
Content Server Enterprise Edition
Version: 5.5

Architecture Guide

Document Revision Date: Oct. 30, 2003

FATWIRE, INC. PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. In no event shall FatWire be liable for any loss of
profits, loss of business, loss of use of data, interruption of business, or for indirect, special, incidental, or consequential
damages of any kind, even if FatWire has been advised of the possibility of such damages arising from this publication.
FatWire may revise this publication from time to time without notice. Some states or jurisdictions do not allow disclaimer of
express or implied warranties in certain transactions; therefore, this statement may not apply to you.
Copyright © 2003 FatWire, inc. All rights reserved.
This product may be covered under one or more of the following U.S. patents: 4477698, 4540855, 4720853, 4742538,
4742539, 4782510, 4797911, 4894857, 5070525, RE36416, 5309505, 5511112, 5581602, 5594791, 5675637, 5708780,
5715314, 5724424, 5812776, 5828731, 5909492, 5924090, 5963635, 6012071, 6049785, 6055522, 6118763, 6195649,
6199051, 6205437, 6212634, 6279112 and 6314089. Additional patents pending.
FatWire, Content Server, Content Server Bridge Enterprise, Content Server Bridge XML, Content Server COM Interfaces,
Content Server Desktop, Content Server Direct, Content Server Direct Advantage, Content Server DocLink, Content Server
Engage, Content Server InSite Editor, Content Server Satellite, and Transact are trademarks or registered trademarks of
FatWire, inc. in the United States and other countries.
iPlanet, Java, J2EE, Solaris, Sun, and other Sun products referenced herein are trademarks or registered trademarks of Sun
Microsystems, Inc. AIX, IBM, WebSphere, and other IBM products referenced herein are trademarks or registered
trademarks of IBM Corporation. WebLogic is a registered trademark of BEA Systems, Inc. Microsoft, Windows and other
Microsoft products referenced herein are trademarks or registered trademarks of Microsoft Corporation. UNIX is a
registered trademark of The Open Group. Any other trademarks and product names used herein may be the trademarks of
their respective owners.
This product includes software developed by the Apache Software Foundation (http://www.apache.org/) and software
developed by Sun Microsystems, Inc. This product contains encryption technology from Phaos Technology Corporation.
You may not download or otherwise export or reexport this Program, its Documentation, or any underlying information or
technology except in full compliance with all United States and other applicable laws and regulations, including without
limitations the United States Export Administration Act, the Trading with the Enemy Act, the International Emergency
Economic Powers Act and any regulations thereunder. Any transfer of technical data outside the United States by any
means, including the Internet, is an export control requirement under U.S. law. In particular, but without limitation, none of
the Program, its Documentation, or underlying information of technology may be downloaded or otherwise exported or
reexported (i) into (or to a national or resident, wherever located, of) Cuba, Libya, North Korea, Iran, Iraq, Sudan, Syria, or
any other country to which the U.S. prohibits exports of goods or technical data; or (ii) to anyone on the U.S. Treasury
Department’s Specially Designated Nationals List or the Table of Denial Orders issued by the Department of Commerce. By
downloading or using the Program or its Documentation, you are agreeing to the foregoing and you are representing and
warranting that you are not located in, under the control of, or a national or resident of any such country or on any such list
or table. In addition, if the Program or Documentation is identified as Domestic Only or Not-for-Export (for example, on the
box, media, in the installation process, during the download process, or in the Documentation), then except for export to
Canada for use in Canada by Canadian citizens, the Program, Documentation, and any underlying information or technology
may not be exported outside the United States or to any foreign entity or “foreign person” as defined by U.S. Government
regulations, including without limitation, anyone who is not a citizen, national, or lawful permanent resident of the United
States. By using this Program and Documentation, you are agreeing to the foregoing and you are representing and
warranting that you are not a “foreign person” or under the control of a “foreign person.”

Architecture Guide
Document Revision Date: Oct. 30, 2003
Product Version: 5.5

FatWire Technical Support
Web: http://www.fatwire.com/Support

FatWire Headquarters
FatWire, inc.
330 Old Country Road
Suite 207
Mineola, NY 11501
Web: www.fatwire.com

http://www.fatwire.com/Support/index.html
www.fatwire.com

Table of

Contents
1 Architecture Overview. .7
Content Server Enterprise Edition: Basic Concepts . 7

Modular Page Design . 8
Caching. 10
Assets . 11

Content Server Enterprise Edition Architecture . 11
Three-Tier Architecture . 11
The CSEE Product Stack . 12

Implementation Models . 13
Content Server Enterprise Edition as a Central Data Repository 14
CSEE Integrated with Other Applications . 15

Content Server Distributed Over Multiple Sites . 17
The Design Process. 18

CSEE Environments. 18
Design for Performance . 20
Performance Test Early and Often . 20

Project Scheduling and Staffing . 21

2 Choosing Hardware and Software .23
Hardware for Different Environments . 23

Development Environment. 24
Management Environment . 25
Delivery System . 26
Testing System . 26
3

CSEE Architect’s Guide
Sizing Your Hardware . 26
Hardware for a Small System. 27
Hardware for a Medium-Sized System . 27
Hardware for a Large System. 28

Hardware to Make Your Site Scalable . 28
Hardware for a Multinational Site . 28

Time Difference and Hardware . 29
Content Overlap and Hardware . 29
Geographic Distance and Hardware . 29

Hardware Guidelines. 30
Choosing Software . 30

3 Page Design, Caching, and Publishing .33
Page Caching Overview . 33

Content Server Page Caching. 33
Content Server Satellite Caching . 35
Caching and CacheManager. 35

Caching and Session . 35
Publishing Overview. 36

Site Design and Export to Disk Publishing . 36
Page Design Best Practices . 37

Choose a Coding Language . 37
Determine Which Pagelets to Cache . 38
Code Your Pages . 39

Page Caching and Publishing Best Practices . 40
Assessing Existing Page Designs . 40

Determine What Can Be a Pagelet . 40
Determine Whether the Content of a Pagelet Should Be an Asset. 41
Determine Which Asset Type Is Best for Each Pagelet . 42
 . 45

4 Data Design and Resultset Caching. .47
Data Design. 47

Basic Assets . 48
Flex Assets . 48
Choosing Basic or Flex Assets . 50

Designing Assets. 51
Designing Basic Assets . 51
Designing Flex Asset Families. 51

Data Retrieval . 53
Data Retrieval in Content Server and CS-Direct . 53
Data Retrieval in CS-Direct Advantage . 54

Resultset Caching . 54
Table Updates and Resultset Caching . 54
Setting Resultset Caching Timeouts. 55
4

Table of Contents
Setting Resultset Sizes . 55
Database Maintenance . 56

5 Security and Personalization .57
Security Overview. 57

Securing Content Management Systems . 58
Securing the Web Site . 58

CSEE Authentication . 59
Content Server Authentication . 59
LDAP Authentication. 59
Windows NT Authentication . 59

Segmentation and Personalization . 59
Segmentation and CSEE Products . 60

Index .61
5

CSEE Architect’s Guide
6

Chapter 1

Architecture Overview
Developing a system architecture is not a linear process; it is a circular one, where the
hardware, software, and design decisions you have made earlier in the project must be
reassessed based upon the design decisions you are currently making.
Architects must consider a client’s business requirements, budget, legacy systems, and a
number of other factors in order to design an architecture for a site that is:
• Fast
• Secure
• Reliable
• Scalable
• Easily maintained
This chapter provides an overview of the concepts you will need to know as you and your
team create a system architecture. The chapter contains the following sections:
• Content Server Enterprise Edition: Basic Concepts
• Content Server Enterprise Edition Architecture
• Implementation Models
• The Design Process
• Project Scheduling and Staffing

Content Server Enterprise Edition: Basic Concepts
The Content Server Enterprise Edition product family (CSEE) consists of Content Server
and all of its related applications:
• CS-Direct
• CS-Direct Advantage
• CS-Bridge Enterprise
7

CSEE Architect’s Guide
• CS-Bridge XML
• CS-Engage
• CS-Satellite
• Analysis Connector
CSEE’s ability to manage and serve large amounts of content efficiently is dependent
upon three main concepts:
• Modular page design
• Caching
• Assets
The following sections describe each of these concepts in greater detail.

Modular Page Design
The CSEE product set allows you to separate the format of your web pages from their
content. This is accomplished, in part, through modular page design, where web pages are
composed of blocks of code called elements.
Consider, for instance, an online newspaper with the following format:

The stories on the site change from day to day, perhaps even hour to hour, but the basic
format remains the same.

The Daily Standard
Sections

Weather

Local

Sports

Classifieds

Arts

Business

National

News

Local

National

Today's Weather

Five Day Forecast

Auto

Real Estate

For Sale

Stocks

Movies

Music

Theater

Strong Economy
Means Its a Seller's
Market

W h en 6 t h g r ad e t ea c h e r
Amanda Rosales movied to
Springfield, she bought a two
bedroom condomin ium for
$85,000. Now, after only three
years, Rosales has sold her
home for $175,000--$25,000
more than her asking price.

But what does this housing
m ark e t m ean f o r l ow and
middle income families looking
to buy a home?
 See Housing

Hot Hot Hot!
Get out those fans for the third
consecutive day of record heat.
Temperatures are expected to be
in the 90s.
 See Weather

Witty Xerxes Worth
Seeing
Most people know George
F r e de r i c k H an de l a s t he
composer o f the Hal le lu ja
Chorus; few recall that he also
wrote more than forty operas.

Xerxes is one of Handel's last
operas, and an unusual one on
many counts.

 See Xerxes

Dow Soars With News
of Rate Cut
Th e D o w J o n e s I n d u s t r i a l
Average rose 347 points today,
on the heels of a surprise interest
rate cut by the Federal Reserve.
 See Dow

Search Saturday May 19, 2001

Copyright 2001, Standard Tribune Publishing

Help

Breaking News

! Mt. Etna Erupts

! Major Accident on I 95

! Human Cloning Ban

! Global Warming Treaty

! Cow Jumps Moon

! Peace Talks Continue

Office Supplies
Online!

OfficeLand.com

High Cell Phone
Bills?

Click Here!
8

Chapter 1: Architecture Overview
Elements
To achieve this flexibility, the newspaper web page is composed of 10 blocks of HTML,
XML, JSP, or ASP code called elements. The elements are called from a containing
element that determines the layout of the final web page.
You can create four main types of elements with CSEE:
• Content elements, which call content from the file system or database
• Structural elements, which determine how content is displayed and allow visitors to

navigate the site
• Logic elements, which contain the application’s business and display logic
• Maintenance elements, which maintain the system’s databases and caches
Some elements fall into more than one category. For example, a containing element is a
structural element because it determines page layout, yet it can also contain logic to
display specific content to specific visitors—which makes it a logic element, too.
An element can call other elements. For example, an element that implements publishing
can call an element that deletes outdated content from the CSEE database.
You can write your elements in XML, JSP, or ASP. Use XML for elements that determine
page layout, and JSP for elements that contain logic. When a visitor to your web site
requests a page, Content Server converts the XML and JSP elements into the output
format that you choose; the default output is HTML.
All of the elements that make up a CSEE site are recorded in the ElementCatalog table.
Most elements also have entries in the SiteCatalog table, allowing them to be cached on
Content Server and on CS-Satellite.

Pagelets
The output generated by evaluating a CSEE element is called a pagelet. One pagelet can
be used in many pages. Common design elements such as headers, footers, and navigation
bars can be written once and called by many pages of the web site. In addition to being
reusable, each pagelet can be cached to disk.
9

CSEE Architect’s Guide
The following diagram shows how pagelets are combined to make up the finished web
page:

Figure 1: Modular Page Design

For information about implementing modular page design on your web site, see Chapter 3,
“Page Design, Caching, and Publishing.”

Caching
Content Server supports two main types of caching:
• Page caching, which caches pages and pagelets to disk (described further in Chapter 3,

“Page Design, Caching, and Publishing”)
• Resultset caching, which caches the results of SQL queries, search engine queries,

and CS-Direct Advantage searchstates to memory (described further in Chapter 4,
“Data Design and Resultset Caching”)

Title Pagelet
(Includes Tabs)

Main Article Pagelet

Navigation
Pagelet

Secondary Article
Pagelet #1

Secondary Article
Pagelet #2

Secondary Article
Pagelet #3

Sections Search Help

Copyright Pagelet

Containing Page

Breaking News
Pagelet

Advertisement
Pagelet

Date Pagelet
10

Chapter 1: Architecture Overview
You should design your site to use both types of caching; caching reduces load on Content
Server and improves system performance.

Assets
The content management functions of CS-Direct, CS-Direct Advantage, and CS-Engage
are based, in large part, on the concept of assets. An asset is a Java object that allows you
to manage content and organize your site. There are two types of assets, which work with
different products in the product set:
• Basic assets, provided by CS-Direct.
• Flex assets, provided by CS-Direct Advantage
All assets, whether basic or flex, fall into one of four general categories:
• Content assets, which represent content, such as image or article assets.
• Site design assets, which allow you to organize your site, such as page or template

assets.
• Flex assets, which both represent and organize content, such as flex definition assets.
• Marketing assets, which allow you to group users by various criteria and target

content to them, such as segment assets.
For more information about assets and asset design, see Chapter 4, “Data Design and
Resultset Caching.”

Content Server Enterprise Edition Architecture
CSEE’s architecture is layered in a stack. The stack comprises Content Server, which sits
on top of a database and an application server, and the rest of the CSEE content
applications, which sit on top of Content Server. Each product utilizes and builds upon the
capabilities of the ones below it in the stack. For example, CS-Direct adds a user interface
for data entry to Content Server’s content management capabilities.

Three-Tier Architecture
CSEE products are Java 2 Enterprise Edition (J2EE) applications that take advantage of
the benefits of the J2EE platform. J2EE is a three-tiered architecture:
• The bottom tier handles back-end tasks such as session management.
• The middle tier contains the business logic.
• The top tier handles front-end tasks such as displaying content.
CSEE products sit in the middle tier, on top of a J2EE application server. They retrieve
content from the database at the back end, manage the content, and format that content for
display to web site visitors at the front end. Because the CSEE products are J2EE
applications, you can design custom Java code and servlets to separate business logic from
content, and integrate other J2EE applications into your architecture.
11

CSEE Architect’s Guide
The CSEE Product Stack
Figure 2 shows the architecture of the Content Server Enterprise Edition (CSEE) product
stack.

Figure 2: CSEE Product Architecture

Following is a description of each application in the Content Server Enterprise Edition
product stack:
• Content Server is the foundation of FatWire’s family of content management products.

You use Content Server to create custom elements for publishing and database
maintenance.

• Content Server Direct provides a user interface for data entry and various
management tasks and introduces the concept of assets. Different types of assets
represent content, organize content, and allow you to manage your site. Content
Server Direct assets are basic assets.

• Content Server Direct Advantage makes it easy for users to drill down through
multiple levels of information. It uses flex assets instead of basic assets. Additionally,
Content Server Direct Advantage supports the importing of large amounts of data with
its Bulk Loader utility.

• Content Server Engage allows business managers to collect information about their
web site’s visitors, and to use that information to display customized content or to
provide special discounts and other promotions. Content Server Engage works in
conjunction with Content Server Direct Advantage.

• Content Server Bridge XML enables the exchange of XML-encoded content with
customers and enterprise partners. It is a configurable framework for receiving,

J2EE Application Server

Content Server/CS-Satellite

CS-Direct

CS-Direct Advantage

Web Server/CS-Satellite

CS-Engage

Database

C
S

-B
rid

ge
 X

M
L

Custom
Java

Beans
and

Servlets

Your
CS-Direct
Web Site

Custom
Content
Server

Elements

CS-Bridge Enterprise
12

Chapter 1: Architecture Overview
processing, and posting XML documents to and from other enterprise applications
over the web. CS-Bridge XML comes with Content Server.

• Content Server Bridge Enterprise is a configurable processing architecture that
enables you to call back-end application services from web pages delivered by
Content Server. CS-Bridge Enterprise, which relies on webMethods Enterprise for
system connectivity, provides the framework for developing and managing business
logic within Content Server.

• Analysis Connector (not shown) collects web site events such as clickstream data, and
loads that data into the CSEE database during low-traffic periods. The data is then
ready to be analyzed by third-party analysis engines.

• Commerce Connector (not shown) integrates Content Server Direct Advantage and
Content Server Engage with FatWire’s payment processing and order management
software, Transact.

• Content Server Satellite systems are low-cost caches for Content Server web pages.
CS-Satellite comes with Content Server.

Implementation Models
You can apply Content Server and its related applications in any of three ways:
• As a central data repository
• As a component in a system where CSEE is integrated with other enterprise

applications
• As a component in a distributed system where a central CSEE system supplies content

to and receives content from remote CSEE systems
13

CSEE Architect’s Guide
Content Server Enterprise Edition as a Central
Data Repository

As shown in Figure 3, “CSEE as a Central Data Repository”, files and data enter the CSEE
system from other applications. This data can be input into CSEE through a variety of
methods, including:
• The CS-Direct user interface
• Microsoft Word, by using CS-Desktop
• Dreamweaver, by using CS-Designer
• Content Server DocLink
• The XMLPost utility
• The BulkLoader utility
• Enterprise JavaBeans
CSEE, the application server, and the database store and manage that information, and
output it for display in various formats.

Figure 3: CSEE as a Central Data Repository

Content Server

Content

Images

Data

ERP

PDF

Quark

HTML

XML

WAP

PDF

Quark
14

Chapter 1: Architecture Overview
CSEE Integrated with Other Applications
CSEE supports two separate application integration solutions:
• Integration via enterprise middleware
• Integration via XML document exchange
The middleware solution requires enterprise middleware and, depending on your
application, either the CS-Bridge Enterprise product, the Content Server Adapter for
webMethods, or both. The CS-Bridge Enterprise framework enables tight application
integration through a collection of APIs presented by the middleware.
Business-to-business integration using XML document exchange requires the CS-Bridge
XML product, which is included with Content Server. CS-Bridge XML provides a looser
integration based on processing and routing XML-encoded information between
applications.
Like all products in the CSEE stack, these integration options can be applied separately or
used in conjunction with each other. Content Server also includes a documented Java API
that enables further custom integration.

Enterprise Application Integration via Standard Middleware
As shown in Figure 4, “Enterprise Application Integration Using Middleware,”
middleware and CS-Bridge Enterprise jointly provide the means to deliver services from
enterprise applications to Content Server, using XML as the common exchange format.
Middleware, such as webMethods Enterprise, provides the integration logic and system
connectivity, and CS-Bridge Enterprise provides an environment for creating and
managing business logic within Content Server. CS-Bridge Enterprise supplies the
framework to make requests against any enterprise application supported by the
middleware, and synchronously passes resulting data back to Content Server. Content
Server then manages that data and outputs it for display.
Separately, the Content Server Adapter for webMethods serves as a configurable trigger to
handle asynchronous requests from any system supported by the middleware.
15

CSEE Architect’s Guide
Figure 4: Enterprise Application Integration Using Middleware

Business-to-Business Integration via XML Document
Exchange
Figure 5, “Business-to-Business Application Integration Using XML Document
Exchange,” shows a loose B2B-integration that makes use of the built-in XML document
processing capabilities of Content Server. In this process, XML documents move over
HTTP and are automatically parsed, authenticated by user, queued, and processed by
whatever custom business logic you develop. Automated document transformations using
the supplied XSLT processor complement the processing engine’s ability to manipulate
inbound and outbound documents and leverage Content Server’s logic development
environment. Once processed, documents can be optionally routed to a specified URL.

WM-
adapter

SAP

Siebel

J.D. Edwards

PeopleSoft

WM-
adapter

WM-
adapter

WM-
adapter

Oracle

WM-
adapter

Middleware

Content
Repository

Enterprise
Applications Middleware

Interface
Middleware

Content Server
webMethods
Enterprise

CS-Bridge
Enterprise

CS-
adapter

XML
response

XML
response

XML
request

XML
request
16

Chapter 1: Architecture Overview
Figure 5: Business-to-Business Application Integration Using XML Document
Exchange

Content Server Distributed Over Multiple Sites
In the third model, shown in Figure 6, “Distributed Content Server Sites,” Content Server
is modified to support multiple web sites implemented with multiple instances of Content
Server. For example, Content Server can be configured for web sites in different
geographic locations, which contain content specific to their regions.
As before, data passes to Content Server, but instead of creating and serving all output
through the primary Content Server system, data is mirrored to three other Content Server
systems, which support web sites in three different regions. The regional Content Server
systems can receive content from or pass content to the main data repository, and they can
also pass content to and from one another.

Content
Repository

Content Server
CS-Bridge

XML
XML

documents

XML Document
Server

Customers

Partners XML
document

XML
document

Target
Applications
17

CSEE Architect’s Guide
Figure 6: Distributed Content Server Sites

The Design Process
As you design a system architecture, consider the following key aspects of the project:
• Environments – A Content Server system has at least three separate environments,

each with different users who have different needs.
• Performance – Your design should consider perfomance issues for each environment.
• Testing – Plan to performance test each environment regularly as you build the

system.

CSEE Environments
Many people think of CSEE applications as creating a live web site that web surfers can
view. In reality, CSEE applications create a minimum of three environments:
• A development environment, where template developers create the elements that

provide the live web site’s structure
• A management environment (staging), where content providers create, edit, and

manage content
• A delivery environment (production), which delivers the live web site to people

surfing the Web

Content
Repository

Remote Content
Server Sites

Content Server
North America

Content Server
Asia-Pacific

Content Server
Europe

Content Server

Mirror/export
to disk

Mirror/export
to disk

Mirror/export
to disk
18

Chapter 1: Architecture Overview
In addition to these three environments, FatWire recommends that you implement a
dedicated testing environment, for performance and functional testing.

A Three-Environment System
Figure 7, “A Three-Environment System,” shows these three main environments:

Figure 7: A Three-Environment System

Developers create the code that composes the delivery web site’s structure and implements
its business logic in the development environment. Web developers create the elements
that provide the web site’s structure. Java developers use Java classes and JSPs to
implement much of the site’s business logic. The developers then send their completed
code to the other two environments:
• The management environment, so that the content providers can preview the content

they are working with in the context of the web site
• The delivery environment, so that the live web site reflects the changes that the

developers make
Content providers create, edit, and manage the content that will be used on the live web
site. They then publish the completed content to the other two environments:
• The development environment, so that the developers have content with which to test

their code
• The delivery environment, so that the completed content is displayed on the live web

site
As you develop a system architecture, remember that the different environments that you
create have different users with different needs. The management environment, for
example, must be easy for content providers to use and must be able to handle a high

Developers

Content
Providers:

Editors
Authors

Web Site
Visitors

Firewall

Development
Environment

Management
Environment

Delivery
Environment

Content

Code

Code
19

CSEE Architect’s Guide
volume of writing to the database. The delivery environment, however, must be set up to
handle serving web pages quickly.

A Four-Environment System
In addition to the development, management, and delivery environments, it is a good idea
to add a fourth environment for testing. Figure 8, “A Four-Environment System,” shows a
four-environment system.

Figure 8: A Four-Environment System

A separate testing environment allows QA to run performance and functional tests without
disrupting the developers’ or content providers’ work.

Design for Performance
Design with performance as a priority from the earliest stages of the project. This guide
will provide some design tips that promote good performance. You should also check the
CSEE Developer’s Guide to find coding practices that ensure good performance.
Note that designing for good performance extends beyond the delivery environment.
Developers and the management staff need development and management environments
that perform well too.

Performance Test Early and Often
Designing for performance is not an exact science; you will improve your system’s
performance greatly by running frequent performance tests, modifying properties and
settings for the application server, the database, and Content Server, then retesting, until
you find the best settings for each environment.
You can use a load generator such as WebLoad to test your system’s performance. Be sure
to test the application server and database alone, as well as the development, management,
and delivery environments with all of their hardware and software.

Developers

Content
Providers:

Editors
Authors

Web Site
Visitors

Firewall

Development
Environment

Management
Environment

Delivery
Environment

Content

Code

Code

Code

Content

Testing
Environment

QA
20

Chapter 1: Architecture Overview
To ensure maximum performance for all of the system’s environments, test with the
testing environment tuned to replicate the development, management, and delivery
environments.

Project Scheduling and Staffing
A typical project will take four to six months to complete from the time you begin to
design the site until the site goes live. If the project is a simple one, it may take as little as
two months. If the project is complex or must be integrated with legacy systems, it may
take longer. Budget two to four weeks of this time for architectural design.
Some phases of the project can be undertaken simultaneously, as shown in the following
diagram:

Figure 9: An Example of Project Scheduling

For example, you can install the software as you work on a data design, and migrate data
from other sources while graphic designers and web developers design the web pages and
code the templates.
You will need the help of various Subject Matter Experts (SMEs) as you design an
architecture for a site. The following table lists the SMEs that you will need as you design
the various components of the site:

Design Task Required

Content Design/Site Features Business Analysts, Web and Java
Developers, DBAs

Data/Asset Design DBAs, Developers (for custom assets)

Performance Testing and Tuning An expert who can tune your application
server, QA staff

1 1312111098765432 1514 181716

Time In Weeks

Key

Assess the Project
Architectural Design
Project Planning
Installation
Data Design
Data Migration
Template Design
Performance/Functional Testing
Prepare to Go Live
21

CSEE Architect’s Guide
The total staff for an average project is between 7-10 people:
• 1 Architect
• 1 Project Manager
• 3-4 Web/Java Developers to develop templates and business logic
• 1 or more DBAs to help with data design and migration
• 1 expert who can tune the application server
Note that not all of these staff members will be needed full time or for the duration of the
project—the development staff, for example, will not be coding the site full time while the
architect is assessing the project and developing an architecture.

Page Design Graphic Designers, Web and Java
Developers

Design Task Required
22

Chapter 2

Choosing Hardware and Software
Choosing the correct hardware and software is integral to a project’s success. Appropriate
hardware provides the performance and scalability that clients want, and appropriate
software makes accommodating a client’s business requirements much simpler. This
chapter provides guidelines for choosing hardware and software for your projects. It
contains the following sections:
• Hardware for Different Environments
• Sizing Your Hardware
• Hardware to Make Your Site Scalable
• Hardware for a Multinational Site
• Choosing Software

Hardware for Different Environments
As you recommend hardware for a site, note that you will need hardware suited to at least
three different environments:
• Development
• Management
• Delivery
FatWire strongly recommends hardware for a fourth environment: Testing.
Each environment supports different users with different needs, and the hardware for each
environment must be tailored to those needs.
The following diagram shows a hardware design for a large web site; a smaller web site
would require smaller, less powerful hardware:
23

CSEE Architect’s Guide
Figure 10: Three-Tiered Hardware Design

The following sections describe the hardware design for each environment in more detail.

Development Environment
Java and web developers use the development environment to code the elements and
business logic for the finished web site. If your site is small, you may be able to develop
on Windows 2000 machines, rather than on a Solaris development machine, as depicted in
the following diagram.
If you only have a few developers, you can even create the development environment on a
single laptop computer. If you have many developers working on your project, however,

Database Machine
! Sun 450
! 4 CPUs
! 4 GB RAM
! 1 100 MB NIC
! 3 80 GB Drives
! Boot Drives

Application Server/
CS-Satellite Machine
! Sun 450
! 4 CPUs
! 4 GB RAM
! 1 100 MB NIC
! 3 80 GB Drives
! Boot Drives

Development

Database Machine
! Sun 450/3500
! 4 CPUs
! 4 GB RAM
! 1 100 MB NIC
! 6 80 GB Drives
! Boot Drives

Application Server/
CS-Satellite Machine
! Sun 450/3500
! 4 CPUs
! 4 GB RAM
! 1 100 MB NIC
! 3 80 GB Drives
! Boot Drives

Web Server Machine
! Sun OS 2.8
! E 450/3500
! 2 GB RAM
! 2 80 GB Drives

Management

Web Server
Machines
! Sun OS 2.8
! E 450/3500
! 4 GB RAM
! 2 80 GB Drives

Application Server/
CS-Satellite
Machines
! Sun 450/3500
! 4 CPUs
! 4 GB RAM
! 1 100 MB NIC
! 3 80 GB Drives
! Boot Drives

Database Machine
! Sun 450/3500
! 4 CPUs
! 4 GB RAM
! 1 100 MB NIC
! 6 80 GB Drives
! Boot Drives

Load Balancer

Delivery (Production)

FDDI

FDDIETH0 FDDI
ETH0 FDDI

ETH0 FDDI

FDDIETH0

ETH0

FDDI FDDI
ETH0

100 MB ETH0100 MB ETH0

ETH0

ETH0 ETH0
24

Chapter 2: Choosing Hardware and Software
the developers will log in to the Content Server user interface, or use Content Server
Explorer to log on to the central development machine from their own laptops, as shown
in the following diagram:

Figure 11: An Environment with Many Developers

If you have multiple developers sending code to a central system, you should have
separate machines for your database and application server. Having a separate database
improves performance on the development environment and makes maintaining it easier.

Management Environment
The management environment will require at least three Solaris machines: one for the
database, one for the application server, and one for the web server. The database machine
for the management environment should be the most powerful database machine you use
in your architecture, as editors will be writing to it frequently.
If your management environment must run 24x7, you should include an additional
application server machine so you can cluster your application server to provide failover.
In addition, a cluster requires a shared file system, typically on the database machine.

Application Server
Machine
! Sun 450
! 4 CPUs
! 4 GB RAM
! 1 100 MB NIC
! 3 80 GB Drives
! Boot Drives

Database Machine
! Sun 450
! 4 CPUs
! 4 GB RAM
! 1 100 MB NIC
! 3 80 GB Drives
! Boot Drives

ETH0 FDDI

Developers' Laptops

Management and
Delivery

Environments

Central Development System
25

CSEE Architect’s Guide
Delivery System
The delivery system will probably run 24x7, and thus needs failover. To provide failover,
you will need two application server machines and two web server machines. Figure 10,
“Three-Tiered Hardware Design,” shows this type of system, where the application
servers are clustered to provide failover.
You will also need a machine for the database and file server. Generally, you can use one
database/file server machine for a site; but for a large site where you need frequent access
to files, a dedicated file server can improve performance.
If your site is “near real time” and publishes many times a day, you should consider adding
another machine to handle the publishing load.
Additionally, you need a firewall between the delivery web server/CS-Satellite machines
and the rest of your delivery system.

Testing System
In addition to the development, management, and delivery systems, you may want to add a
dedicated testing system. A dedicated testing site is a necessity if both your management
and delivery environments must run 24x7. The testing environment requires a database
machine, an application server machine, and a web server machine. You should make your
testing hardware as similar to your delivery environment as possible, though you will not
need a failover system for a testing environment.
You should tune your testing environment to replicate the development, management, and
delivery systems and test your site under each environment—it is as important for the
development and management systems to perform well as a delivery system to perform
well.
Because you need to test for performance as well as functionality, you will also need a
load generator such as Web Load.

Sizing Your Hardware
Determining how to size your system’s hardware can be a challenge. The following
sections provide examples of hardware for small, medium, and large systems—to help you
choose hardware for your own system. Each sample configuration includes hardware for a
clustered management and delivery environment.
The systems described in this section use the following benchmarks:
• 1400 HTTP transactions per second on a Sun 4500 8-way system.
• 175 transactions per second per CPU.
• Each CPU supports 60 concurrent users .
• 8 transactions per page.
Note that these sample configurations provide guidelines for sizing systems; the actual
size of the machines that you choose for your system depends on many factors, including:
• The number of attributes per asset type
• Page and template design
• The number of queries per page
26

Chapter 2: Choosing Hardware and Software
• Network latency
• The configuration of the application server
• The number of uncached components in your site

Hardware for a Small System
The system described in the following table supports 60 concurrent users on the
management environment. The delivery environment supports:
• 15 million transactions per day with 90% of components cached
• 1.9 million dynamic page views per day with 90% of components cached

Hardware for a Medium-Sized System
The system described in the following table supports 120 concurrent users on the
management environment. The delivery environment supports:
• 30 million transactions per day with 90% of components cached
• 3.8 million dynamic page views per day with 90% of components cached

Management Environment Delivery Environment

Web Servers 2 E250s, 1 CPU and 512 MB
of memory each

2 E250s, 1 CPU and 512
MB of memory each

Application Servers
with Content Server

2 E250s, 1 CPU and 1 GB of
memory each

2 E250s, 1 CPU and 1 GB
of memory each

Database Servers 1 E250, 1 CPU and 1 GB of
memory each

1 E250, 1 CPU and 1 GB of
memory each

Management Environment Delivery Environment

Web Servers 2 E450s, 2 CPUs and 1 GB of
memory each

2 E450s, 2 CPUs and 1 GB
of memory each

Application Servers
with Content Server

2 E250s, 1 CPU and 1 GB of
memory each

2 E450s, 2 CPUs and 2 GB
of memory each

Database Servers 2 E450s, 2 CPUs and 2 GB of
memory each

2 E450s, 2 CPUs and 2 GB
of memory each
27

CSEE Architect’s Guide
Hardware for a Large System
The system described in the following table supports 240 concurrent users on the
management environment. The delivery environment supports:
• 120 million transactions per day with 90% of components cached
• 15 million dynamic page views per day with 90% of components cached

Hardware to Make Your Site Scalable
Designing a scalable site is a matter of foresight—you choose hardware that is sufficient
to run the web site today, and that is powerful and flexible enough to adapt to conditions in
a year, when the company adds 30 new editors and visitor traffic doubles.
Recommend hardware that allows the client “room to grow,” enabling them to add more
processors, memory, and network connections as necessary.
The following scenarios provide examples of how to scale a site:
• To handle additional visitor traffic add CS-Satellite systems to the delivery

environment.
• To handle additional editors or a business requirement that the management

environment be available 24x7, cluster the application servers. Because clustering
slows performance, consider adding more processors (to run multiple JVMs) and/or
more RAM.

• To handle additional authors or editors who do not need to work on the management
environment directly, allow them to edit their content outside of Content Server, then
load the edited content into the Content Server database as a batch with XML Post.

• To handle a design that increases the number of uncachable pagelets (like some types
of personalization),add more processors to the delivery cluster.

Hardware for a Multinational Site
Another factor to consider when choosing hardware for a site is where the web site will be
viewed. There are three factors to consider when choosing hardware for a multinational
site:
• Time difference
• Content overlap
• Geographic distance

Management Environment Delivery Environment

Web Servers 4 E450s, 2 CPUs and 1 GB of
memory each

4 E450s, 2 CPUs and 1 GB
of memory each

Application Servers
with Content Server

2 E4500s, 4 CPUs and 2 GB of
memory each

2 4500s, 8 CPUs and 8 GB
of memory each

Database Servers 2 E4500s, 4 CPUs and 2 GB of
memory each

2 4500s, 4 CPUs and 4 GB
of memory each
28

Chapter 2: Choosing Hardware and Software
Time Difference and Hardware
The time difference between the areas where your site will be viewed affect the hardware
design. If the time difference is such that peak time for visitors on one version of the site
coincides with a slow period, when large-scale updates to a site’s content normally occur,
consider using a separate Content Server system for each version of the site. Using two
systems allows you to update each version of the site separately, when visitor traffic is
low, thus improving system performance.
For example, if your site has a U.S. version and a Japanese version, you should consider
having two systems so that you can publish new content for the US site when traffic is low
in the U.S. (but high in Japan), and publish new content for the Japanese site when traffic
is low in Japan (but high in the U.S.).

Content Overlap and Hardware
The amount of shared content between versions of a site also affects hardware design. On
sites with a large amount of content overlap, use one Content Server system; on sites with
a small amount of content overlap, use multiple systems.
The following diagram illustrates how the amount of shared content between sites helps
determines the number of Content Server systems that you need:

Figure 12: Web Site Content Overlap

Geographic Distance and Hardware
The geographic distance between the audiences for your web site affects your hardware
design. Having an additional server closer to your intended audience improves
performance. There are two main ways to move content closer to its audience:
• Add additional Content Server systems when you are creating multiple web sites with

very different content.
• Add CS-Satellite systems when you are creating one web site, or when you are

creating multiple web sites with very similar content.

1 Content Server

Europe North America North AmericaEurope

2 Content Servers
29

CSEE Architect’s Guide
Hardware Guidelines
The following guidelines will help you to determine how many systems you need:

Table 1: Hardware Guidelines

Choosing Software
The various members of the Content Server Enterprise Edition (CSEE) product family are
designed to support different types of web sites. Use the following guidelines to help you
determine which software to recommend to a client:

Table 2: Software Guidelines

Site Characteristics Number of Systems

Multiple versions for display in different
time zones

Multiple Content Server systems

Large amount of shared content between
versions

One Content Server system

Small amount of shared content between
versions

Multiple Content Server systems

Significant distance between your server
and your audience (which may affect
performance)

Multiple Content Server systems or add
CS-Satellite systems

 Product: Site Requirements:

CS-Direct • Your site is static, dynamic, or some
combination of the two.

• An asset can be one row in a database table.

CS-Direct Advantage • Your site is dynamic only.
• The design of individual instances of an asset

type varies widely.
• An asset needs to inherit traits from multiple

parents.
• Your assets have many fields.
• You will import large amounts of data into the

system on a regular basis.

CS-Engage • You are using CS-Direct Advantage to create
your web site.

• You want to recommend content or items for
sale to web site visitors based on criteria that
you select.

• You want to create promotions for certain types
of web site visitors.
30

Chapter 2: Choosing Hardware and Software
Analysis Connector • You are collecting data from your web site, for
use by a third-party analysis engine.

Commerce Connector • You are using CS-Direct or CS-Engage.
• You need to sell products or services.
• You have Transact.

CS-Bridge Enterprise • You are using Content Server.
• You want to connect to an ERP, SAP, or other

legacy system.

 Product: Site Requirements:
31

CSEE Architect’s Guide
32

Chapter 3

Page Design, Caching, and Publishing
Page design, page caching, and publishing are interrelated topics that will profoundly
affect how your finished web site performs. This chapter contains an overview of each
topic and tips that will help you design an efficient web site. It contains the following
sections:
• Page Caching Overview
• Publishing Overview
• Page Design Best Practices
• Page Caching and Publishing Best Practices
• Assessing Existing Page Designs

Page Caching Overview
An effective page caching strategy allows your site to perform well and influences your
hardware design by relieving load on Content Server and the database. The Content Server
Enterprise Edition (CSEE) product family contains two products that cache web pages:
• Content Server, which caches pages either on disk or in Java memory
• Content Server Satellite, which caches pages on remote servers
For optimum performance on the delivery server, use the caching capabilities of both
products in tandem, as described in the following sections.

Content Server Page Caching
FatWire recommends that you cache your pages based on the following two principles:
• Cache most pages
• Use uncached pages only where necessary
The caches contain the pagelets, which contain HTTP headers and body content (usually
in HTML) that are generated when elements are evaluated by Content Server.
33

CSEE Architect’s Guide
Page-cached items are stored in memory and in the database’s cache tracking tables.
Uncached elements are evaluated by Content Server each time they are requested. This
slows performance and puts additional load on Content Server, so you should try to cache
as many elements as possible.
FatWire recommends that you design your pages so that 75 - 90% of the content can be
cached. You should try to cache as many componants as you can. However, there are some
valid reasons not to cache componants:
• If content changes frequently.
• If logic in the element needs to be evaluated whenever the page is called.
• If the application requires current data.
For instructions on how to implement Content Server caching, see the CSEE Developer’s
Guide.

BlobServer Caching
Content Server caches the output generated by page evaluation; it does not, however,
cache images and other binary large objects (blobs). You have three options for managing
blobs:
• Use BlobServer to serve and cache blobs.
• Use BlobServer to serve uncached blobs.
• Place blobs on your delivery web server, instead of using BlobServer.
The following guidelines will help you determine how to handle blobs on your site:

For more information on BlobServer, see the CSEE Developer’s Guide.

Use BlobServer with
Caching

Use BlobServer
without Caching

Put Blobs on the Web
Server

• If security is
unimportant—cached
blobs are not bound by
Content Server security.

• If you have sufficient
Java memory—blobs are
cached in Java memory.

• If security is more
important than the
performance
improvement that
caching provides—when
Blob Server security is
enabled, blobs cannot be
cached.

• If security is
unimportant—blobs
served by the delivery
server are not bound by
Content Server or
BlobServer security.

• If speed is important—
blobs served by the
delivery server increase
performance.
34

Chapter 3: Page Design, Caching, and Publishing
Content Server Satellite Caching
CS-Satellite is a FatWire software product that improves the performance of Content
Server, especially for dynamic, personalized sites. It adds fast and affordable additional
caches to the Content Server system. CS-Satellite also includes throttle code to help limit
the load on Content Server.
Each copy of Content Server comes with a copy of CS-Satellite, which is automatically
installed on your Content Server machine. You can also install additional copies of
CS-Satellite on remote machines, moving your content closer to its intended audience,
which speeds performance.
With CS-Satellite, you use Satellite XML or JSP tags to mark individual pagelets for
caching in the Satellite cache.
Note that pages cached on CS-Satellite are not automatically protected by Content Server
security; for information on how to code your pages so that they are protected by ACLs,
and for more information about CS-Satellite caching in general, see the CSEE Developer’s
Guide.
For information on configuring CS-Satellite, see the CS-Satellite Installation Guide.

Caching and CacheManager
Content Server’s CacheManager object maintains both the Content Server and
CS-Satellite caches. CacheManager can do the following:
• Log pagelets in the cache tracking tables.
• Keep a record of the content (assets) that pages and pagelets contain by recording

cache dependency items in cache-tracking tables. Cache dependency items are items
that, when changed, invalidate the cached pages and pagelets that contain them. A
cache dependancy item is logged as a dependancy for the current page and all of that
page’s parent pages.

• Remove pages and pagelets containing invalid items from the Content Server and
CS-Satellite caches.

• Rebuild the Content Server and CS-Satellite caches with updated pages and pagelets
after the invalid pages have been removed.

CacheManager completes these operations automatically—after you have mirror
published new content to the delivery system, for example—ensuring that the pages that
web site visitors see are always up to date.
For web sites that use Content Server alone, CacheManager’s cache tracking and flushing
are not automatic; however you can use CacheManager’s Java API to implement similar
functionality on your site. See the CSEE Developer’s Guide and the CSEE Java API
Reference for more information about the CacheManager object and Java API.

Caching and Session
By default, Content Server stores session information in cookies. This can cause a
problem if users have cookies turned off.
If cookies are disabled, Content Server can rewrite the URL to include the session
information. You can turn on URL rewriting by setting the
35

CSEE Architect’s Guide
cs.requiresessioncookies property in futuretense.ini. Note, however, that
pages with session information encoded in the URL cannot be cached; therefore
performance can be affected if cookies are disabled.

Publishing Overview
Content Server products support two methods of publishing, or transferring assets from
the management environment to the delivery environment:
• Mirror to Server, which copies content assets to the delivery environment. Mirror to

Server is for dynamic web sites.
• Export to Disk, which evaluates Content Server pages and outputs the resulting

HTML files to the file server. Administrators then use FTP or some other method to
transfer the generated files to your delivery web server. Export to Disk is for static
web sites.

Note that Mirror to Server transfers assets only to the other delivery machines; Java code
and other items must be transferred to the delivery machine using some other method. See
the CSEE Administrator’s Guide for more information on publishing, and transferring
these items to the delivery system.

Site Design and Export to Disk Publishing
Export to Disk publishing requires that your site administrator set one or more export
starting points. The export starting point designates the asset to start with and the template
to use for that asset when the publish process starts rendering. Without a starting point, the
Export to Disk process cannot begin.
You must design your site so that one or more export starting points allow the publish
process to work its way down the site hierarchy and publish each page in the web site.
Consider, for example, two sites with the designs depicted in the following diagrams:

Figure 13: A Site with One Publish Starting Point

The site shown in Figure 13, “A Site with One Publish Starting Point,” requires one export
starting point, placed at the US Edition Front Page. From this starting point, the publish
process can access all of the pages that make up the site.

US Edition Front
Page

US ArtsBusiness US NewsWorld News

StoryStory Story StoryStory Story StoryStory
36

Chapter 3: Page Design, Caching, and Publishing
Figure 14: A Site with Multiple Publish Starting Points

The site shown in Figure 14, “A Site with Multiple Publish Starting Points,”requires two
export starting points—one placed at the International Edition Front page and one placed
at the US Edition Front page—in order for the publish process to access all of the pages in
the site.
Note that dynamic sites, which use the Mirror to Server publish method, do not need
publish starting points.
For more information about publishing and publish starting points, see the CSEE
Administrator’s Guide and the CSEE User’s Guide.

Page Design Best Practices
FatWire’s recommended page design and caching strategy has three parts:
• Choose the coding language.
• Determine which pagelets to cache.
• Code the pages with Satellite tags.

Choose a Coding Language
CSEE supports both XML and JSP as a language for creating elements. You can call
elements written in JSP from an XML element and the reverse. You cannot, however, mix
XML and JSP code in the same element. Note that the performance impact of invoking a
JSP element is slightly greater than the impact of calling an XML element. Keep this fact
in mind when deciding what language to code an element in.
You can improve your site’s performance by using XML and JSP in specific types of
elements:

CSEE also supports Java. Use the CSEE Java API to code your business logic.

Use XML Use JSP
• For page layout
• For displaying text or images
• In elements with few loops or

conditionals

• In elements with a large number of
loops and conditionals

International
Edition Front US Edition Front

US ArtsBusiness US NewsWorld News

Story

World Arts

Story Story StoryStory Story Story Story Story
37

CSEE Architect’s Guide
Determine Which Pagelets to Cache
In general, you should build modular pages where the container page is not cached but the
pagelets that it contains are cached. This page caching strategy has two benefits:
• It allows you to put your lightweight business logic, security, and other things that

require either page evaluation or a trip to Content Server to function properly, into the
uncached containing page.

• The cached pagelets allow you to retain some of the performance benefits of caching.
The following diagram illustrates this strategy:

Figure 15: Page Caching Strategy

The container page, is uncached to allow developers to put ACL checking code there.
The other pagelets, which contain content which will change as new articles are added to
the database, are cached.The page that is displayed, however, will never show outdated
content, because CacheManager prevents the display of old content and removes it from
the cache.

Pagelet A
Cached

Pagelet A
Cached

Pagelet B
Cached

Pagelet B
Cached

Pagelet C
Cached

Pagelet C
Cached

Container Page
Not Cached
38

Chapter 3: Page Design, Caching, and Publishing
The following table summarizes the guidelines for caching pagelets:

Code Your Pages
FatWire recommends that you code your pages with Satellite tags even if you are not
running CS-Satellite. If you are not running CS-Satellite, the Satellite tags will behave as
the corresponding Content Server tags.
For example, the code for a containing page element looks similar to the following:
Line one is the standard opening for FatWire XML pages.

1 <FTCS>

Line 2 calls another element that contains the display logic for this web page.
2 <callelement... "content_logic">

Line 3 opens the satellite.tag tag. The satellite.tag tag alerts Content Server
that portions of this page will be cached on the CS-Satellite systems, as well as on Content
Server, and that the Content Server hyperlinks on the page will be automatically converted
to Satellite links.

3 <satellite.tag .../>
4 <table>
5 <tr>

Line 6 calls an element with the satellite.page tag. An element called with the
satellite.page tag will be cached on both Content Server and your CS-Satellite
systems.

6 <td><render.satellitepage"header"></td>
7 </tr>
8 <tr>
9 <td><render.satellitepage "content_asset"></td>
10 </tr>
11 </table>
12 </satellite.tag>
13 </FTCS>

For more information about CS-Satellite and coding with Satellite tags, see the CSEE
Developer’s Guide.

Cache a Pagelet . . . Do Not Cache a Pagelet . . .
• If the content seldom changes.
• If the pagelet does not contain

logic that requires evaluation to
work.

• If the content must be “real time”.
• If the pagelet contains logic that requires

evaluation to work.
39

CSEE Architect’s Guide
Page Caching and Publishing Best Practices
If you are developing a system that includes the CS Content Applications, CS-Satellite
and Content Server caches in work in tandem on your management and delivery systems.
The goal of this strategy is to serve as many pagelets as possible from the CS-Satellite and
Content Server caches.
The strategy has three major benefits:
• CS-Satellite includes throttle code to help control the load on Content Server.
• Cached items mean less evaluation, and therefore less load, for Content Server.
• Cached items are served more quickly than those that must be evaluated before they

are served.
For more information about the CacheManager object, see the CSEE Developer’s Guide.

Assessing Existing Page Designs
In many projects, the appearance of the visitor site’s pages has been developed long before
the architect arrives. In this case, the architect must evaluate the existing page design. The
following steps outline the evaluation process:
1. Determine what can be a pagelet.

2. Determine what can be an asset.

3. Determine what asset type is best for each pagelet.

4. Determine what can be cached.

Determine What Can Be a Pagelet
The first step in assessing an existing page design is to break down that design into
pagelets. Each item on a page will be part of a pagelet; the question is how to determine
which items go into each pagelet. The following list provides guidelines for determining
what is a pagelet:
• A section can be reused on multiple pages of the web site—a navigation bar, for

example.
• A section is a cohesive unit of information—a newspaper article, or an article and its

related image, for example.
• A section is a list—a list of links or abstracts of current articles, for example.
Note, however, that the dynamic assembly of pagelets by CS-Satellite can become a
performance bottleneck if the number of pagelets per page is very high. If the CPUs on
your CS-Satellite boxes are at their maximum, you may have too many pagelets in your
page. To avoid this, try to design your pages so that they are composed of no more than
than 10 pagelets.
40

Chapter 3: Page Design, Caching, and Publishing
For example, the Daily Standard page can be broken down into 10 pagelets and a
containing page:

Any pagelet can be displayed on multiple pages, if necessary.

Determine Whether the Content of a Pagelet Should Be an Asset
The second step in assessing an existing page design is to determine which portions of the
page should be assets. The following general guidelines will help you make this
determination:

The content of a pagelet should be an asset:
• If the content must go through workflow.
• If the content needs to have restricted access.
• If the content changes frequently, so that the developers don’t need to alter the

templates each time things change.

Title Pagelet
(Includes Tabs)

Main Article Pagelet

Navigation
Pagelet

Secondary Article
Pagelet #1

Secondary Article
Pagelet #2

Secondary Article
Pagelet #3

Sections Search Help

Copyright Pagelet

Containing Page

Breaking News
Pagelet

Advertisement
Pagelet

Date Pagelet
41

CSEE Architect’s Guide
The content of a pagelet might not be an asset:
• If the content of the pagelet will not change.
• If the item does not need to go through workflow.
• If the content of the pagelet is the result of business logic.

Example
For example, the Daily Standard’s page breaks down as follows:
• The Title and Navigation pagelets do not need to be assets because they change very

infrequently.
• The Date pagelet is a piece of business logic hard-coded into a template.
• The Main Article and Secondary Article pagelets should be assets because their

content changes frequently.
• The Breaking News pagelet is an asset or a CS-Direct Advantage searchstate. Make

the Breaking News pagelet an asset if you want non-developers, such as business
managers or editors, to be able to change the query and put it through workflow.

• The Advertisement pagelet is a piece of business logic that displays random ads,
rather than an asset. The advertisements that the Advertisement pagelet displays,
however, are assets, as they must go through workflow.

• The Copyright pagelet is an asset, because although its content does not change
frequently, any changes must be approved by the legal department. This means that
the text must go through workflow.

Determine Which Asset Type Is Best for Each Pagelet
Once you have determined which portions of the page are assets, you must determine
which asset type is appropriate for each asset.
FatWire products include a variety of sample assets that are installed if you install the
sample sites. If none of the sample assets suit your needs, you can create custom asset
types. For more information on creating assets, see Chapter 4, “Data Design and Resultset
Caching.”
The following tables describe a subset of the assets that come with CS-Direct, CS-Direct
Advantage, and CS-Engage. Core assets are integral to the functioning of their respective
products. Sample assets are included with a product’s sample site and are only installed if
you install your product’s sample site.
The tables describe the asset types that you can display on your web pages, and do not
include the site design assets, such as the CS-Direct Page asset, that will never be
displayed on your finished web pages.
42

Chapter 3: Page Design, Caching, and Publishing
Table 3: CS-Direct Asset Types

Asset Type When to Use

Collection Asset
(Core Asset)

A collection asset is a group of assets of one asset type, chosen
based on criteria that you select using a query asset. An editor
manually orders the assets in a collection. You can create
collections of any asset type except template.
Use a Collection asset when an editor must manually order the
assets in a collection.

Query Asset
(Core Asset)

A query asset is made up of index or database queries that
select a set of items.
Use a query asset when:
• You are creating a collection asset. The group of assets in a

collection asset is created using a query asset.
• You are creating a manual recommendation asset in

CS-Engage. The group of assets in a manual
recommendation asset is created using a query asset.

• You want to display a list of items which do not need to be
ordered manually.

Article Asset
(Sample Asset)

The article asset type is included with the Burlington Financial
sample site. It represents an article on the site.

ImageFile Asset
(Sample Asset)

The image asset is included with the Burlington Financial site.
It contains the information needed to retrieve an image from the
file system.

SiteEntry Asset
(Core Asset)

The SiteEntry asset type represents an entry in the SiteCatalog
table.
SiteEntry assets are associated with a CSElement asset.

CSElement Asset
(Core Asset)

The CSElement asset type represents an entry in the
ElementCatalog table.
Use a CSElement asset when you want to do the following:
• Code that is not for rendering an asset and that you want to

reuse in more than one place and/or call from more than one
type of template. For example, you have six templates that
use the same top banner so you create a CSElement asset for
the code in the banner and call that element from each
template. This way, if you decide to change the way the
banner works, you only have to change it in one place.

• Recommendations for CS-Engage. If you create a dynamic
list recommendation, you must create a CSElement asset to
build the dynamic list. For more information, see the
elements and templates chapter in the CSEE Developer’s
Guide.
43

CSEE Architect’s Guide
Page Asset
(Core Asset)

The Page asset type stores references to other assets. Unlike the
collection asset type, the assets that you refer to in the page
asset do not need to be of the same type.
Note that a page asset and a Content Server page are quite
different. The page asset is an organizational construct that you
use in the Site Plan tab as a site design aid and that you use to
identify data in your elements. A Content Server page is a
rendered page that is displayed in a browser or by some other
mechanism.

Asset Type When to Use
44

Chapter 3: Page Design, Caching, and Publishing
Table 4: CS-Direct Advantage Flex Asset Types

Table 5: CS-Engage Asset Types
CS-Engage includes a recommendation asset type. The assets described in the following
table are not different asset types; rather they are variations on the recommendation asset
type.

Asset Type Description

Product Asset
(Sample Asset)

A product asset is an individual item with an associated set of
flex attributes. Each product has a flex definition and one or
more flex parents.

 Article Asset
(advanced)
(Sample Asset)

An advanced article asset is a named asset with text content,
similar to a CS-Direct article asset. Each advanced article asset
has an associated flex definition that determines what attributes
of the article appear on your web page. You define the flex
attributes, and determine which attributes apply to an article by
defining its associated flex definition.
Like product assets, advanced article assets have one or more
flex parents, from which they inherit attributes. An advanced
article asset can have its own flex attributes, in addition to those
that it inherits from its parents.

Image Asset
(advanced)
(Sample Asset)

An advanced image asset is a named asset with image content,
similar to a CS-Direct image asset. Each advanced image asset
has an associated flex definition, which determines the
attributes of the image. You define the flex attributes, and
determine which attributes apply to an image by defining its
associated flex definition.
Like product assets, advanced image assets have one or more
flex parents, from which they inherit attributes. An advanced
image asset can have its own flex attributes, in addition to those
that it inherits from its parents.

Asset Type Description

Static List
Recommendation Asset

A static list recommendation asset holds a static,
preselected list of assets. When a site page invokes the
recommendation, it returns the items in this list.

Dynamic List
Recommendation Asset

A Dynamic List Asset is associated with a CSElement
asset that uses CS-Direct Advantage searchstate and
assetset tags to query the database. When a site page
invokes the recommendation, it runs the element and
returns the items that match the query’s conditions.
45

CSEE Architect’s Guide
Related Item
Recommendation Asset

A related item recommendation holds the name of a
relationship. When a site page invokes a relate item
recommendation, items are retuned (recommended) only
if they are manually configured to have a relationship
with an asset on the page—usually a cross-sell or up-sell
relationship.
For example, you can create a relationship called
CrossSell that displays a list of handbags on pages that
display women’s shoes, because marketing has
determined that women who buy shoes also buy
handbags.

Asset Type Description
46

Chapter 4

Data Design and Resultset Caching
The database is the backbone of your content management system; it is where much of
your web site’s content is stored. This chapter provides an explanation of data design and
maintenance in the Content Server Enterprise Edition (CSEE) product family, and also
describes how to implement resultset caching, which stores the results of your database
queries in Java memory.
This chapter contains the following sections:
• Data Design
• Designing Assets
• Data Retrieval
• Resultset Caching
• Database Maintenance

Data Design
The CSEE database tables contain several types of information:
• Structural information, which provides the information used to create the structure and

business logic of your web site. Examples of structural information include the
templates used to display content on the site.

• System information, which allows CSEE to run. Examples of system information
include login information and workflow information. Content Server system tables,
such as the ElementCatalog table and SystemACL table, should not be modified.

• Content, such as articles that you want to display on the site.
You will need to add new database tables to the tables already provided with CSEE. The
design of these tables has a close correlation with the design of the assets that will
populate them. Because asset creation affects the database schema, you should have a
DBA present as you design the assets.
47

CSEE Architect’s Guide
Basic Assets
CS-Direct provides the basic asset model. Basic assets generally represent content,
though there are also basic assets that allow you to organize and manage your web site.
Consider a basic asset as one row in a database table or spreadsheet. For example, all of
the information for a newspaper article—the title, author, an abstract, a URL to where the
text of the article is stored on the file system, the byline, and source of the article—and the
IDs and other information needed to manipulate the asset within CS-Direct can be
recorded in a single row of a database table, as a basic asset.
CS-Direct’s sample site comes with several basic asset types already defined. You can
modify these asset types to suit your needs, or create custom assets for your site. See the
CSEE Developer’s Guide for more information on creating and modifying asset types.

Flex Assets
CS-Direct Advantage provides the flex asset model. Flex assets simultaneously represent
and organize content. Unlike basic assets, where the information for one instance of an
asset is stored in one row of a database table, the information for one instance of a flex
asset is stored in multiple database tables.

Flex Families
Flex assets are grouped into flex families. The members of a flex family form an asset
inheritance tree, where child assets inherit various attributes from their parents. The
following diagram represents an asset inheritance tree for an online newspaper:

Figure 16: An Asset Inheritance Tree

This asset inheritance tree makes entering new stories into the system faster and easier, as
some of the attributes for each story are inherited from its parents and grandparents, and so
do not need to be entered by the editor. For example, The WireService node of the asset
inheritance tree has a service attribute—a field that holds the name of the wire service that
the story came from. This attribute and its value are inherited by all of the node’s children
and grandchildren, so all stories with Reuters as a parent inherit the information that they
were supplied by Reuters.

News

WireService Staff

Reuters AP UPI

Story

Feature OpEd

StoryStoryStoryStory StoryStory
48

Chapter 4: Data Design and Resultset Caching
Flex assets also support multiple inheritance, meaning that they can inherit attributes from
more than one set of ancestors. Imagine, for example, that you are developing a system for
a company which owns two newspapers. The papers share wire service stories, as shown
in the following diagram:

Figure 17: Multiple Inheritance Trees

Each story includes the logo of its respective paper. Flex assets support this by allowing
wire service stories to inherit logos from both The Daily Standard and the Smallville
Eagle. Developers then code the web site for each newspaper to display the applicable
logo.
Note that the hierarchy of these asset inheritance trees has no effect on the hierarchy you
build on the delivery web site to allow visitors to drill down to the information they need.
Because the asset inheritance trees and your web site navigation are completely
independent of each other, you can create asset inheritance trees suited to the needs of
your editors, who enter stories into the system based upon the source that supplied them,
without forcing your web site visitors to browse the finished web site based on a story’s
source, rather than the newspaper section that the story belongs in.

Flex Asset Types
Flex families are composed of five flex asset types:
• Flex Asset - The individual items at the bottom of an asset inheritance tree. Flex assets

are composed of flex attributes.
• Flex Attribute - An individual unit of information that composes a flex asset. For

example, “color” or “abstract” can be flex attributes.
• Flex Definition - A set of attributes that defines a kind of flex asset. You create a

named flex definition that then serves as a template to create individual flex assets
with similar characteristics.

• Flex Parent - An association of individual flex assets. You create item parents that help
you organize or manage a set of flex assets.
Each flex parent has its own set of flex attributes. All the children of the parent inherit
these attributes. Each flex parent has a single flex parent definition, which defines the
set of attributes that make up the flex parent.

• Flex Parent Definition - Similar to a flex definition, a flex parent definition serves as a
template to define which attributes make up a flex parent.

WireService

Reuters AP UPI

Story StoryStoryStoryStory

The Daily
Standard

Smallville
Eagle

Staff Staff

Story Story Story

FeatureOpEd

Story

Feature OpEd
49

CSEE Architect’s Guide
Asset Variability
Flex assets support more fields than basic assets do, and allow individual instances of an
asset type to vary widely. Imagine, for example, that you are using flex assets to design an
online catalog for a company that sells housewares and linens. You create an flex parent
asset type called product to represent the items for sale. The individual products for sale,
however, vary greatly—sheets, for instance, are quite different from toasters.
For example, the information necessary to create an individual instance of a “sheet”
product and a “toaster” product is as follows:

Flex assets have the flexibility to accommodate this difference; your developers create
groups that only have fields for entering information appropriate to a specific product
type. For this example, the developer creates a toaster flex definition and a sheet flex
definition. The flex definitions only include the fields needed for each product type, so
that the toaster definition does not include a fiber field.

Choosing Basic or Flex Assets
The following table contains guidelines for choosing standard or flex assets:

toaster sheet

product_name: ToastOMatic 3000 product_name: Pima Flat Sheet

manufacturer: Appliance Co manufacturer: US Linens

type: slot size: Twin

SKU: 84756532 color: White

fiber: Cotton

thread_count: 310

SKU: 9380547854

Use Basic Assets: Use Flex Assets:
• If the asset can be a single row in one

database table
• If individual instances of an asset

type have the same structure
• If your web site visitors will be

browsing the web site

• If you want the asset to inherit traits from
its ancestors

• If individual instances of an asset type
vary widely

• If you need attributes to have multiple
values

• If your web site visitors will be searching
the web site
50

Chapter 4: Data Design and Resultset Caching
Designing Assets
The following sections contain information about developing basic and flex assets.

Designing Basic Assets
The following list contains design tips for basic assets:
• Asset design is constrained by the database that you use. For example, in Oracle, only

one column (and hence one field in the asset) can have a long datatype.
• Try to minimize the number of fields you use in an asset by keeping the information

they contain in useful units. For example, use one field for a telephone number, as
each component of the number is of little use alone, but use two fields for a person’s
name, as you may want access to both the first and last name separately.

• Consider the asset’s users—the content providers and editors who are entering data
into the CS-Direct user interface. Do not display fields for information that is
inappropriate for their jobs; create another asset to hold this information.

Designing Flex Asset Families
Most management systems will utilize multiple flex asset families. How you design these
families and the assets that compose them affects both your database and the usability of
the management system.
As you design flex asset families you must create a balance:
• Limit the number of flex parent definitions associated with a given flex definition, so

that content providers and editors will not have to choose between hundreds of flex
parent definitions to find the one appropriate to the information that they need to enter.

• Create enough flex parent definitions and flex definitions so that content providers
and editors can find a definition with a minimum of fields that are not applicable to
their task.

Designing the flex asset families for your project is a process that consists of the following
steps:
1. Determine all of the attributes that you will need.

2. Determine which items have attributes with unique values.

3. Determine the number of flex definitions that you need

4. Determine the number of flex families that you need

Determine Which Attributes You Need
The first step in designing a flex asset family is to determine all of the attributes that you
need for your site.
Note that this means more than determining the attributes that you need for your business
requirements or the attributes that you want to display to web site visitors. You must also
determine how you want content to be displayed on the finished web site and how you
want web site visitors to “drill down” to items that they want.
For example, if you want to display a list of the ten most recent stories submitted to a
newspaper, you must include an attribute that holds the date and time that the story was
submitted, allowing your developers to create logic that retrieves the most recent
51

CSEE Architect’s Guide
submissions. Similarly, if you would like web site visitors to search on articles based on
the section they fall under—Sports, for example—you must include a “section” attribute.

Determine Which Attribute Values Are Unique
Children in the asset inheritance tree inherit attributes and their values from their parents
and grandparents. Attributes where the values must be unique for each instance of an
item—SKU, for example—are included in the flex definition, near the bottom of the asset
inheritance tree. Conversely, attributes with common values are candidates for being item
parents and item parent definitions, so that those values can be inherited by the individual
items that need them.

Determine the Number of Flex Definitions That You Need
The number of flex definitions you create affects the number of data fields that appear in
the asset forms on the management system. The number of definitions that you must
create is determined by how different the individual flex assets at the bottom of the asset
inheritance tree are.
Note that the number of attributes that make up a Flex Definition affects the amount of
time it takes for that Flex Definition’s form to load. It takes between 50 and 350
milliseconds to display one attribute field (depending on your attribute editor), so
displaying many attribute fields can create slow forms.
In an online catalog, for example, you could create one flex definition called item which
would act as the template for all items that the editors enter into the system. If, however,
the catalog contains very different items, such as sheets and toasters, a universal product
definition is not the best choice; sheets require many fields that toasters do not, forcing
editors to leave many fields empty. A better solution is to create two flex definitions, one
for toasters and one for sheets, where each flex definition contains only the fields
necessary for that type of item.

Determine the Number of Flex Families That You Need
The database schema for Content Server Direct Advantage includes “mungo” tables. A
mungo table contains attribute values for an associated Flex Family. Mungo tables can
grow very large, often containing more than a million records.
Creating multiple Flex Families is a good way to separate your data into several mungo
tables in your database, thus differentiating your data and allowing you to control security
and archiving through individial Flex Families.
Note, however, that searching for content across multiple mungo tables is slower than
searching for content in a single mungo table.

Note
Use a multi-value field if an item is in more than one category—for
example, if a news story can be classified as both “business” and
“international,” or if a movie can be classified as both “romance” and
“musical.”
52

Chapter 4: Data Design and Resultset Caching
Data Retrieval
After you design your site’s data structure, you can begin designing the queries that will
help to build your site and populate it with content. The different CSEE products have
different ways of retrieving data from the database, and these methods are outlined in the
following sections.

Data Retrieval in Content Server and CS-Direct
The CSEE Java API includes a number of methods that generate SQL queries for use with
CSEE. In general, you will use these methods to create your SQL queries, rather than
creating queries manually. See the CSEE Java API Reference for more information about
these methods.
You can either embed SQL queries in templates and other elements, or you can use the
Query basic asset type to manage the query. The following guidelines will help you
determine whether to use an embedded SQL query or the Query asset type:

Designing SQL Queries
The guidelines for creating a SQL query are the same whether you are creating an
embedded query or are using the Query asset type: create queries that retrieve only the
information you need.
For example, if you are designing a query which will generate a list of abstracts of the
most recent newspaper articles in your database, you only need the titles of the articles and
the text of the abstract. Your SQL statement, therefore, should look like the following
example:
SELECT title,abstract FROM articles WHERE
createddate=Variables.date

Using SELECTTO for your queries can help improve performance. When you create a
query with SELECTTO, Content Server Enterprise Edition creates a perpared statement in
addition to caching the resultset. This allows your database to cache the query itself,
allowing you to retrieve content quickly.

Use an embedded SQL query: Use the Query asset:
• If the results of the query can be used

“as is”
• If the query does not need to go

through workflow
• If the query will not change

• If you may need to manually order the
results of the query

• If the query needs to go through
workflow

• If the query may need to be changed to
reflect changing business requirements

• If you need to retrieve an element from
the database
53

CSEE Architect’s Guide
Data Retrieval in CS-Direct Advantage
If you are using Content Server Direct Advantage to design your site, you create
searchstates to retrieve the data that appears on the delivery web site, rather than creating
SQL queries. A searchstate describes the type of data that you want to retrieve from the
database, much like a SQL query does. When they are evaluated, searchstates produce
assetsets. Assetsets are objects that represent groups of assets, and are roughly analogous
to resultsets.

Resultset Caching
Content Server allows you to cache the resultsets generated by database queries in Java
memory. Implementing resultset caching on a site improves performance and reduces the
load on Content Server and the database. Outdated resultsets are removed from the cache
in one of three ways:
• Resultsets are deleted from the cache automatically when a table changes.
• Resultsets are deleted from the cache using CatalogManager’s flushcatalog

command.
• Resultsets time out and are deleted based on values set in the property file,

futuretense.ini.
Values set in futuretense.ini also control how many resultsets are held in cache for a
given table. For more information about Content Server properties and how to set them,
see the CSEE Administrator’s Guide.
You can control resultset caching on a table-by-table basis. FatWire recommends that you
assess each table in the schema, determine how it should be cached, and set the caching
properties accordingly. As with page caching, which is described in Chapter 3, “Page
Design, Caching, and Publishing,” your resultset caching strategy will be different for the
development, management, and delivery (production) environments.

Table Updates and Resultset Caching
FatWire recommends that you update your elements using one of three update methods:
• Content Server Explorer
• CatalogMover
• The CSEE user interface
If you are writing elements that modify the data in your database tables programmatically,
use CatalogManager commands to change the data.
Resultsets generated by one of these update methods are cached automatically. Outdated
resultsets are deleted from the cache automatically if you are using any of these methods.
For more information on resultset caching, see the CSEE Developer’s Guide.
54

Chapter 4: Data Design and Resultset Caching
Setting Resultset Caching Timeouts
The following guidelines will help you determine how to set your resultset caching
timeouts:
• Use a low timeout value if the data in the database changes frequently.
• Use a high or infinite timeout value of the data in the database seldom changes.
For example, on the development system:
• The ElementCatalog table should have its resultset cache timeout set to a low

value: 1 minute, for example. This allows a developer to view alterations to an
element that has changed, while maintaining some of the load-reducing benefits of
caching.

• A table that contains content, such as a table containing newspaper articles, should
have an indefinite timeout value, because the content in the articles seldom changes on
the development system.

On the management system:
• The timeout on tables that contain content should be low, so that unneeded

information does not linger in the cache.
• The timeout on tables containing structural information, such as the

ElementCatalog table, should be high, because this information seldom changes.
On the delivery system:
• Timeouts for tables that contain structural information, like the ElementCatalog

table, should be long, because the elements seldom change.
Experiment in order to find the appropriate value for your system; you want to cache
as many structural resultsets as possible for as long as possible, but not to constantly
purge the least recently used resultset.

• The timeout on tables that contain content should be low, so that unneeded
information does not linger in the cache.

Setting Resultset Sizes
As you can control resultset timeouts, you can also control how many resultsets are held in
Java memory. Because Java memory is limited, you should assess each table in your
schema and determine the appropriate number of resultsets to save.
The cc.cacheResults property controls the default number of resultsets that are cached
for all tables. You can override this default on a table-by-table basis by adding properties
for those tables using the following convention: cc.my_tablenameCSz.
Setting resultset sizes for simple tables, such as the ElementCatalog table, is relatively
easy to do. In general, the number of queries you want to store is equal to the number of
records in the table, because queries to the ElementCatalog table seldom return more
than one record.
Resultset caching sizes for content asset tables are more difficult to tune because a typical
query returns more than one record. If you know that you will always have a small number
of records returned, you can specify that a large number of resultsets be stored in the
resultset cache.
55

CSEE Architect’s Guide
Database Maintenance
The following tips will help you maintain your database:

• Only use CatalogManager commands, Content Server Explorer, or CatalogMover to
modify database tables.

• Write a custom element that deletes assets that are flagged for deletion (have a
status=VO) from the database.

• Consider moving “mungo” tables and other large tables to separated database
machines. This makes these large tables easier to maintain and secure, and increases
system performance.
56

Chapter 5

Security and Personalization
Although they may seem like unrelated features, security and personalization in CSEE are
both implemented using the same mechanism—access control lists (ACLs). This chapter
provides an overview of CSEE security and personalization, and contains the following
sections:
• Security Overview
• CSEE Authentication
• Segmentation and Personalization
• Segmentation and CSEE Products

Security Overview
As you design a web site with CSEE, you must implement security for two components of
the project:
• The content management systems (development, management, and delivery)
• The visitor web site that you are designing
CSEE provides security through access control lists (ACLs) for both the content
management systems and the public web site. ACLs are groups of internal users and web
site visitors who share the same access privileges. ACLs have two functions:
• They limit access to tables, page entries (SiteCatalog entries), and assets.
• They limit the functions that users can perform.
By default, CSEE stores its ACLs in the SystemACL table and its user information in the
SystemUsers table. Note that you must modify the user interface to Content Server’s
administrative module to use CSEE ACLs with a large number of users.
CSEE provides the ability to integrate other authentication methods with CSEE, most
notably LDAP.
57

CSEE Architect’s Guide
The following guidelines will help you determine whether to use CSEE ACLs and
authentication or LDAP authentication:

Securing Content Management Systems
For any content product, you should design your administrative ACLs so that you grant
access to tables, pages, assets, and functions only for specific users who require that
access.
With Content Server Direct, access to assets is handled by a site. A CS-Direct site is a tool
to organize the pages and collections for your web site—it does not effect the appearance
of your web site in any way. A CS-Direct site can correspond exactly to a live web site that
you produce, but does not have to do so. For example, you can create a site that only
editors can access, which contains only the content that they need to edit, and a site that
only developers can access, which contains only the elements they are developing. The
content from both CS-Direct sites is combined to create the live web site. For more
information on sites, see the CSEE Developer’s Guide.
You can also provide ACL protection at the asset instance level by adding an ACL column
to any custom asset that you create, and writing code to check that ACL. For more
information about internal security, see the CSEE Administrator’s Guide.

Securing the Web Site
To implement security with ACLs for your web site, you must code login pages for the
web site’s visitors. When visitors log in to the site, they are associated with one or more
ACLs that you select. If you use CatalogManager to log visitors in and out, their login
information is kept in Content Server’s SystemUser’s table. ACLs are kept in the
SystemACL table.
You can protect your site by adding code to an element that checks a user’s ACL, or you
can protect pages without adding ACL checking code by setting ACLs in Content Server’s
SiteCatalog table.
Note that if you use automatic ACL checking with the SiteCatalog instead of writing your
own ACL checking code to secure your pages, pages served from the Content Server
cache are protected by Content Server ACLs, but pages served from the CS-Satellite cache
are not. For more information on CS-Satellite and security, see the CSEE Developer’s
Guide.

Use CSEE ACLs and
Authentication . . .

Use LDAP Authentication . . .

• If the number of users is small. • If the number of users is large.
• If you need to use a protocol that is

available across many platforms.
58

Chapter 5: Security and Personalization
CSEE Authentication
CSEE supports three user authentication mechanisms:
• Content Server Authentication
• LDAP Authentication
• Windows NT Authentication
You choose which of these three mechanisms you want to use for your system when you
install an authentication plug-in during the CSEE installation. For more information about
the authentication plug-ins, see Installing the CS Content Applications. The following
sections describe the three authentication mechanisms in greater detail.
Once you have chosen and installed the appropriate authentication method for your
system, you interact with the authentication system by using Content Server’s directory
services tags. For more information about directory services and the directory services
tags, see the CSEE Developer’s Tag Reference and the CSEE Developer’s Guide

Content Server Authentication
Content Server’s default user management facilities support arbitrary user attributes such
as email or phone number. However, arbitrary attributes cannot be assigned to ACLs, nor
can ACLs be hierarchical. If you want to assign user attributes to ACLs or have
hierarchical ACLs, FatWire recommends that you configure Content Server to use LDAP
user management.

LDAP Authentication
You can use an LDAP database to store usernames, passwords, and other information
about the users of either your content management systems or your site. Refer to
Installing the CS Content Applications for information on how to configure Content
Server to use LDAP.

Windows NT Authentication
Content Server may use Windows NT for authentication, using the default facilities for
storing other user information. Refer to the CSEE Administrator’s Guide for information
on how to configure Content Server to use Windows NT.
The default facilities support arbitrary user attributes (such as email, address, etc.).
However, arbitrary attributes cannot be assigned to ACLs, nor can ACLs be hierarchical.

Segmentation and Personalization
CSEE supports two methods of tailoring content to the visitors who will view it:
• Segmentation, where visitors are assigned to a group, and content is displayed based

on that group
• Personalization, where different content is displayed for each visitor
Implementing segmentation on a site is similar to implementing security with ACLs—
visitors log in to the site and are assigned an ACL based on criteria that you select. You
then put code into your templates, which display content based on the visitor’s ACL.
59

CSEE Architect’s Guide
Because the pagelets you need for different groups can be cached, a well-designed
segmentation and caching strategy allows you to customize your pages for different
viewers without a large impact on performance or a need for more hardware.
True personalization, however, does have a performance and hardware impact. If the
content of each page is unique to each visitor, the amount of material that you can cache is
small, putting load on Content Server and slowing performance. The additional load on
Content Server can be partially offset by adding more hardware, but the best practice is to
use true personalization sparingly and design sites that rely on segmentation and an
efficient caching strategy.

Segmentation and CSEE Products
Although you can implement segmentation with Content Server alone, FatWire provides a
product that makes implementing segmentation on your site much simpler: CS-Engage.
CS-Engage has a segment asset type that defines a group of web site visitors who share a
common trait—zip code, for example. Each segment is associated with a set of rules that
determine what content is displayed for members of that segment. For example, you could
create a segment for people who have an 01803 zip code and associate a rule with that
segment that displays ads for businesses located in the same zip code.
To learn more about CS-Engage, see the CSEE Developer’s Guide.
60

Index
A
access control list (ACL)

overview 57
asset inheritance tree 48
assets

and pagelets 41, 42
asset types 42
basic 48
choosing basic or flex 50
flex 48

B
basic assets

See also assets
choosing 50
designing 51
overview 48

best practices
page caching 40
publishing 40

BlobServer
caching 34

C
CacheManager object 35
caching

See also page caching and resultset
caching
and BlobServer 34
and CacheManager 35
and session 35

overview 10
pagelets 38

Content Server
and CS-Bridge Enterprise 16
BlobServer caching 34
designing SQL queries
page caching 33, 40

Content Server Direct
basic assets 48
designing basic assets 51
designing SQL queries

Content Server Direct Advantage
asset variability 50
designing flex asset families 51
flex asset types 49
flex assets 48
searchstates 54

Content Server Enterprise Edition (CSEE)
and middleware 15
architecture 11
coding languages 37
design overview 18
environments 18
hardware sizing 26
implementation models 13
integrating with other applications 15
J2EE 11
LDAP 57
page design 37
publishing 36
security 57
 61

CSEE Architect’s Guide
Content Server Satellite
coding 39
page caching 35, 40

CS Content Applications
flex assets 11

D
data design

basic assets 48
flex assets 48
overview 47

database queries
searchstates 54
SQL 53

database tables
database maintanance 56
ElementCatalog 9
security 57
SiteCatalog 9
SystemAcl 57

delivery system
hardware 26
page caching 39

development system
hardware 24

E
elements

and tables 9
overview 9

environments
hardware 23
management 25
overview 18

Export to Disk publishing
See also Mirror to Server publishing
overview 36

F
flex assets

asset inheritance tree 48
asset variability 50
attributes 51, 52
choosing 50
designing flex asset families 51
flex asset types 49
flex definitions 52

flex families 48
overview 48

H
hardware

content overlap 29
delivery system 26
development system 24
different environments 23
geographic distance 29
management environment 25
management system 25
multinational sites 28
purchasing guidelines 30
scalability 28
sizing 26
sizing guidelines 26
testing system 26
time difference 29

I
integration

and CS-Bridge Enterprise 16
and middleware 15
overview 15

J
J2EE 11
Java 11, 37
JSP 9

choosing 37

L
LDAP

and security 57

M
management environment

hardware 25
management system

hardware 25
Mirror to Server publishing

See also Export to Disk publishing
overview 36

multinational sites
hardware 28
62

Index
P
page caching

See also caching
best practices 40
delivery system 39
guidelines 39
on Content Server 33
with Content Server Satellite 35

page design
best practices 37
caching 10
elements 9
overview 8
pagelets 9

pagelets
and assets 41, 42
and web pages 40
caching 38
overview 9

performance
overview 20
testing 20

project
scheduling 21
staffing 21

publishing
best practices 40
Export to Disk 36
Mirror to Server 36
overview 36

R
resultset caching

See also caching
overview 54
resultset sizes 55
table updates 54
timeouts 55

S
scalability

hardware 28
scheduling 21
searchstates

designing 54
security

access control lists 57
LDAP 57
overview 57

sessions
and caching 35

site design
and Export to Disk publishing 36

sizing
hardware 26

software
choosing 30

SQL
See database queries

staffing 21
system design

assessing page design 40
choosing a coding language 37
choosing basic or flex assets 50
choosing software 30
coding pages 39
data design 47
designing flex asset families 51
designing searchstates 54
hardware purchasing guidelines 30
multinational sites 28
overview 18
page caching guidelines 39
page design 37
performance 20
publishing 36
scalability 28
security 57
with Content Server Satellite 35

systems
delivery 26
development 24
management 25
testing 26

T
tables

See database tables
testing system

hardware 26
 63

CSEE Architect’s Guide
W
web pages

and pagelets 40
assessing page design 40
coding 39

X
XML 9

choosing 37
64

	Architecture Guide
	Contents
	Architecture Overview
	Content Server Enterprise Edition: Basic Concepts
	Modular Page Design
	Caching
	Assets

	Content Server Enterprise Edition Architecture
	Three-Tier Architecture
	The CSEE Product Stack

	Implementation Models
	Content Server Enterprise Edition as a Central Data Repository
	CSEE Integrated with Other Applications
	Content Server Distributed Over Multiple Sites

	The Design Process
	CSEE Environments
	Design for Performance
	Performance Test Early and Often

	Project Scheduling and Staffing

	Choosing Hardware and Software
	Hardware for Different Environments
	Development Environment
	Management Environment
	Delivery System
	Testing System

	Sizing Your Hardware
	Hardware for a Small System
	Hardware for a Medium-Sized System
	Hardware for a Large System

	Hardware to Make Your Site Scalable
	Hardware for a Multinational Site
	Time Difference and Hardware
	Content Overlap and Hardware
	Geographic Distance and Hardware

	Hardware Guidelines
	Choosing Software

	Page Design, Caching, and Publishing
	Page Caching Overview
	Content Server Page Caching
	Content Server Satellite Caching
	Caching and CacheManager

	Caching and Session
	Publishing Overview
	Site Design and Export to Disk Publishing

	Page Design Best Practices
	Choose a Coding Language
	Determine Which Pagelets to Cache
	Code Your Pages

	Page Caching and Publishing Best Practices
	Assessing Existing Page Designs
	Determine What Can Be a Pagelet
	Determine Whether the Content of a Pagelet Should Be an Asset
	Determine Which Asset Type Is Best for Each Pagelet

	Data Design and Resultset Caching
	Data Design
	Basic Assets
	Flex Assets
	Choosing Basic or Flex Assets

	Designing Assets
	Designing Basic Assets
	Designing Flex Asset Families

	Data Retrieval
	Data Retrieval in Content Server and CS-Direct
	Data Retrieval in CS-Direct Advantage

	Resultset Caching
	Table Updates and Resultset Caching
	Setting Resultset Caching Timeouts
	Setting Resultset Sizes

	Database Maintenance

	Security and Personalization
	Security Overview
	Securing Content Management Systems
	Securing the Web Site

	CSEE Authentication
	Content Server Authentication
	LDAP Authentication
	Windows NT Authentication

	Segmentation and Personalization
	Segmentation and CSEE Products

	Index

