web: http://www.fatwire.com/Support

FatWire Headquarters
FatWire, inc.
330 Old Country Road
Suite 207
Mineola, NY 11501
Web: www.fatwire.com

http://www.fatwire.com/Support/index.html
www.fatwire.com

Table of

Contents
1 WSDL Overview .5
About WSDL . 5
Supported WSDL Version . 6
Supplied WSDL Files . 6

Asset.wsdl. 6
AssetSet.wsdl . 6
Miscellaneous.wsdl . 7
SitePlan.wsdl . 7

WSDL File Location. 7

2 Operations .9
Asset Operations . 10

AssetGetChildren . 10
AssetGetSiteNode. 13
AssetGetSiteParent . 14
AssetList . 16
AssetLoad . 18

AssetSet Operations . 22
ASGetAssetCount. 22
ASGetAssetList . 23
ASGetAttributeValues . 25
ASGetMultipleValues . 27

Miscellaneous Operations . 30
MiscGetBlob. 30
MiscGetMungoBlob . 31
MiscSearch . 32

SitePlan Operations. 35
SPGetChildren . 35
SPGetProperties . 37
3

 CSEE Web Services Reference
3 Objects .39
SearchState Objects. 40

LikeConstraint . 40
NestedConstraint . 42
RangeConstraint . 43
RichTextConstraint. 44
SearchState . 46
StandardConstraint . 47

IList Objects . 50
IList. 50
StringRowsType . 51
URLRowsType. 52
URLType . 52

Index .53
4

Chapter 1

WSDL Overview
This chapter provides an overview of the predefined web services shipped with Content
Server. Each supplied web service is defined in WSDL (web services description
language) format.

About WSDL
WSDL is an XML format that describes distributed services on the Internet. A WSDL file
describes the location of the service and the data to be passed in messages for particular
operations. With regard to Content Server, these messages contain remote procedure calls.

Web services for Content Server are defined in supplied WSDL files. Each WSDL file
contains descriptions of multiple operations, each of which corresponds to a Content
Server delivery function. Operations are grouped by WSDL file according to related
function. Like all web services, operations are accessible via XML and SOAP (simple
object access protocol) messaging over the Internet.

WSDL files, which contain the information necessary to code a SOAP-compliant interface
to Content Server, are intended to be read by various third-party tools that automatically
output client code. The generated client code passes required infomation as remote
procedure calls to Content Server via SOAP. After you pass the required inputs to the
client program, the client creates and sends a SOAP request based on the specified
operation. The resulting SOAP request is handled by a suppled Content Server page,
which packages the request and return data.

Note

If you are not using the predefined services provided with Content Server,
you must create your own WSDL file to describe your web service and
Content Server page to handle data. For more information about using
predefined web services and creating custom web services, refer to the
CSEE Developer’s Guide.
5

 CSEE Web Services Reference
Supported WSDL Version
Content Server 5.5 supports WSDL 1.1. You will need to understand the web services
description language to use the predefined WSDL files shipped with Content Server. The
XML standard syntax is described in detail at the following W3C web site:

http://www.w3.org

Supplied WSDL Files
Supplied WSDL files group operations by related Content Server delivery functions.
Identify the WSDL file that contains the Content Server functions you need. Then
generate a client interface for your intended web service application. The following tables
list related operations according to the WSDL file in which they are defined:

• Asset.wsdl

• AssetSet.wsdl

• Miscellaneous.wsdl

• SitePlan.wsdl

Asset.wsdl
Defines asset operations that can list and load asset fields or retrieve children and parents
for assets and flex assets.

AssetSet.wsdl
Defines operations required to retrieve attribute values for flex assets.

Also defines the following inputs to the AssetSet operations, which are used to build a
SearchState. SearchState Objects are used to generate a collection of asset properties
based on specified criteria.

AssetGetChildren AssetGetSiteNode AssetGetSiteParent

AssetList AssetLoad

ASGetAssetCount ASGetAttributeValues ASGetMultipleValues

LikeConstraint NestedConstraint RangeConstraint RichTextConstraint

StandardConstraint
6

Chapter 1: WSDL Overview
Miscellaneous.wsdl
Defines operations that cover basic Content Server blob functions, such as returning a
blob stored in a particular table for assets and flex assets, and searching indexes generated
by a search engine.

SitePlan.wsdl
Defines operations that enable you to examine the page hierarchy of the site. In
conjunction with each other, they return the children and properties of any node in the
hierarchy.

WSDL File Location
Predefined WSDL files for Content Server are automatically installed with the CS-Direct
application in the following location:

http://install_dir/futuretense_cs/Xcelerate/wsdl/*.wsdl

MiscGetBlob MiscGetMungoBlob MiscSearch

SPGetChildren SPGetProperties
7

 CSEE Web Services Reference
8

Chapter 2

Operations
This chapter describes predefined functions that are available to web services clients for
accessing selected information from the Content Server repository. It describes syntax and
required inputs for your web services client, as defined by the WSDL files supplied with
Content Server 5.5.

Operations are grouped according to function and WSDL file, as follows:

• Asset Operations

• AssetSet Operations

• Miscellaneous Operations

• SitePlan Operations

Note

Syntax for web services operations and client-code examples are provided
in Java. The exact syntax you use will depend on the programming
language in which you code your client program.

Regardless of the tool and language you use to generate the client,
parameter names for required inputs and the order in which they are
passed remain the same, and the output is always SOAP (simple object
access protocol). The examples in this chapter were generated using the
Apache Axis tool.
9

CSEE Web Services Reference
Asset Operations
Asset operations cover the functions required to retrieve basic attribute values for assets
and flex assets.

The following asset operations invoke basic asset functions:

• AssetGetChildren

• AssetGetSiteNode

• AssetGetSiteParent

• AssetList

• AssetLoad

AssetGetChildren
Queries the AssetRelationTree table and builds a list of child assets for the specified
parent asset.

Syntax
assetGetChildren(java.lang.String authusername,
java.lang.String authpassword,
java.lang.String TYPE,
java.lang.String OBJECTID,
java.lang.String FIELD,
java.lang.String VALUE,
java.lang.String CODE,
java.lang.String CHILDTYPE,
java.lang.String CHILDID,
java.lang.String ORDER)

Parameters
authusername (required)

(String) Name of the user to log in, as registered in Content Server.

authpassword(required)
(String) Password for the associated user name.

TYPE (required)
(String) The asset type of the asset that you want to retrieve from the database. For
your web service, the value must be page.The list of children is a join of the
AssetRelationTree and the asset table for the type specified.
Typically, you provide TYPE and OBJECTID to request a specific child asset. When
you know that a specific field/value pair can uniquely identify the asset, you can
provide TYPE and the field/value pair instead. Either the OBJECTID or the FIELD and
VALUE combination, but not both, are required to load an asset.

OBJECTID (required)
(String) The unique identifying number that references the Asset object. Not required
if you use TYPE with the FIELD and VALUE paired parameters (defined below).
10

Chapter 2: Operations
FIELD (optional)
(String) A field is any one of the column names for the asset. For example, standard
fields for CS-Direct assets include name, template, status, description,
subtype, category, modified, headline, byline, and body. Use the field name
in conjunction with the VALUE parameter as the name portion of a name/value pair.
The field name and its corresponding value uniquely identifies the asset to be loaded.
Note that if the field/value pair that you supply identifies more than one asset, the
AssetLoad operation uses the first one that it finds.
Not required if you use TYPE with the OBJECTID parameter.

VALUE (optional)
(String) Value that corresponds to the field specified by the FIELD parameter. Paired
with the field name, this parameter uniquely identifies an asset by supplying the
associated value.
Not required if you use TYPE with the OBJECTID parameter.

CODE (optional)
(String). Restricts the list to include only the child assets that have the relationship
(association) specified by this parameter. You can restrict the list by named
associations or by unnamed relationships. This value comes from the ncode field of
the AssetRelationTree.
For example, if you include OBJECTTYPE="Image" and CODE="MainImage" for
an article asset, CS-Direct lists only the image asset that is related to that article asset
by the Main Image named association. Without the CODE entry, CS-Direct lists all the
images associated with the article.
To list only the child assets that are associated with the parent asset by unnamed
relationships, use a hyphen (-). For example: CODE= "-"
If you do not specify OBJECTTYPE or CODE, the list includes all children with
named associations or unnamed relationships to the parent asset.
Valid values are either Placed or Unplaced.

CHILDTYPE (optional)
(String) The asset type of child that you want to retrieve. The child asset type, which
can be the same as the TYPE parameter, depends on the asset that you are passing. For
example, common asset types include article, image, page, collection, and
query. Other asset types include those flex assets for CS-Direct Advantage and CS-
Engage assets. If no ChildTYPE parameter is passed, the GetChildren operation
returns all children for the asset by default.

CHILDID (optional)
(String) The object ID of the specific child node to return. If you supply a child ID,
you must also supply a child type. If no child ID is specified, the GetChildren
operation returns all children for the asset.

ORDER (optional)
(String) The fields to sort the list by, and whether the sort result on those fields is
ascending or descending. For example, you can specify ID, name, date,
created by user, and so on. By default, the sort is ascending. If you specify
more than one field, separate the field names with a comma.
For example, if you specify ORDER="nrank", the list is sorted by rank starting at
number 1. If you want the list sorted by descending rank, use ORDER="nrank
desc".

Description
This operation queries the AssetRelationTree table for a list of the children of the asset
that you specify, listing each child with a value for all of the fields from that table (nid,
11

CSEE Web Services Reference
nparentid, nrank, otype, oid, and ncode). You must load the parent asset with the
AssetLoad operation before you can invoke this operation to query for and list its
children. The list is a standard Content Server list.

Typical use for this operation is to retrieve the assets referred to by a collection asset, the
image assets associated with an article asset, and so on. You can then loop through the list,
or reference the data returned in the list to display the relevant information from those
assets.

You can restrict the list of children by association name (CODE), object type, object ID, and
rank (ORDER).

If you use the TYPE parameter, the resulting list of children is a join of the
AssetRelationTree and the asset table for the type specified and contains data from both
tables. In that case, you do not need to use the AssetLoad operation for a child asset of
that type if that asset type stores all of its asset data in the primary asset table. Instead, you
can get that information from the list.

Returns
Ilist containing children.

errno
The possible values of errno include:

Example
This code retrieves a collection of articles, determines the members of the collection, and
then displays the nid (node ID) field of each article:

AssetService service = (AssetService)new AssetService_Impl();
AssetPortType port = service.getAssetPort();
IList myList = port.assetGetChildren("user_author", "demo",
"Page", "968685128066", null, null, null, "Query", null, null);

Value Description

-111 The asset has no children.

-10001 The implementing class is invalid.

-10002 There is a missing method for the implementing class.

-10003 The method could not be invoked successfully.

-10004 A required parameter is missing.

-10005 The requested object is not in the object pool (is not loaded into
memory).

-10006 The object ID is not valid.

-10007 The version of the object is not valid.

-10009 More than one object met the specified criteria.
12

Chapter 2: Operations
AssetGetSiteNode
Queries the SitePlanTree table and returns the node ID of the specified page asset.

Syntax
assetGetSiteNode(java.lang.String authusername,
java.lang.String authpassword,
java.lang.String TYPE,
java.lang.String OBJECTID,
java.lang.String FIELD,
java.lang.String VALUE,
java.lang.String EXCLUDE,
java.lang.String FIELDLIST)

Parameters
authusername (required)

(String) Name of the user to log in, as registered in Content Server.

authpassword(required)
(String) Password for the associated user name.

TYPE (required)
(String) The asset type of the asset that you want to retrieve from the database. For
your web service, the value must be page.
Typically, you provide TYPE and OBJECTID. When you know that a specific field/
value pair can uniquely identify the asset, however, you can provide TYPE and the
field/value pair instead. Either the OBJECTID or the FIELD and VALUE combination,
but not both, are required to load an asset.

OBJECTID (required)
(String) The unique identifying number that references the Asset object. Not required
if you use TYPE with the FIELD and VALUE paired parameters.

FIELD (optional)
(String) A field is any one of the column names for the asset. For example, standard
fields for CS-Direct assets include name, template, status, description,
subtype, category, modified, headline, byline, and body. Use the field name
in conjunction with the VALUE parameter as the name portion of a name/value pair.
The field name and its corresponding value uniquely identifies the asset to be loaded.
Note that if the field/value pair that you supply identifies more than one asset, the
AssetLoad operation uses the first one that it finds.
Not required if you use TYPE with the OBJECTID parameter.

VALUE (optional)
(String) Value that corresponds to the field specified by the FIELD parameter. Paired
with the field name, this parameter uniquely identifies an asset by supplying the
associated value.
Not required if you use TYPE with the OBJECTID parameter.

Description
The relationships set up between page assets on the site tree in the CS-Direct main
window are stored in the SitePlanTree table. The AssetGetSiteNode operation uses the
object ID of a page asset to retrieve its node ID from that table.
13

CSEE Web Services Reference
With the node ID, you can acquire information about the site’s hierarchy to use for display.
For example, you can create a navigation bar with links to section pages or a link back to
the parent page.

Returns
String containing the site node ID.

errno
The possible values of errno include:

Example
This code loads a page asset and then determines the site node of that page:

AssetService service = (AssetService)new AssetService_Impl();
AssetPortType port = service.getAssetPort();
String retVal = port.assetGetSiteNode("user_author", "demo",
"Page", "968685128066", null, null, null, null);

AssetGetSiteParent
Queries the SitePlanTree table and then loads the parent page of the specified page asset
into memory as the Asset object.

Syntax
assetGetSiteParent(java.lang.String authusername,
java.lang.String authpassword,
java.lang.String TYPE,
java.lang.String OBJECTID,
java.lang.String FIELD,
java.lang.String VALUE,
java.lang.String EXCLUDE,
java.lang.String FIELDLIST)

Value Description

-10001 The implementing class is invalid.

-10002 There is a missing method for the implementing class.

-10003 The method could not be invoked successfully.

-10004 A required parameter is missing.

-10005 The requested object is not in the object pool (is not loaded into
memory).

-10006 The object ID is not valid.

-10007 The version of the object is not valid.

-10009 More than one object met the specified criteria.
14

Chapter 2: Operations
Parameters
authusername (required)

(String) Name of the user to log in, as registered in Content Server.

authpassword(required)
(String) Password for the associated user name.

TYPE (required)
(String) The asset type of the asset that you want to retrieve from the database. For a
web service, the value must be page.
Typically, you provide TYPE and OBJECTID. When you know that a specific field/
value pair can uniquely identify the asset, you can provide TYPE and the field/value
pair instead. Either the OBJECTID or the FIELD and VALUE combination, but not both,
are required to load an asset.

OBJECTID (optional)
(String) The unique identifying number that references the Asset object. Not required
if you use TYPE with the FIELD and VALUE paired parameters (defined below).

FIELD (optional)
(String) A field is any one of the column names for the asset. For example, standard
fields for CS-Direct assets include name, template, status, description, subtype,
category, modified, headline, byline, and body. Use the field name in
conjunction with the VALUE parameter as the name portion of a name/value pair. The
field name and its corresponding value uniquely identifies the asset to be loaded. Note
that if the field/value pair that you supply identifies more than one asset, the
AssetLoad operation uses the first one that it finds.
Not required if you use TYPE with the OBJECTID parameter.

VALUE (optional)
(String) Value that corresponds to the field specified by the FIELD parameter. Paired
with the field name, uniquely identifies an asset by supplying its associated value.
Not required if you use TYPE with the OBJECTID parameter.

EXCLUDE (optional)
(Boolean) Depending on whether the value of EXCLUDE is True or False, this
operation either returns the fields specified in the FIELDLIST parameter or returns the
fields not contained in the list.
True indicates that all fields except the fields in the FIELDLIST are to be returned.
False indicates that only fields in FIELDLIST are to be returned. That is, it returns
fields specified with the FIELDLIST parameter. The default value is False.

FIELDLIST (optional)
(String) Comma-separated list of fields that you want to include or exclude from the
request for asset fields. The EXCLUDE parameter, which operates on the field list,
determines whether the fields in the list are returned or whether all fields other than
those in the list are returned.

Description
This operation queries the SitePlanTree table and then loads, as an object, the parent
page of the specified page asset. It functions like AssetLoad.

You typically use this operation to display information about the hierarchical position of
the current page, for example, to create a link to the current page’s parent page. This
operation determines the parent page and then loads the parent page.
15

CSEE Web Services Reference
Returns
Asset object that represents the site parent.

errno
The possible values of errno include:

Example
This code loads a page asset, loads its parent page, extracts the name of the parent page
asset, and then displays the name:

AssetService service = (AssetService)new AssetService_Impl();
AssetPortType port = service.getAssetPort();
LoadedAsset la = port.assetGetSiteParent("user_author", "demo",
"Page", "990743462410", null, null, null, null);

AssetList
Returns a list of assets for a specific asset type. The list is filtered according to specified
criteria.

Syntax
assetList(java.lang.String authusername,
java.lang.String authpassword,
java.lang.String TYPE,
java.lang.String FIELD1,
java.lang.String FIELD2,
java.lang.String FIELD3,

Value Description

-112 No parent exists.

-10001 The implementing class is invalid.

-10002 There is a missing operation for the implementing class.

-10003 The operation could not be invoked successfully.

-10004 A required parameter is missing.

-10005 The requested object is not in the object pool (is not loaded into
memory).

-10006 The object ID is not valid.

-10007 The version of the object is not valid.

-10008 The node ID of the object is not valid.

-10009 More than one object met the specified criteria.

-12007 The specified value is not valid.
16

Chapter 2: Operations
java.lang.String FIELD4,
java.lang.String FIELD5,
java.lang.String FIELD6,
java.lang.String FIELD7,
java.lang.String FIELD8,
java.lang.String FIELD9,
java.lang.String VALUE1,
java.lang.String VALUE2,
java.lang.String VALUE3,
java.lang.String VALUE4,
java.lang.String VALUE5,
java.lang.String VALUE6,
java.lang.String VALUE7,
java.lang.String VALUE8,
java.lang.String VALUE9,
java.lang.String ORDER,
java.lang.String SITEID,
java.lang.String EXCLUDEVOIDED)

Parameters
authusername (required)

(String) Name of the user to log in, as registered in Content Server.

authpassword(required)
(String) Password for the associated user name.

TYPE (required)
(String) The asset type of the asset that you want to retrieve from the database. For
your web service, the value must be page.

FIELD (1–9) (optional)
Input. The name of a field to use to restrict the list. You can specify up to nine fields. If
you specify a field name, you must also pass in a corresponding VALUE for the field.
For example: FIELD1="Category" VALUE1= "Sports".

VALUE (1–9) (optional)
Input. Required if FIELD is specified. The field value to use to restrict the list. You
can specify up to nine FIELD/VALUE pairs. For example, VALUE1, VALUE2, and
so on.

ORDER (optional)
(String) Name of the asset column (field) used to sort the results, specified as a string.
Input. The fields to sort the list by, and whether the sort result on those fields is
ascending or descending. By default, the sort is ascending. If you specify more
than one field, separate the field names with a comma.
For example, if you specify ORDER="nrank", the list is sorted by rank starting
at number 1. If you want the list sorted by descending rank, use ORDER="nrank
desc".

SITEID (optional)
ID of the site (formerly publication) to which the query is restricted. When this
optional parameter is used, the query is a database join operation against the
AssetPublication table.
17

CSEE Web Services Reference
EXCLUDEVOIDED (optional)
The specified value determines whether previously deleted (voided) assets are
returned:
True returns assets that have not been deleted and that meet the specified criteria. The
default value is True.
False returns deleted and undeleted assets that meet the specified criteria.

Description
The returned list that contains rows that exactly match the specified name/value pairs for
the supplied asset type. A FIELD and VALUE pair comprise the name of the field and its
value. Because you are trying to match the value, you must know it beforehand. If no
name/value pairs are specified, all rows and their associated values are returned. In
addition, all columns in the AssetTypes main table are returned.

Inputs
Accepts specified name/value pairs as input.

Returns
Rows from the asset main table that include values that match the specified columns.

errno
The possible values of errno include:

Example
AssetService service = (AssetService)new AssetService_Impl();
AssetPortType port = service.getAssetPort();
IList myList = port.assetList("user_author", "demo", "Products",
"status", null, null, null, null, null, null, null, null, "PL",
null, null, null, null, null, null, null, null, null, null, null);

AssetLoad
Queries the database for the specified asset, loads an instance of the asset into memory
within the Asset object, and returns the loaded asset in an XML wrapper.

Value Description

-10001 The implementing class is invalid.

-10002 There is a missing method for the implementing class.

-10003 The method could not be invoked successfully.

-10004 A required parameter is missing.
18

Chapter 2: Operations
Syntax
assetLoad(java.lang.String authusername,
java.lang.String authpassword,
java.lang.String TYPE,
java.lang.String OBJECTID,
java.lang.String FIELD,
java.lang.String VALUE,
java.lang.String EXCLUDE,
java.lang.String FIELDLIST)

Parameters
authusername (required)

(String) Name of the user to log in, as registered in Content Server.

authpassword(required)
(String) Password for the associated user name.

TYPE (required)
(String) The asset type of the asset that you want to retrieve from the database. For
your web service, the value must be page.
Typically, you provide TYPE and OBJECTID. When you know that a specific field/
value pair can uniquely identify the asset, you can provide TYPE and the field/value
pair instead. Either the OBJECTID or the FIELD and VALUE combination, but not both,
are required to load an asset.

OBJECTID (optional)
(String) The unique identifying number that references the Asset object. Not required
if you use TYPE with the FIELD and VALUE paired parameters.

FIELD (optional)
(String) A field is any one of the column names for the asset. For example, standard
fields for CS-Direct assets include name, template, status, description,
subtype, category, modified, headline, byline, and body. Use the field name
in conjunction with the VALUE parameter as the name portion of a name/value pair.
The field name and its corresponding value uniquely identifies the asset to be loaded.
Note that if the field/value pair that you supply identifies more than one asset, the
AssetLoad operation uses the first one that it finds.
Not required if you use TYPE with the OBJECTID parameter.

VALUE (optional)
(String) Value that corresponds to the field specified by the FIELD parameter. Paired
with the field name, this parameter uniquely identifies an asset by supplying the
associated value.
Not required if you use TYPE with the OBJECTID parameter.

Note

This operation does not load flex assets.
19

CSEE Web Services Reference
EXCLUDE (optional)
(Boolean) Depending on whether the value of EXCLUDE is True or False, the
AssetLoad operation either returns the fields specified in the FIELDLIST or returns
the fields that are not contained in the list.
True indicates that all fields except the fields in the FIELDLIST are to be returned.
False indicates that only fields in FIELDLIST are to be returned. That is, it returns
fields specified with the FIELDLIST parameter. The default value is False.

FIELDLIST (optional)
(String) Comma-separated list of fields that you want to include or exclude from the
request for asset fields. The EXCLUDE parameter, which operates on the FIELDLIST,
determines whether the fields in the list are returned or whether all fields other than
those in the list are returned.

Description
Based on the specified parameters, AssetLoad fills an Asset object with data. It
executes a database query to retrieve an instance of the specified asset and then saves the
instance in memory.

Multiple parameters provide different ways to identify the asset to load. Enter the
parameter or parameter combination that is the most convenient identifier for your
application, and leave blank placeholders for the unused parameters. Although only the
TYPE parameter is required, you must also supply at least the OBJECTID or the FIELD
and VALUE paired parameters. You can identify the asset that you want to load by
specifying its asset type and object ID, or by specifying its asset type combined with a
field/value pair that uniquely identifies the asset.

Typically, each web service calls the AssetLoad operation to start so that subsequent
code can extract and display the loaded data on pages. All input parameters are strings.

Note that the AssetLoad operation does not load information from the AssetPublication
table or the AssetRelationTree table. If you need information from the AssetRelationTree
table, use the AssetGetChildren operation. If you need information from other auxiliary
tables, you can issue queries using the object ID of the loaded asset.

Returns
Asset object that contains the requested field values.

errno
The possible values of errno include:

Value Description

-10001 The implementing class is invalid.

-10002 There is a missing method for the implementing class.

-10003 The method could not be invoked successfully.

-10004 A required parameter is missing.

-10005 The requested object is not in the object pool (is not loaded into
memory).

-10006 The object ID is not valid.
20

Chapter 2: Operations
Example
This code loads a page asset, identifying it by type and object ID:

AssetService service = (AssetService)new AssetService_Impl();
AssetPortType port = service.getAssetPort();
LoadedAsset la = port.assetLoad("user_author", "demo", "Page",
"968685128066", null, null, null, null);

See Also
AssetGetChildren

-10007 The version of the object is not valid.

-10009 More than one object met the specified criteria.

Value Description
21

CSEE Web Services Reference
AssetSet Operations
AssetSet operations cover the functions required to retrieve attribute values for flex assets.
The AssetSet group comprises the following operations:

• ASGetAssetCount

• ASGetAssetList

• ASGetAttributeValues

• ASGetMultipleValues

ASGetAssetCount
Returns a count of assets that exactly match the criteria specified by the SEARCHSTATE
parameter.

Syntax
ASGetAssetCount(java.lang.String authusername,
java.lang.String authpassword,
com.FatWire.IList LIST,
java.lang.String ASSETTYPES,
com.FatWire.IList ASSETTYPESLIST,
com.FatWire.Searchstate SEARCHSTATE,
java.lang.String LOCALE,
com.FatWire.IList ASSETS)

Parameters
authusername (required)

(String) Name of the user to log in, as registered in Content Server.

authpassword(required)
(String) Password for the associated user name.

LIST (Optional)
(IList object) Input parameter. Name of the list that determines sort order. The list
describes how the returned assets are to be sorted.
The IList object has three columns:
attributetypename

attributename – Either name of attribute, sort by, or one of the following special
values: _ASSETTYPE_ (order by asset type) or _RATING_ (order by asset rating—CS-
Engage only)
direction – Can be either ascending or descending

ASSETTYPESLIST (Optional)
(IList object) Input list containing one assettype column that includes values that
restrict the count.
Specify either ASSETTYPESLIST and ASSETS or SEARCHSTATE and ASSETTYPES,
but not both. If you specify ASSETTYPESLIST, ASSETS is required. If both
parameters are supplied, ASSETTYPESLIST is used by default.
22

Chapter 2: Operations
SEARCHSTATE (Optional)
(Searchstate object) Input parameter. Searchstate object that contains the
criteria to match. The Searchstate object describes the search constraints, if any.
Specify either SEARCHSTATE and ASSETTYPES or ASSETTYPESLIST and ASSET, but
not both. If both parameters are supplied, ASSETTYPESLIST and ASSETS is used by
default. To create a SearchState, use the SearchState Objects.

ASSETTYPES (Optional)
(String) Input parameter. Name of a list of asset types to include in building the asset
count. Comma separated list of flex asset types to match. If null, then all assets in the
system are considered. Specify either ASSETTYPESLIST and ASSETS or
SEARCHSTATE and ASSETTYPES, but not both.

LOCALE (Optional)
(String) Language and country specification associated with the asset. Locale ensures
that information and figures on a page are presented to users according to accepted
conventions in their country. A locale specification comprises two-character language
and country codes separated by an underscore character and enclosed in quotes. For
example, for English speakers in the United States:"en_us"

ASSETS
(IList) Name of a list of assets passed to Content Server that form the asset set. The list
of assets is an IList with two columns (assetid and assettype). This operation is
required if you are supplying a list of assets to build the asset set instead of a
SearchState. Specify either ASSETTYPELIST and ASSETS or ASSETTYPES and
SEARCHSTATE, but not both. If both parameters are supplied, ASSETS is used by
default.

Returns
Count of assets that match the critera specified by the SEARCHSTATE parameter.

Example
The following code creates an asset types list from SearchState input.

AssetsetService service = (AssetsetService)new
AssetsetService_Impl();
AssetsetPortType port = service.getAssetsetPort();

Searchstate ss = new Searchstate();

String retVal = port.ASGetAssetCount("user_author", "demo", null,
"AArticles", null, ss, null, null);

ASGetAssetList
Returns a list of flex assets that exactly match the specified criteria or the created assetset.

Syntax
ASGetAssetList(java.lang.String authusername,
java.lang.String authpassword,
com.FatWire.IList LIST,
java.lang.String MAXCOUNT,
java.lang.String METHOD,
23

CSEE Web Services Reference
java.lang.String ASSETTYPES,
com.FatWire.IList ASSETTYPESLIST,
com.FatWire.Searchstate SEARCHSTATE,
java.lang.String LOCALE,
com.FatWire.IList ASSETS)

Parameters
authusername (required)

(String) Name of the user to log in, as registered in Content Server.

authpassword(required)
(String) Password for the associated user name.

LIST (Optional)
(IList object) Name of the list that determines how the returned assets are to be
sorted. The list has three columns:
- attributetypename

- attributename – Either name of attribute, sort by, or one of the following
special values: _ASSETTYPE_ (order by asset type) or _RATING_ (order by asset
rating—CS-Engage only)

- direction – Can be either ascending or descending

ASSETTYPESLIST (Optional)
(IList object) Input list containing one assettype column that includes values that
restrict the count.
Specify either ASSETTYPESLIST and ASSETS or SEARCHSTATE and ASSETTYPES,
but not both. If you specify ASSETTYPESLIST, ASSETS is required. If both
parameters are supplied, ASSETTYPESLIST is used by default.

SEARCHSTATE (Optional)
(Searchstate object) Input parameter. Searchstate object that contains the
criteria to match. The Searchstate object describes the search constraints, if any.
Specify either SEARCHSTATE and ASSETTYPES or ASSETTYPESLIST and ASSET, but
not both. If both parameters are supplied, ASSETTYPESLIST and ASSETS is used by
default.

ASSETTYPES (Optional)
(String) Input parameter. Name of a list of asset types to include in building the asset
count. Comma separated list of flex asset types to match. If null, then all assets in the
system are considered. Specify either ASSETTYPESLIST and ASSETS or
SEARCHSTATE and ASSETTYPES, but not both.

METHOD (Optional)
(String) Must be either random or highest. Required only if the value of maxcount is
less than the number of items described. The METHOD parameter can have one of the
following values:
- random – for random weighted selection based on rating
- highest – for best selection based on rating
This parameter is meaningful only for use with the CS-Engage product.

MAXCOUNT (optional)
(int) Maximum number of rows to return in the list. A value of 0 (zero) indicates all. If
the count is less than the number that otherwise is returned, then items are selected
according to the specified METHOD argument.
24

Chapter 2: Operations
LOCALE (Optional)
(String) Language and country specification associated with the asset. Locale ensures
that information and figures on a page are presented to users according to accepted
conventions in their country. A locale specification comprises two-character language
and country codes separated by an underscore character and enclosed in quotes. For
example, for English speakers in the United States:"en_us"

ASSETS
(IList) Name of a list of assets passed to Content Server that form the asset set. The list
of assets is an IList with two columns (assetid and assettype). This operation is
required if you are supplying a list of assets to build the asset set instead of a
SearchState. Specify either ASSETTYPELIST and ASSETS or ASSETTYPES and
SEARCHSTATE, but not both. If both parameters are supplied, ASSETS is used by
default.

Description
Returns a list of flex assets that exactly match the criteria specified by either the
SEARCHSTATE parameter or the AssetList. The operation only works with flex assets,
which are assets supplied with the CS-Direct Advantage and CS-Engage products. The list
contains two columns: assettype and assetid.

Returns
A list of assets for the created assetset.

Example
The following code demonstrates GetAssetList:

AssetsetService service = (AssetsetService)new
AssetsetService_Impl();
AssetsetPortType port = service.getAssetsetPort();

IList myList = port.ASGetAssetList("user_author", "demo", null,
null, null, "Products", null, null, null, null);

ASGetAttributeValues
Returns specified attribute values for all flex assets for the created assetset.

Syntax
ASGetAttributeValues(java.lang.String authusername,
java.lang.String authpassword,
java.lang.String TYPENAME,
java.lang.String ATTRIBUTE,
java.lang.String ORDERING,
java.lang.String ASSETTYPES,
com.FatWire.IList ASSETTYPESLIST,
com.FatWire.Searchstate SEARCHSTATE,
java.lang.String LOCALE,
com.FatWire.IList ASSETS)
25

CSEE Web Services Reference
Parameters
authusername (required)

(String) Name of the user to log in, as registered in Content Server.

authpassword(required)
(String) Password for the associated user name.

TYPENAME (optional)
(String) Input parameter. The internal asset name for the attribute (either CAttributes
for content attribute, or PAttributes for product attribute). CAttribute specifies the
content flex asset type. PAttribute indicates the product flex asset type. If you do not
specify TYPENAME, a value is supplied from a property in the gator.ini property
file: mwb.defaultattributes=PAttributes. The default value, which is
PAttributes, may be changed.

ATTRIBUTE (required)
Input parameter. Name of the attribute for which you want to retrieve values.

ORDERING (optional)
Input parameter. Indicates whether the result list should be in ascending or descending
order. Value can be either ascending or descending.

ASSETTYPES (Optional)
(String) Input parameter. Name of a list of asset types to include in building the asset
count. Comma separated list of flex asset types to match. If null, then all assets in the
system are considered. Specify either ASSETTYPESLIST and ASSETS or
SEARCHSTATE and ASSETTYPES, but not both.

ASSETTYPESLIST (Optional)
(IList object) Input list containing one assettype column that includes values that
restrict the count.
Specify either ASSETTYPESLIST and ASSETS or SEARCHSTATE and ASSETTYPES,
but not both. If you specify ASSETTYPESLIST, ASSETS is required. If both
parameters are supplied, ASSETTYPESLIST is used by default.

SEARCHSTATE (Optional)
(Searchstate object) Input parameter. Searchstate object that contains the
criteria to match. The Searchstate object describes the search constraints, if any.
Specify either SEARCHSTATE and ASSETTYPES or ASSETTYPESLIST and ASSET, but
not both. If both parameters are supplied, ASSETTYPESLIST and ASSETS is used by
default.

LOCALE (optional)
(String) Language and country specification associated with the asset. Locale ensures
that information and figures on a page are presented to users according to accepted
conventions in their country. A locale specification comprises two-character language
and country codes separated by an underscore character and enclosed in quotes. For
example, for English speakers in the United States:"en_us"

ASSETS (Optional)
(IList) Name of a list of assets passed to Content Server that form the asset set. The list
of assets is an IList with two columns (assetid and assettype). This operation is
required if you are supplying a list of assets to build the asset set instead of a
SearchState. Specify either ASSETTYPELIST and ASSETS or ASSETTYPES and
SEARCHSTATE, but not both. If both parameters are supplied, ASSETS is used by
default.
26

Chapter 2: Operations
Returns
List with a column named value that contains values for the specified attribute for all flex
assets in the created assetset.

Example
The following code creates a SearchState, passes the SearchState to the
GetAttributeValues operation, and returns values of the attributes.

AssetsetService service = (AssetsetService)new
AssetsetService_Impl();
AssetsetPortType port = service.getAssetsetPort();

Searchstate ss = new Searchstate();

IList myList = port.ASGetAttributeValues("user_author", "demo",
"PAttributes", "FundFamily", null, "Products", null, ss , null,
null);

ASGetMultipleValues
Returns lists of values for specified attributes for assets that match criteria included in the
SEARCHSTATE parameter.

Syntax
ASGetMultipleValues(java.lang.String authusername,
java.lang.String authpassword,
com.FatWire.IList LIST,
java.lang.String BYASSET,
java.lang.String PREFIX, java.lang.String ASSETTYPES,
com.FatWire.IList ASSETTYPESLIST,
com.FatWire.Searchstate SEARCHSTATE,
java.lang.String LOCALE,
com.FatWire.IList ASSETS)

Parameters
authusername (required)

(String) Name of the user to log in, as registered in Content Server.

authpassword(required)
(String) Password for the associated user name.

LIST (required)
(IList object) Input parameter. Name of the list that determines sort order. This is an
object that describes how the returned assets are to be sorted.
The list has three columns:
attributetypename

attributename – Either name of attribute, sort by, or one of the following special
values: _ASSETTYPE_ (order by asset type) or _RATING_ (order by asset rating; for
use with the CS-Engage product only)
direction – Can be either ascending or descending
27

CSEE Web Services Reference
BYASSET (required)
(Boolean) Either TRUE or FALSE. The value indicates whether to group and create
lists for each attribute for each individual asset in the assetset (TRUE), or to group all
the attribute values for all assets together into one list per attribute (FALSE).

PREFIX (required)
(String) String to prefix to the named of each list returned.

ASSETTYPES (Optional)
(String) Input parameter. Name of a list of asset types to include in building the asset
count. Comma separated list of flex asset types to match. If null, then all assets in the
system are considered. Specify either ASSETTYPESLIST and ASSETS or
SEARCHSTATE and ASSETTYPES, but not both.

ASSETTYPESLIST (Optional)
(IList object) Input list containing one assettype column that includes values that
restrict the count.
Specify either ASSETTYPESLIST and ASSETS or SEARCHSTATE and ASSETTYPES,
but not both. If you specify ASSETTYPESLIST, ASSETS is required. If both
parameters are supplied, ASSETTYPESLIST is used by default.

SEARCHSTATE (Optional)
(Searchstate object) Input parameter. Searchstate object that contains the
criteria to match. The Searchstate object describes the search constraints, if any.
Specify either SEARCHSTATE and ASSETTYPES or ASSETTYPESLIST and ASSET, but
not both. If both parameters are supplied, ASSETTYPESLIST and ASSETS is used by
default.

LOCALE (optional)
(String) Language and country specification associated with the asset. Locale ensures
that information and figures on a page are presented to users according to accepted
conventions in their country. A locale specification comprises two-character language
and country codes separated by an underscore character and enclosed in quotes. For
example, for English speakers in the United States:"en_us"

ASSETS (Optional)
(IList) Name of a list of assets passed to Content Server that form the asset set. The list
of assets is an IList with two columns (assetid and assettype). This operation is
required if you are supplying a list of assets to build the asset set instead of a
SearchState. Specify either ASSETTYPELIST and ASSETS or ASSETTYPES and
SEARCHSTATE, but not both. If both parameters are supplied, ASSETS is used by
default.

Returns
Lists of attribute values in a column named value.

Example
The following code creates a SearchState, passes the SearchState and list objects to the
GetMultipleValues operation, and returns names and values of the attributes:

AssetsetService service = (AssetsetService)new
AssetsetService_Impl();
AssetsetPortType port = service.getAssetsetPort();
IList inList = new IList();

String colName[] = {"attributename", "attributetypename",
"direction" };
28

Chapter 2: Operations
inList.setColName(colName);

String item1[] = {"Name", "PAttributes", "ascending"};
String item2[] = {"FundType", "PAttributes", "ascending"};

StringRowsType items[] = new StringRowsType[2];
items[0] = new StringRowsType();
items[1] = new StringRowsType();

items[0].setItem(item1);
items[1].setItem(item2);

inList.setStringRow(items);
Searchstate ss = new Searchstate();
ss.setOP("and");
IList outList = port.ASGetMultipleValues("user_author", "demo",
inList, "true", "th", "Products", null, ss, null, null);
29

CSEE Web Services Reference
Miscellaneous Operations
Miscellaneous operations cover basic Content Server functions such as returning a blob
stored in a particular table. Separate operations return blobs for standard assets and flex
assets.

The Miscellaneous group comprises the following operations:

• MiscGetBlob

• MiscGetMungoBlob

• MiscSearch

MiscGetBlob
Returns a blob (binary large object) stored in Content Server.

Syntax
miscGetBlob(java.lang.String authusername,
java.lang.String authpassword,
java.lang.String BLOBHEADER,
java.lang.String BLOBTABLE,
java.lang.String BLOBCOL,
java.lang.String BLOBWHERE,
java.lang.String BLOBKEY)

Parameters
authusername (required)

(String) Name of the user to log in, as registered in Content Server.

authpassword(required)
(String) Password for the associated user name.

BLOBHEADER (Optional)
(String) Description of the image format, which corresponds to the mimetype for
returned data in the form description/extension. Specify any one of the
following possible values: image/jpeg, image/gif, image/jpg.

BLOBTABLE (required)
(String) The name of the CS-Direct table that stores assets of this type. Typically, this
is the CS-Direct ImageFile asset type. If you create your own asset type, specify that
asset type instead.

BLOBCOL (required)
(String) The name of the column that contains the binary data.

BLOBWHERE (required)
(String) Value of the primary key for the row that contains the binary data.

BLOBKEY (required)
(String) The name of the column used as the primary key. Typically, this is id, unless
otherwise defined.

Returns
Blob object; for example, a PDF file. The blob is base-64 encoded and wrapped in XML.
30

Chapter 2: Operations
Exceptions
None.

Example
The following Java code loads an article identified by object ID and gets text properties
and binary properties.

MiscService service = (MiscService)new MiscService_Impl();
MiscPortType port = service.getMiscPort();
byte[] blobOUT = port.miscGetBlob("user_author", "demo", null,
"Article", "urlbody", "984156693953", "id");

MiscGetMungoBlob
Returns a blob (binary large object) stored as an attribute of type blob for a Content Server
flex asset.

Syntax
miscGetMungoBlob(java.lang.String authusername,
java.lang.String authpassword, j
ava.lang.String BLOBKEY)

Parameters
authusername (required)

(String) Name of the user to log in, as registered in Content Server.

authpassword(required)
(String) Password for the associated user name.

BLOBKEY (Required)
(String) ID for the mungoblob flex asset. The ID value comes from an
ASGetAttributeValues operation that specifies a flex asset attribute of type blob.

Exceptions
Possible error values include:

Example
The following code loads and saves a mungo blob (PDF file).

MiscService service = (MiscService)new MiscService_Impl();
MiscPortType port = service.getMiscPort();

Error Text

Need Blob Key parameter

Could not communicate with server

Invalid response from server
31

CSEE Web Services Reference
byte[] blobOUT = port.miscGetMungoBlob("user_author", "demo",
"1011495632110");

See Also
ASGetAttributeValues

MiscSearch
Searches a specified index from either the AltaVista or Verity search engines.

Syntax
miscSearch(java.lang.String authusername,
java.lang.String authpassword,
java.lang.String INDEX,
java.lang.String WHAT,
java.lang.String QUERYPARSER,
java.lang.String RELEVANCE,
java.lang.String LIMIT,
java.lang.String CHARACTERSET,
java.lang.String SEARCHENGINE)

Parameters
INDEX (optional)

(String) The name of the search index to search. If null, the default index is specified
in the ContentServer properties av.defaultindex or verity.defaultindex, as
appropriate.

WHAT (Required)
(String) Query to submit. The query is a What clause that contains search criteria in
the language of the search-engine parser.

QUERYPARSER (optional)
(String) Name of the search engine query parser to use.
The AltaVista search engine supports three search types: Simple, Advanced, and
Combined. Advanced is the default option if no QueryParser parameter is
specified.
The Verity search engine supports three query parsers: Simple, FreeText, and
BoolPlus. The QueryParser parameter tells the Verity search engine the syntax of
the What clause. If the QueryParser argument is omitted in the call, then the
Simple parser is used by default.The parser may be specified by the
verity.parser property in the futuretense.ini file.

RELEVANCE (optional)
(String) Search engine relevance term in string format. Can be null.

LIMIT (optional)
Maximum number of assets to return.

CHARACTERSET (optional)
(String) Name of the character set to use for the search.

SEARCHENGINE
(String) Name of the search engine to use.
32

Chapter 2: Operations
Description
The Search operation searches an index via the Content Server ICS Search utility. The
result set of the query is stored in a list.

Returns
Returns a list with the following columns:

ENTRY
Name of the index entry that matches the search criteria.

DETAIL
Details of the index entry that matches the search criteria.

DATE
Date the entry was added or the date specified when the index was added. Format is in
Java SQL.

RELEVANCE
Relevance value associated with the search result. The closer the value is to 1, the
more useful and relevant the search result is likely to be.

errno
The possible values of errno include:

Example
The following code searches for an AltaVista index given a query specified by the What
parameter and an index. The example assumes that the AltaVista search is configured for
article assets:

MiscService service = (MiscService)new MiscService_Impl();
MiscPortType port = service.getMiscPort();
IList myList = port.miscSearch("user_author", "demo",
"c:\\JumpStart\\futuretense\\Storage\\sedb\\Article.avx",

Value Description

-101 No search results.

-800 Bad search type.

-801 Cannot load search engine.

-802 Unsupported search function.

-805 No default index specified.

-806 Unknown search engine.

-809 Search failed.

-810 Bad character set.

-811 Could not call native method.

-812 Index does not exist.
33

CSEE Web Services Reference
 "description:Burlington", "Simple", null, null, null,
null);
34

Chapter 2: Operations
SitePlan Operations
SitePlan operations enable you to examine the page hierarchy of the site. They return the
children and properties of any node in the hierarchy.

The SitePlan group comprises the following operations:

• SPGetChildren

• SPGetProperties

SPGetChildren
Returns a list of child nodes for the specified SitePlan node.

Syntax
SPGetChildren(java.lang.String authusername,
java.lang.String authpassword,
java.lang.String NODEID,
java.lang.String CODE,
java.lang.String CHILDTYPE,
java.lang.String CHILDID,
java.lang.String ORDER)

Parameters
authusername (required)

(String) Name of the user to log in, as registered in Content Server.

authpassword(required)
(String) Password for the associated user name.

NODEID (required)
(String) ID of the node for which you want to return child nodes.

CODE (optional)
(String) The name of the association that describes the relationship between the child
node and the parent node. Restricts the list of children to children whose pages are
designated as either placed or unplaced relationships. Placed pages are those that have
been set to a particular level in the tree hierarchy. Unplaced pages are those pages that
have yet to be placed, or that are intentionally left unplaced.
Valid values are either Placed or Unplaced.

CHILDTYPE (optional)
(String) Restricts the list to nodes of a specific child-asset type, which must be Page.
You can combine this parameter with the ChildID parameter to request one specific
node.

CHILDID (optional)
(String) The object ID of the specific child node to return. If you supply a child ID,
you must also use the associated CHILDTYPE parameter. If no CHILDID parameter is
specified, the GetChildren operation returns all children for the asset.
35

CSEE Web Services Reference
ORDER (optional)
(String) Name of the asset column (field) used to sort the results, specified as a string.
The fields to sort the list by, and whether the sort result on those fields is ascending
or descending. By default, the sort is ascending. If you specify more than one
field, separate the field names with a comma.
For example, if you specify ORDER="nrank", the list is sorted by rank starting
at number 1. If you want the list sorted by descending rank, use ORDER="nrank
desc".

Description
This operation queries the SitePlanTree table for a list of the child nodes of the node that
you specify, listing each child with a value for all of the fields from that table (nid,
nparentid, nrank, otype, oid, and ncode).

You can restrict the list of children nodes by association name (CODE), CHILDTYPE,
CHILDID, and rank (ORDER).

If you specify Page for the CHILDTYPE parameter, the list of children is a join of the
SitePlanTree and the Page table.

Returns
A list of SitePlan child nodes.

errno
The possible values of errno include:

Example
This following example code logs in the user, extracts the child pages for the page asset
identified as the node ID (nid) of the page:

SitePlanService service = (SitePlanService)new
SitePlanService_Impl();
SitePlanPortType port = service.getSitePlanPort();
IList myList = port.SPGetChildren("user_author", "demo",
"968685129229", null, null, null, null);

Value Description

-111 The asset has no children.

-10004 A required parameter is missing.

-10005 The requested object is not in the object pool (is not loaded into
memory).

-10006 The object ID is not valid.

-10007 The version of the object is not valid.
36

Chapter 2: Operations
SPGetProperties
Retrieves the properties for the specified node ID.

Syntax
SPGetProperties(java.lang.String authusername,
java.lang.String authpassword,
java.lang.String NODEID)

Parameters
authusername (required)

(String) Name of the user to log in, as registered in Content Server.

authpassword(required)
(String) Password for the associated user name.

NODEID (Required)
 (String) ID number of the parent SitePlan node. Content Server generates the node
ID.

Description
Retrieves the properties for the specified node ID.To get the NodeID, first call the
AssetLoad operation to retrieve the asset, and then call the AssetGetSiteNode operation to
extract the node ID number.

Returns
A list that contains the SitePlan node properties.

errno
The possible values of errno include:

Example
This code extracts the child pages for the page asset identified as the node ID of the page:

SitePlanService service = (SitePlanService)new
SitePlanService_Impl();
SitePlanPortType port = service.getSitePlanPort();
IList myList = port.SPGetProperties("user_author", "demo",
"968685129229");

Value Description

-10004 A required parameter is missing.

-10005 The requested object is not in the object pool (is not loaded into
memory).
37

CSEE Web Services Reference
38

Chapter 3

Objects
This chapter describes input objects to web services operations. It also lists the methods
that can be called on them.

The following objects are inputs to the AssetSet Operations:

• IList Objects

• SearchState Objects

Note

Syntax for web services operations and client-code examples are provided
in Java. The exact syntax you use will depend on the programming
language in which you code your client program.

Regardless of the tool and language you use to generate the client,
parameter names for required inputs and the order in which they are
passed remain the same, and the output is always SOAP (simple object
access protocol). The examples in this chapter were generated using the
Apache Axis tool.
39

CSEE Web Services Reference
SearchState Objects
The SearchState object is an optional input to any of the AssetSet Operations defined in
the AssetSet.wsdl file. Searchstate methods, which reside inside classes generated by
your client program, create the SearchState object and instantiate and populate
SearchState constraint objects.

SearchStates and the AssetSet operations apply to flex assets only. AssetSet operations
accept either a SearchState or an IList as input, but not both.

The SearchState group comprises the following objects:

• LikeConstraint

• NestedConstraint

• RangeConstraint

• RichTextConstraint

• SearchState

• StandardConstraint

The SearchState object must be instantiated first because it contains the rest of the
SearchState methods.

LikeConstraint
A LikeConstraint object is an input to a SearchState object. LikeConstraint
methods instantiate the LikeConstraint object and set parameters.

Methods
new LikeConstraint()

Constructor method that instantiates the LikeConstraint object and creates
methods that can be called on it. In turn, the LikeConstraint object can be added to
the SearchState object.

setBUCKET(java.lang.String BUCKET)
Sets the value for the BUCKET parameter. This method has a corresponding get
method.

setTYPENAME(java.lang.String TYPENAME)
Sets the value for the TYPENAME parameter. This method has a corresponding get
method.

setATTRIBUTE(java.lang.String ATTRIBUTE)
Sets the value for the ATTRIBUTE parameter. This method has a corresponding get
method.

setIMMEDIATEONLY(java.lang.String IMMEDIATEONLY)
Sets the value for the IMMEDIATEONLY parameter. There is a corresponding get
method for this method.

setLIST(com.FatWire.IList LIST)
Sets the value for the LIST parameter. This method has a corresponding get method.

setCASEINSENSITIVE(java.lang.String CASEINSENSITIVE)
Sets the value specified by the CASEINSENSITIVE parameter. This method has a
corresponding get method.
40

Chapter 3: Objects
Parameters
The following parameters can be set using a corresponding LikeConstraint method:

BUCKET (optional)
Input parameter. The bucket name. If not specified, the attribute name is used.

TYPENAME (optional)
Input parameter. The internal asset name for the attribute (either CAttributes for
content attribute, or PAttributes for product attribute). If you do not specify
TYPENAME, a value is supplied from a property in the gator.ini property file:
mwb.defaultattributes=PAttributes. The default is PAttributes and the
value may be changed.

ATTRIBUTE (required)
Input parameter. Name of the attribute to constrain.

LIST (optional)
Input parameter. A list of the constrained values for the attribute. If specified, one or
more of the values must match the attribute for a product to meet the constraint. The
default is that all assets that have any value for the attribute match the constraint. The
column is called value.

IMMEDIATEONLY (optional)
Input parameter. A Boolean value: true indicates that the search is limited to values
directly associated with the specified attribute; false (the default) extends the search
to include values inherited from a parent.

CASEINSENSITIVE (optional)
Input parameter. A Boolean value: true indicates that the comparison is case-
insensitive; false (the default) considers case in the comparison.

Description
Associated methods set parameter values that populate the LikeConstraint object. The
constraint, which is similar to a database LIKE operation, accepts wild cards; for
example, %. If the attribute name is already in the SearchState, then the new constraint
replaces the old constraint.

The LikeConstraint object can be added to the SearchState object with the
correponding SearchState methods.

Example
This code instantiates a LikeConstraint object and sets parameters for it:

LikeConstraint like_cons = new LikeConstraint();
like_cons.setTYPENAME("PAttributes");
like_cons.setATTRIBUTE("FundFamily");

See Also
Methods for adding various constraint objects to a SearchState. These are available when
you instantiate the SearchState object.

NestedConstraint

RangeConstraint

RichTextConstraint

StandardConstraint
41

CSEE Web Services Reference
NestedConstraint
A NestedConstraint object is an input to a SearchState object.
NestedConstraintConstraint methods instantiate the NestedConstraint object and set
different parameters.

Methods
new NestedConstraint()

Constructor method that instantiates the NestedConstraintConstraint object
and creates methods that can be called on it. In turn, the
NestedConstraintConstraint object can be added to the SearchState object.

setBUCKET(java.lang.String BUCKET)
Sets the value for the BUCKET parameter. This method has a corresponding get
method.

setSEARCHSTATE(com.FatWire.Searchstate SEARCHSTATE
Sets the value for the SEARCHSTATE parameter. This method has a corresponding get
method.

Parameters
BUCKET(required)

Input parameter. The bucket name. If not specified, the attribute name is used.

SEARCHSTATE (required)
Input parameter. Name of the SearchState object to nest inside of the object specified
by NAME.

Description
Associated methods set parameter values that populate the NestedConstraint object.
The NestedConstraint object can be added to the SearchState object with the
correponding SearchState methods.

Example
This code instantiates the NestedConstraint object and sets the BUCKET parameter:

NestedConstraint nest_cons = new NestedConstraint();
nested_cons.setBUCKET("PAttributes");

See Also
Methods for adding various constraint objects to a SearchState. These are available when
you instantiate the SearchState object.

LikeConstraint

RangeConstraint

RichTextConstraint

StandardConstraint
42

Chapter 3: Objects
RangeConstraint
A RangeConstraint object is an input to a SearchState object. RangeConstraint
methods instantiate the RangeConstraint object and set different parameters.

Methods
new RangeConstraint()

Constructor method that instantiates the RangeConstraint object and creates
methods that can be called on it. In turn, the RangeConstraint object can be added
to the SearchState object.

setBUCKET(java.lang.String BUCKET)
Sets the value for the BUCKET parameter. This method has a corresponding get
method.

setTYPENAME(java.lang.String TYPENAME)
Sets the value for the TYPENAME parameter. This method has a corresponding get
method.

setATTRIBUTE(java.lang.String ATTRIBUTE)
Sets the value for the ATTRIBUTE parameter. This method has a corresponding get
method.

setLOWEREQUAL(java.lang.String LOWEREQUAL)
Sets the value for the LOWEREQUAL parameter. This method has a corresponding get
method.

setLOWER(java.lang.String LOWER)
Sets the value for the LOWER parameter. This method has a corresponding get
method.

setUPPEREQUAL(java.lang.String UPPEREQUAL)
Sets the value for the UPPEREQUAL parameter. This method has a corresponding get
method.

setUPPER(java.lang.String UPPER)
Sets the value for the UPPER parameter. This method has a corresponding get
method.

setCASEINSENSITIVE(java.lang.String CASEINSENSITIVE)
Sets the value specified by the CASEINSENSITIVE parameter. This method has a
corresponding get method.

Parameters
The following parameters can be set using a corresponding LikeConstraint method:

BUCKET (optional)
Input parameter. The bucket name. If not specified, the attribute name is used.

TYPENAME (optional)
Input parameter. The internal asset name for the attribute (either CAttributes for
content attribute, or PAttributes for product attribute). If you do not specify
TYPENAME, a value is supplied from a property in the gator.ini property file:
mwb.defaultattributes=PAttributes. The default is PAttributes and the
value may be changed.

ATTRIBUTE (required)
Input parameter. Name of the attribute to constrain.
43

CSEE Web Services Reference
LOWER | LOWEREQUAL (required)
Input parameter. The bottom end of the range.

UPPER | UPPEREQUAL (required)
Input parameter. The top end of the range.

CASEINSENSITIVE (optional)
Input parameter. A Boolean value: true indicates that the comparison is case-
insensitive; false (the default) considers case in the comparison.

Description
Associated methods set parameter values that populate the RangeConstraint object.
The RangeConstraint object can be added to the SearchState object with the
correponding SearchState methods.

Example
This code instantiates the RangeConstraint object and sets the TYPENAME and
ATTRIBUTE parameters.

RangeConstraint range_cons = new RangeConstraint();
range_cons.setTYPENAME("PAttributes");
range_cons.setATTRIBUTE("FundFamily");

See Also
Methods for adding various constraint objects to a SearchState. These are available when
you instantiate the SearchState object.

LikeConstraint

NestedConstraint

RichTextConstraint

StandardConstraint

RichTextConstraint
The RichTextConstraint object is an input to a SearchState object.
RichTextConstraint methods instantiate the RichTextConstraint object and set
different parameters.

Methods
new RichTextConstraint()

Constructor method that instantiates the RichTextConstraint object and creates
methods that can be called on it. In turn, the RichTextConstraint object can be
added to the SearchState object.

setBUCKET(java.lang.String BUCKET)
Sets the value for the BUCKET parameter. This method has a corresponding get
method.

setTYPENAME(java.lang.String TYPENAME)
Sets the value for the TYPENAME parameter. This method has a corresponding get
method.
44

Chapter 3: Objects
setATTRIBUTE(java.lang.String ATTRIBUTE)
Sets the value for the ATTRIBUTE parameter. This method has a corresponding get
method.

setVALUE(java.lang.String VALUE)
Sets the value for the VALUE parameter. This method has a corresponding get
method.

setPARSER(java.lang.String PARSER)
Sets the value for the PARSER parameter. This method has a corresponding get
method.

setCONFIDENCE(java.lang.String CONFIDENCE)
Sets the value for the CONFIDENCE parameter. This method has a corresponding get
method.

setMAXCOUNT(java.lang.String MAXCOUNT)
Sets the value for the MAXCOUNT parameter. This method has a corresponding get
method.

Parameters
BUCKET (optional)

Input parameter. The bucket name. If not specified, the attribute name is used.

TYPENAME (optional)
Input parameter. The internal asset name for the attribute (either CAttributes for
content attribute, or PAttributes for product attribute). If you do not specify
TYPENAME, a value is supplied from a property in the gator.ini property file:
mwb.defaultattributes=PAttributes. The default is PAttributes and the
value may be changed.

ATTRIBUTE (required)
Input parameter. Name of the attribute to constrain.

VALUE (required)
Input parameter. The rich-text search criteria, which should apply to the attribute.

PARSER (optional)
Input parameter. The search-engine-dependent rich text parser to use.

CONFIDENCE (required)
Input parameter. The minimum confidence level for the match. This parameter is
search engine dependent; adjust the value lower if you are not getting the desired
results.

MAXCOUNT (optional)
Input parameter. The maximum number of answers desired for the match. If this
parameter is not specified, the number of results is limited only by the confidence and
the number of products.

Description
Associated methods set parameter values that populate the RichTextConstraint
object. The RichTextConstraint object can be added to the SearchState object
with the correponding SearchState methods.

Adds an index name and rich-text expression to the list of rich-text criteria for items. If the
attribute name is already mentioned as part of a rich-text constraint in the SearchState,
then the existing constraint is removed first.This tag requires that the attribute was created
as indexed.
45

CSEE Web Services Reference
Example
This code instantiates a RichTextConstraint object and set the TYPENAME and
ATTRIBUTE parameters.

RichTextConstraint richtext_cons = new RichTextConstraint();
richtext_cons.setTYPENAME("PAttributes");
richtext_cons.setATTRIBUTE("FundFamily");

See Also
Methods for adding various constraint objects to a SearchState. These are available when
you instantiate the SearchState object.

LikeConstraint

NestedConstraint

RangeConstraint

StandardConstraint

SearchState
A SearchState is an input to the AssetSet operations. SearchState methods instantiate the
SearchState object and add different search constraints to it. There are corresponding get
methods for all the set methods described for this object.

Methods
new SearchState()

Constructor method that instantiates the SearchState object. Creates an empty
SearchState object, and provides methods for creating search constraints. Once the
SearchState object is instantiated, you can call associated SearchState methods on
it.

setOP (OP)
Specifies the operation to be applied to the SearchState object. Adds a search
constraint that will be appended as an AND operation or an OR operation to other
constraints contained in the Searchstate instance.

setLikeConstraint(com.FatWire.LikeConstraint[] likeConstraint)
Passes a LikeConstraint object to a SearchState object. This method has a
corresponding get method.

setNestedConstraint(com.FatWire.NestedConstraint[]
nestedConstraint)

Passes a NestedConstraint object to a SearchState object. This method has a
corresponding get method.

setRangeConstraint(com.FatWire.RangeConstraint[] rangeConstraint)
Passes a RangeConstraint object to a SearchState object. This method has a
corresponding get method.

setRichTextConstraint(com.FatWire.RichTextConstraint[]
richTextConstraint)

Passes a RichTextConstraint object to a SearchState object. This method has a
corresponding get method.
46

Chapter 3: Objects
setStandardConstraint(com.FatWire.StandardConstraint[]
standardConstraint)

Passes a StandardConstraint object to a SearchState object. This method has a
corresponding get method.

Parameters
OP (optional)

Input parameter for the setOP method. SearchState type, either AND or OR. The
default is AND.

Description
Methods update the named object or SearchState to include the new constraint. If the
attribute is already in the SearchState, then the new constraint replaces the old constraint.

Example
This code instantiates a SearchState object called SS, specifies an AND operation, and
adds a standard constraint:

Searchstate ss = new Searchstate();
ss.setOP("and");
ss.setStandardConstraint(stand_cons);

See Also
Methods for adding the following constraint objects to a SearchState.

LikeConstraint

NestedConstraint

RangeConstraint

RichTextConstraint

StandardConstraint

StandardConstraint
A StandardConstraint object is an input to a SearchState object. StandardConstraint
methods instantiate the StandardConstraint object and set different parameters.

Methods
new StandardConstraint()

Constructor method that instantiates the StandardConstraint object and creates
methods that can be called on it. In turn, the StandardConstraint object can be
added to the SearchState object.

setBUCKET(java.lang.String BUCKET)
Sets the value for the BUCKET parameter. This method has a corresponding get
method.

setTYPENAME(java.lang.String TYPENAME)
Sets the value for the TYPENAME parameter. This method has a corresponding get
method.
47

CSEE Web Services Reference
setATTRIBUTE(java.lang.String ATTRIBUTE)
Sets the value for the ATTRIBUTE parameter. This method has a corresponding get
method.

setIMMEDIATEONLY(java.lang.String IMMEDIATEONLY)
Sets the value for the IMMEDIATEONLY parameter. This method has a corresponding
get method.

setLIST(com.FatWire.IList LIST)
Sets the value for the LIST parameter. This method has a corresponding get method.

setCASEINSENSITIVE(java.lang.String CASEINSENSITIVE)
Sets the value specified by the CASEINSENSITIVE parameter. This method has a
corresponding get method.

Parameters
BUCKET (optional)

Input parameter. The bucket name. If not specified, the attribute name is used.

TYPENAME (optional)
Input parameter. The internal asset name for the attribute (either CAttributes for
content attribute, or PAttributes for product attribute). If you do not specify
TYPENAME, a value is supplied from a property in the gator.ini property file:
mwb.defaultattributes=PAttributes. The default is PAttributes and the
value may be changed.

ATTRIBUTE (required)
Input parameter. Name of the attribute to constrain.

LIST (optional)
Input parameter. A list of the constrained values for the attribute. If specified, one or
more of the values must match the attribute for a product to meet the constraint. The
default is that all assets that have any value for the attribute match the constraint. The
list has a single column called value.

IMMEDIATEONLY (optional)
Input parameter. A Boolean value: true indicates that the search is limited to values
directly associated with the specified attribute; false (the default) extends the search
to include values inherited from a parent.

CASEINSENSITIVE (optional)
Input parameter. A Boolean value: true indicates that the comparison is case-
insensitive; false (the default) considers case in the comparison.

Description
Associated methods set parameter values that populate the StandardConstraint
object. The StandardConstraint object can be added to the SearchState object
with one of the corresponding SearchState methods.

Example
This code instantiates a StandardConstraint object and sets the TYPENAME and
ATTRIBUTE parameters.

StandardConstraint stand_cons = new StandardConstraint();
stand_cons.setTYPENAME("PAttributes");
stand_cons.setATTRIBUTE("FundFamily");
48

Chapter 3: Objects
See Also
Methods for adding various constraint objects to a SearchState. These are available when
you instantiate the SearchState object.

LikeConstraint

NestedConstraint

RangeConstraint

RichTextConstraint
49

CSEE Web Services Reference
IList Objects
The IList object is an optional input to any of the AssetSet Operations defined in the
AssetSet.wsdl file. Other supporting objects are inputs to the IList object. IList
methods, which reside inside the IList class generated by your client program, are used to
create support objects that populate the IList object.

ILists and the AssetSet Operations apply to flex assets only. AssetSet operations accept
either an IList or a SearchState as input, but not both.

IList comprises the following objects:

• IList

• StringRowsType

• URLRowsType

• URLType

IList
An IList object is an array that contains arrays of rows and columns (of either type string
or type URL). The component row and column arrays of the larger IList are constructed
by supporting methods. Associated IList methods instantiate the IList object and add row
and column arrays to it. When populated, the IList object is an input to the AssetSet
Operations.

Methods
new IList()

Constructor method that instantiates the IList object. Creates an empty IList
object, and provides methods for creating arrays of rows and columns. Once the
IList object is instantiated, you can call associated IList methods on it.

setColName(java.lang.String[] colName)
 This method has a corresponding get method.

setUrlColName(java.lang.String[] urlColName)
 This method has a corresponding get method.

setStringRow(com.FatWire.StringRowsType[] stringRow)
 This method has a corresponding get method.

setUrlRow(com.FatWire.UrlRowsType[] urlRow)
 This method has a corresponding get method.

Example
The following code creates an IList using a StringRowsType object.

IList inList = new IList();
String colName[] = {"attributename", "attributetypename",
"direction" };
inList.setColName(colName);
String item1[] = {"Name", "PAttributes", "ascending"};
String item2[] = {"FundType", "PAttributes", "ascending"};
StringRowsType items[] = new StringRowsType[2];
items[0] = new StringRowsType();
50

Chapter 3: Objects
items[1] = new StringRowsType();
items[0].setItem(item1);
items[1].setItem(item2);
inList.setStringRow(items);

See Also
StringRowsType

URLRowsType

URLType

StringRowsType
A StringRowsType object is an array of rows, of type string, that is input to an IList
object. Associated methods construct a single component-row array as an object of type
StringRowsType. The populated IList object is, in turn, an input to the AssetSet
Operations.

Methods
new StringRowsType()

Constructor method that instantiates the StringRowsType object. Creates an empty
StringRowsType object, and provides methods for creating arrays of rows. Once the
StringRowsType object is instantiated, you can call the associated setItem method
on it.

setItem(java.lang.String[] item)
Sets arrays of strings in the StringRowsType object. This method has a
corresponding get method.

Example
The following code creates an IList using a StringRowsType object.

IList inList = new IList();
String colName[] = {"attributename", "attributetypename",
"direction" };
inList.setColName(colName);
String item1[] = {"Name", "PAttributes", "ascending"};
String item2[] = {"FundType", "PAttributes", "ascending"};
StringRowsType items[] = new StringRowsType[2];
items[0] = new StringRowsType();
items[1] = new StringRowsType();
items[0].setItem(item1);
items[1].setItem(item2);
inList.setStringRow(items);

See Also
IList
51

CSEE Web Services Reference
URLRowsType
A URLRowsType object is an array of rows, of type URL, that is input to an IList object.
Associated methods construct a single component-row array as an object of type
StringRowsType. The populated IList object is, in turn, an input to the AssetSet
Operations. You should not need to set this object as input, but because it appears in the
WSDL file and client code generated from the WSDL file, it is described here for
completeness.

Methods
new URLRowsType()

Constructor method that instantiates the URLRowsType object. Creates an empty
URLRowsType object, and provides methods for creating arrays of rows of type URL.
Once the StringRowsType object is instantiated, you can call the associated
setURLstruct method on it.

setUrlstruct(com.FatWire.URLType[] urlstruct)
 Sets an array of URL type objects. This method has a corresponding get method.

See Also
IList

URLType
Creates a new URLType object and methods that can be called on that object. You should
not need to set this object as input, but because it appears in the WSDL file and client code
generated from the WSDL file, it is described here for completeness.

Methods
new URLType()

Constructor method that instantiates the URLType object. Creates an empty
URLRowsType object, and provides methods for creating URL pointers. Once the
URLType object is instantiated, you can call the associated set methods on it.

setUrlfile(java.lang.String urlfile)
Input string. urlfile is a file name. This method has a corresponding get method.

setUrlvalue(byte[] urlvalue)
Byte array that corresponds to the file set in the setUrlFile method. Accepts a byte
array (binary) read from the file named urlfile. This method has a corresponding
get method.

See Also
IList
52

Index
A
Asset.wsdl file 6
AssetRelationTree table 10
assets

retrieving child assets 10
retrieving list assets 16

AssetSet.wsdl file 6

C
child assets

retrieving 10

H
hierarchy

site plan 13

L
loading

parent pages, web services 14

M
methods, web services

blob 30
miscellaneous methods, web services 30
Miscellaneous.wsdl file 7

N
node ID 13
nodes

ID 13

O
operations, web services

building a list of child assets 10
creating a SearchState object 40, 50
listed by task 6
loading assets into asset object 18
retrieving parent pages 14
retrieving values for flex assets 22
returning a collection of child nodes 35
returning a collection of flex assets 23
returning an asset count based on
searchstate 22
returning asset value based on
searchstate 25
returning blobs 30
returning multiple asset values 27
returning mungoblobs 31
returning node ID 13
returning properties for node ID 37
returning property sets 16
searching a search engine index 32

P
page assets

relationships between 13
pages

parent pages, web services 14
parents

retrieving parent assets 14
property sets

returning 16
 53

CSEE Web Services Reference
S
site nodes 13
SitePlan.wsdl file 7
SOAP

defined 5
interface to Content Server 5
request 5

W
web services

predefined 5
supplied WSDL files 6

WSDL
defined 5
supported version 6
third-party tools 5

WSDL files
Asset.wsdl 6
AssetSet.wsdl 6
location 7
Miscellaneous.wsdl 7
SearchState methods 6
SitePlan.wsdl 7
supplied Content Server operations 6
54

	Web Services Reference
	Contents
	WSDL Overview
	About WSDL
	Supported WSDL Version
	Supplied WSDL Files
	Asset.wsdl
	AssetSet.wsdl
	Miscellaneous.wsdl
	SitePlan.wsdl

	WSDL File Location

	Operations
	Asset Operations
	AssetGetChildren
	AssetGetSiteNode
	AssetGetSiteParent
	AssetList
	AssetLoad

	AssetSet Operations
	ASGetAssetCount
	ASGetAssetList
	ASGetAttributeValues
	ASGetMultipleValues

	Miscellaneous Operations
	MiscGetBlob
	MiscGetMungoBlob
	MiscSearch

	SitePlan Operations
	SPGetChildren
	SPGetProperties

	Objects
	SearchState Objects
	LikeConstraint
	NestedConstraint
	RangeConstraint
	RichTextConstraint
	SearchState
	StandardConstraint

	IList Objects
	IList
	StringRowsType
	URLRowsType
	URLType

	Index

