
Version 7.6 Patch 2

Delivery Portlet Developer’s
Guide

Document Revision Date: Jan. 31, 2012

FATWIRE CORPORATION PROVIDES THIS SOFTWARE AND DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. In no event shall FatWire be liable for any direct, indirect, incidental, special, exemplary, or
consequential damages of any kind including loss of profits, loss of business, loss of use of data, interruption of business, however caused and on
any theory of liability, whether in contract, strict liability or tort (including negligence or otherwise) arising in any way out of the use of this
software or the documentation even if FatWire has been advised of the possibility of such damages arising from this publication. FatWire may
revise this publication from time to time without notice. Some states or jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions; therefore, this statement may not apply to you.

Copyright © 2012 FatWire Corporation. All rights reserved.

The release described in this document may be protected by one or more U.S. patents, foreign patents or pending applications.

FatWire, FatWire Content Server, FatWire Engage, FatWire Satellite Server, CS-Desktop, CS-DocLink, Content Server Explorer, Content Server
Direct, Content Server Direct Advantage, FatWire InSite, FatWire Analytics, FatWire TeamUp, FatWire Content Integration Platform, FatWire
Community Server and FatWire Gadget Server are trademarks or registered trademarks of FatWire, Inc. in the United States and other countries.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. AIX, AIX 5L, WebSphere, IBM, DB2, Tivoli and other IBM products
referenced herein are trademarks or registered trademarks of IBM Corporation. Microsoft, Windows, Windows Server, Active Directory, Internet
Explorer, SQL Server and other Microsoft products referenced herein are trademarks or registered trademarks of Microsoft Corporation. Red Hat,
Red Hat Enterprise Linux, and JBoss are registered trademarks of Red Hat, Inc. in the U.S. and other countries. Linux is a registered trademark of
Linus Torvalds. SUSE and openSUSE are registered trademarks of Novell, Inc., in the United States and other countries. XenServer and Xen are
trademarks or registered trademarks of Citrix in the United States and/or other countries. VMware is a registered trademark of VMware, Inc. in the
United States and/or various jurisdictions. Firefox is a registered trademark of the Mozilla Foundation. UNIX is a registered trademark of The
Open Group in the United States and other countries. Any other trademarks and product names used herein may be the trademarks of their
respective owners.

This product includes software developed by the Indiana University Extreme! Lab. For further information please visit

http://www.extreme.indiana.edu/.

Copyright (c) 2002 Extreme! Lab, Indiana University. All rights reserved.

This product includes software developed by the OpenSymphony Group (http://www.opensymphony.com/).

The OpenSymphony Group license is derived and fully compatible with the Apache Software License; see http://www.apache.org/LICENSE.txt.

Copyright (c) 2001-2004 The OpenSymphony Group. All rights reserved.

You may not download or otherwise export or reexport this Program, its Documentation, or any underlying information or technology except in
full compliance with all United States and other applicable laws and regulations, including without limitations the United States Export
Administration Act, the Trading with the Enemy Act, the International Emergency Economic Powers Act and any regulations thereunder. Any
transfer of technical data outside the United States by any means, including the Internet, is an export control requirement under U.S. law. In
particular, but without limitation, none of the Program, its Documentation, or underlying information of technology may be downloaded or
otherwise exported or reexported (i) into (or to a national or resident, wherever located, of) any other country to which the U.S. prohibits exports of
goods or technical data; or (ii) to anyone on the U.S. Treasury Department's Specially Designated Nationals List or the Table of Denial Orders
issued by the Department of Commerce. By downloading or using the Program or its Documentation, you are agreeing to the foregoing and you
are representing and warranting that you are not located in, under the control of, or a national or resident of any such country or on any such list or
table. In addition, if the Program or Documentation is identified as Domestic Only or Not-for-Export (for example, on the box, media, in the
installation process, during the download process, or in the Documentation), then except for export to Canada for use in Canada by Canadian
citizens, the Program, Documentation, and any underlying information or technology may not be exported outside the United States or to any
foreign entity or “foreign person” as defined by U.S. Government regulations, including without limitation, anyone who is not a citizen, national,
or lawful permanent resident of the United States. By using this Program and Documentation, you are agreeing to the foregoing and you are
representing and warranting that you are not a “foreign person” or under the control of a “foreign person.”

FatWire Content Server Delivery Portlet Developer’s Guide
Document Revision Date: Jan. 31, 2012
Product Version: 7.6 Patch 2

FatWire Headquarters
FatWire Corporation
330 Old Country Road
Suite 303
Mineola, NY 11501

www.fatwire.com

3

Table of

Contents
About This Guide .5
Audience . 5
Related Documents . 5
Conventions . 5
Third-Party Libraries . 6

Portlet Classes and Sample Portlets . 7
Overview . 8
Spark Sample Site . 8
Portlet Classes . 9
Sample Portlets . 10
Display Elements . 17

News Detail Element . 17
Ad Display Element. 17
Jobs Detail Element . 17
Documents Element. 18
Generic Index Elements. 18
Delivery Portlet Developer’s Guide: Content Server 7.6 Patch 2

Table of Contents
4

Delivery Portlet Developer’s Guide: Content Server 7.6 Patch 2

5

About This Guide
The purpose of this guide is to help portal developers write their own portlets using the
asset model that is implemented in the FatWire Content Server application. The Content
Server application contains a sample site, named “Spark,” which is used in this guide to
illustrate code.

This guide is not intended to be a comprehensive developer’s guide or a tag reference.
Information regarding the Content Server system of managing content can be obtained
from the administrator and user guides that are provided with the applications.

Audience
The intended audience for this guide is developers. It is assumed that the reader has a
working knowledge of HTML, Java Server Pages, JSP Tag libraries, and portals. It is also
assumed that the reader has a basic understanding of the portal applications and their
system of managing content.

Related Documents
Readers who need background information for the topics in this guide are encouraged to
first review the Content Server product documentation: Administrator’s Guide and
Developer’s Guide.

Conventions
The following text conventions are used in this guide:

• Boldface type indicates graphical user interface elements that you select.

• Italic type indicates book titles, emphasis, or variables for which you supply particular
values.

• Monospace type indicates file names, URLs, sample code, or text that appears on the
screen.

• Monospace bold type indicates a command.
Delivery Portlet Developer’s Guide: Content Server 7.6 Patch 2

About This Guide
6

Third-Party Libraries
FatWire Content Server and its applications include third-party libraries. For additional
information, see FatWire Content Server 7.6 Patch 2: Third-Party Licenses.
Delivery Portlet Developer’s Guide: Content Server 7.6 Patch 2

7

Portlet Classes and Sample Portlets
This chapter describes the Spark sample site. It also describes the portlet classes that are
used to write portlets, and presents source code for the portlets in the Spark sample site.

This chapter contains the following sections:

• Overview

• Spark Sample Site

• Portlet Classes

• Sample Portlets

• Display Elements
Delivery Portlet Developer’s Guide: Content Server 7.6 Patch 2

Portlet Classes and Sample Portlets

 Overview
8

Overview
Integration of Content Server with portal servers is based on the JSR-168 standard. As
explained on the Sun Developer Network Site, “Java Specification Request” (JSR) 168
enables interoperability among portlets and portals. This specification defines a set of
APIs for portlets and addresses standardization for preferences, user information, portlet
requests and responses, deployment packaging, and security.” For more information, refer
to the following URL: http://developers.sun.com/prodtech/portalserver/
reference/techart/jsr168/

To utilize this standard, all delivery portlets must use a JSR-168 compliant portlet class.
This portlet class can contain business logic or simply dispatch the request to a JSP for
content delivery.

Spark Sample Site
The Spark sample site provides you with the following samples:

• Four display portlets: Spark Ads, Spark Documents, Spark Jobs, and Spark News.

The sample portlets can be found in sparksample.jar, located in the /WEB-INF/
lib folder of the portal application. This jar contains both object code and source
code. The example elements included with the Spark sample site can be found in the
/OpenMarket/Flame/SparkSample folder located in the web root of the
application.

• Four content definitions, also called “asset types”: Ads, Contacts, Jobs, and News
Items.

The sample asset types are composed of one or more of the sample attributes listed in
Table 1.

Table 1: Sample attributes

Name Description Type Notes

Title Title String

Body Body Text Textbox attribute editor

PostDate Post Date Date

Image Image Blob

Requirements Requirements Text Textbox attribute editor

Contact Contact Asset Asset Type is SparkContact

Phone Phone Number String

Email Email Address String
Delivery Portlet Developer’s Guide: Content Server 7.6 Patch 2

Portlet Classes and Sample Portlets

 Portlet Classes
9

Portlet Classes
The JSR 168 specification defines an interface—javax.portlet.Portlet—that
portlets can implement to interact with compliant portal servers. The same package
contains javax.portlet.GenericPortlet, a default implementation of the interface.
The JSR 168 specification also defines three portlet modes—View, Edit, and Help. Of the
three modes, only View is mandatory. Helper methods for these modes are defined in the
GenericPortlet class. In the sample portlets, the helper method do View, for the View
mode, is overridden.

Sample portlets are based on the CS implementation of these portlets. A developer can
write portlets by extending the class Satellite.java. This class provides four methods
that may be overridden. Below is a description of these exposed methods.

getRenderPage

protected String getRenderPage(RenderRequest request, RenderResponse
 response)

getEditPage

protected String getRenderPage(RenderRequest request, RenderResponse
 response)

getHelpPage

protected String getHelpPage(RenderRequest request, RenderResponse
response)

Parameters: request - RenderRequest for the current request to render
response - The RenderResponse for the current request to render

Throws:
Returns: The default pagename to handle render requests for this portlet. This

pagename is an element residing on the Content Server
Description: Gets the default CS pagename to handle render requests for this portlet.

Parameters: request - RenderRequest for the current request to render
response - The RenderResponse for the current request to render

Throws:
Returns: The default pagename to handle edit mode render requests for this

portlet. This pagename is an element residing on Content Server.
Description: Gets the default CS pagename to handle edit mode render requests for

this portlet.

Parameters: request - RenderRequest for the current request to render
response - The RenderResponse for the current request to render

Throws:
Returns: The default pagename to handle help mode render requests for this

portlet. This pagename is an element residing on Content Server.
Description: Gets the default CS pagename to handle help mode render requests for

this portlet.
Delivery Portlet Developer’s Guide: Content Server 7.6 Patch 2

Portlet Classes and Sample Portlets

 Sample Portlets
10
setRenderParameters

protected String setRenderParameters(RenderRequest request,
RenderResponse response)

The first three methods are executed according to the portlet mode. The
setRenderParameters method is executed at processAction of the portlet. If you
need to set render parameters, you can do this by overriding the setRenderParameters
(ActionRequest request, ActionResponse response) method.

Sample Portlets
This section presents source code that illustrates the AdsPortlet, DocumentsPortlet,
JobsPortlet, and NewsPortlet implementations in the Spark sample site.

Example 1. Source Code of the AdsSatellitePortlet

This portlet does not override any method. Instead, the portlet calls its default
implementation and renders its default page. This default render page can be specified by
the developer using the parameter com.fatwire.cs.portals.portlet.
CSPortlet.config.renderpage in the portlet.xml file as shown in the example.
Thus, the value for the default render page should be the Content Server element
OpenMarket/Flame/SparkSample/Ads.

package com.fatwire.sparksample;
import com.openmarket.Satellite.portlet.Satellite;

/**
 * This portlet displays a random ad image from Spark
 *
 */

Parameters: request - RenderRequest for the current request to render
response - The RenderResponse for the current request to render

Throws:
Returns:
Description: Sets rendering parameters. Can be overridden. Is called by the

processAction method.

Note

getRenderPage(RenderRequest request, RenderResponse
response) is called by doView of the portlet.

getEditPage(RenderRequest request, RenderResponse response)
is called by doEdit of the portlet.

getHelpPage(RenderRequest request, RenderResponse response)
is called by doHelp of the portlet.
Delivery Portlet Developer’s Guide: Content Server 7.6 Patch 2

Portlet Classes and Sample Portlets

 Sample Portlets
11
public class AdsSatellitePortlet extends Satellite {
}

portlet.xml Definition for this portlet

<portlet>
<portlet-name>SparkAds</portlet-name>
<portlet-class>com.fatwire.sparksample.AdsSatellitePortlet
</portlet-class>
<init-param>
<name>com.fatwire.cs.portals.portlet.CSPortlet.config.renderpage
</name>
<value>OpenMarket/Flame/SparkSample/Ads</value>
</init-param>
<supports>
<mime-type>text/html</mime-type>
<portlet-mode>view</portlet-mode>
</supports>
<portlet-info>
<title>Spark Ads</title>
</portlet-info>
</portlet>
<portlet>

Example 2. Source Code of the DocumentSatellitePortlet

The implementation for this portlet is the same as in Example 1. Source Code of the
AdsSatellitePortlet, the only difference being the Content Server element that is called
(OpenMarket/Flame/SparkSample/Document, in the current example).

package com.fatwire.sparksample;

import com.openmarket.Satellite.portlet.Satellite;
/**
 * This portlet displays all the Human Resources documents
 */
public class DocumentSatellitePortlet extends Satellite
{

}

portlet.xml Definition for this portlet

<portlet>
<portlet-name>SparkDocuments</portlet-name>
<portlet-class>com.fatwire.sparksample.DocumentsPortlet
</portlet-class>
<init-param>
Delivery Portlet Developer’s Guide: Content Server 7.6 Patch 2

Portlet Classes and Sample Portlets

 Sample Portlets
12
<name>com.fatwire.cs.portals.portlet.CSPortlet.config.renderpage
</name>
<value>OpenMarket/Flame/SparkSample/Document</value>
</init-param>
<supports>
<mime-type>text/html</mime-type>
<portlet-mode>view</portlet-mode>
</supports>
<portlet-info>
<title>Spark Documents</title>
</portlet-info>
</portlet>
<portlet>
Delivery Portlet Developer’s Guide: Content Server 7.6 Patch 2

Portlet Classes and Sample Portlets

 Sample Portlets
13
Example 3. Source Code for the SatelliteSparkJobPortlet

This portlet overrides the getRenderPage method. This method calls the element
OpenMarket/Flame/SparkSample/IndexPage with the assettype parameter as a
SiteCatalog argument. It returns a list of jobs and their details, accessible through
supplied links.

package com.fatwire.sparksample;

import com.openmarket.Satellite.portlet.Satellite;

import javax.portlet.RenderRequest;
import javax.portlet.RenderResponse;
import javax.portlet.PortletConfig;

/**
* This serves as a Satellite portlet for displaying a list of

 assets with a link to a detailed display.
* It requires two parameters to function properly; assettype and

 detailsjsp. The assettype parameter is
* passed through SiteCatalog entry.
* The asset type parameter indicates the name of the asset type to
 be listed.
* The detailsjsp parameter indicates the relative or absolute url

 of the Element that will display the details
* of a particular asset. The detailsjsp parameter is passed as

 init-param (portlet.xml).
* The developer can optionally specify a JSP to be used for the

 listing
* using the init-param indexjsp.
*/
 public class SatelliteSparkJobPortlet extends Satellite {
 public static final String INDEX_JSP_PARAM = "indexjsp";
 public static final String DETAILS_JSP_PARAM = "detailsjsp";
 public static final String SPARK_JOB_INDEX_JSP = "OpenMarket/

Flame/SparkSample/IndexPage";
 public static final String DISPLAY_TYPE = "displaytype";
 public static final String INDEX_DISPLAY_TYPE = "index";
 public static final String DETAILS_DISPLAY_TYPE = "details";

 /**
 * Get the default CS pagename to handle render requests for

this portlet
 *
 * @param request The RenderRequest for the current request

to render
 * @param response The RenderResponse for the current request

to render
 * @return The default pagename to handle render requests for

this portlet.
 */
Delivery Portlet Developer’s Guide: Content Server 7.6 Patch 2

Portlet Classes and Sample Portlets

 Sample Portlets
14
 public String getRenderPage(RenderRequest request,
 RenderResponse response)

 {

 PortletConfig config = getPortletConfig();
 String sDisplayType = request.getParameter(
 DISPLAY_TYPE);
 if(sDisplayType == null)
 sDisplayType = INDEX_DISPLAY_TYPE; //Default to list
 String sDisplayJSP = SPARK_JOB_INDEX_JSP;

 if(sDisplayType.equals(DETAILS_DISPLAY_TYPE))

 {
 String sDetailsJSP = config.getInitParameter(
 DETAILS_JSP_PARAM);
 if(sDetailsJSP != null)
 sDisplayJSP = sDetailsJSP;
 }
 else //Default to list if it's not set to details
 {
 String sIndexJSP = config.getInitParameter(
 INDEX_JSP_PARAM);
 if(sIndexJSP != null)
 sDisplayJSP = sIndexJSP;
 }
 // PortletRequestDispatcher rd =

 getPortletContext().getRequestDispatcher(sDisplayJSP);
 // rd.include(request, response);
 return sDisplayJSP;

 }
}

portlet.xml Definition for this portlet

<portlet>
<portlet-name>SparkJobs</portlet-name>
<portlet-class>com.fatwire.sparksample.SatelliteSparkIndexDetails
</portlet-class>
<init-param>
<name>assettype</name>
<value>Spark_Job</value>
</init-param>
<init-param>
<name>detailsjsp</name>
<value>OpenMarket/Flame/SparkSample/Jobs</value>
</init-param>
<supports>
Delivery Portlet Developer’s Guide: Content Server 7.6 Patch 2

Portlet Classes and Sample Portlets

 Sample Portlets
15
<mime-type>text/html</mime-type>
<portlet-mode>view</portlet-mode>
</supports>
<portlet-info>
<title>Spark Jobs</title>
</portlet-info>
</portlet>

Example 4. Source Code of the SatelliteSparkNewsPortlet

The implementation for this portlet is the same as in Example 3. Source Code for the
SatelliteSparkJobPortlet, except that it returns a list of news and details of the news.

package com.fatwire.sparksample;

import com.openmarket.Satellite.portlet.Satellite;

import javax.portlet.RenderRequest;
import javax.portlet.RenderResponse;
import javax.portlet.PortletConfig;

/**
 * This is also same except it list the News and News Detail
 */
public class SatelliteSparkNewsPortlet extends Satellite{

 public static final String INDEX_JSP_PARAM =

"indexjsp";
 public static final String DETAILS_JSP_PARAM =

"detailsjsp";
 public static final String SPARK_NEWS_INDEX_JSP =

"OpenMarket/Flame/SparkSample/IndexPageNews";
 public static final String DISPLAY_TYPE =

"displaytype";
 public static final String INDEX_DISPLAY_TYPE =

"index";
 public static final String DETAILS_DISPLAY_TYPE =

 "details";

 /**
 * Get the default CS pagename to handle render requests for

 this portlet
 *
 * @param request The RenderRequest for the current request

 to render
 * @param response The RenderResponse for the current request

 to render
 * @return The default pagename to handle render requests for

 this portlet.
 */
public String getRenderPage(RenderRequest request,

 RenderResponse response)
Delivery Portlet Developer’s Guide: Content Server 7.6 Patch 2

Portlet Classes and Sample Portlets

 Sample Portlets
16
 {

 PortletConfig config = getPortletConfig();
 String sDisplayType = request.getParameter(DISPLAY_TYPE);
 if(sDisplayType == null)
 sDisplayType = INDEX_DISPLAY_TYPE; //Default to list

String sDisplayJSP = SPARK_NEWS_INDEX_JSP;
 if(sDisplayType.equals(DETAILS_DISPLAY_TYPE))

{
String sDetailsJSP = config.getInitParameter(

 DETAILS_JSP_PARAM);
 if(sDetailsJSP != null)

 sDisplayJSP = sDetailsJSP;
}

else //Default to list if it's not set to details
{
 String sIndexJSP = config.getInitParameter(

INDEX_JSP_PARAM);
 if(sIndexJSP != null)

 sDisplayJSP = sIndexJSP;
}
// PortletRequestDispatcher rd =

 getPortletContext().getRequestDispatcher(sDisplayJSP);
// rd.include(request, response);
return sDisplayJSP;

 }
}

portlet.xml portlet Definition file

<portlet>
<portlet-name>SparkNews</portlet-name>
<portlet-class>com.fatwire.sparksample.

SatelliteSparkIndexDetails</portlet-class>
<init-param>
<name>assettype</name>
<value>Spark_News</value>
</init-param>
<init-param>
<name>detailsjsp</name>
<value>OpenMarket/Flame/SparkSample/News</value>
</init-param>
<supports>
<mime-type>text/html</mime-type>
<portlet-mode>view</portlet-mode>
</supports>
<portlet-info>
<title>Spark News</title>
</portlet-info>
</portlet>
Delivery Portlet Developer’s Guide: Content Server 7.6 Patch 2

Portlet Classes and Sample Portlets

 Display Elements
17
Display Elements
Display elements use the tags that are provided (along with examples) in the Content
Server Tag Reference.

News Detail Element
The News detail JSP (OpenMarket/Flame/SparkSample/News) is the simplest of the
sample display pages. It demonstrates how to read and display an asset’s attributes. The id
of a News asset is passed in the request to the JSP and stored in the local
variablesArticleId. An assetset is created for the specified News asset.

This lists the assets for which we will read attribute values. In this case, the assetset
contains only one asset identified by sArticleId, but it could contain multiple assets as
in documents.jsp. The assetset:getattributevalues retrieves the values and
places them in a list of the given name. The values are placed in a list because attributes
can have multiple values.

The ics:listget tag outputs the value of the attribute at the current position in the list
unless a value is specified for the output tag attribute. In this case it is known that the
attributes are all specified to have a single value so the code does not attempt to iterate
through the list. The value of the PostDate attribute is output to a variable so it can be
formatted with the dateformat tags.

The URL for the link to return to the news listing is generated by the
portlet:renderURL tag provided by the portal vendor. As a developer you can specify
parameters for a portlet URL with this tag (see index.jsp). With no parameters, the
portlet will return to the default state. In this case, the default state is the index (see
SparkIndexDetails portlet).

Ad Display Element
The Ads JSP (OpenMarket/Flame/SparkSample/Ads) demonstrates how to retrieve
and display digital assets (or blob data) – specifically images. The Ads portlet is intended
to randomly select an ad and display its image. It begins by creating a list of all Ads assets
using the asset:list tag.

Using the Java interface for a list—Ilist—it randomly selects a index within the list’s
range. Once an asset is selected, the value of the Image attribute is read using the
assetset:getattributevalues tag. In the case of blob-type attributes like Image,
this is not the blob data itself, but an id in the blob data table MungoBlobs. The image is
displayed using a service in Content Server called “BlobServer.”

The satellite:blob tag outputs the correct BlobServer url to reference the image.
When using this tag in Content Server, you can use the same values for the blobtable,
blobcol, and blobkey parameters as shown in this example.

Jobs Detail Element
The Jobs detail JSP (OpenMarket/Flame/SparkSample/Jobs) is similar to the News
detail JSP in that it displays attributes of a particular asset. The new concepts introduced
include reading information from the base asset and working with asset-type attributes.

Since an asset in Content Server is composed of a base asset that includes fields such as id,
name and description, and a number of attributes (one row per value, stored in a separate
Delivery Portlet Developer’s Guide: Content Server 7.6 Patch 2

Portlet Classes and Sample Portlets

 Display Elements
18
table), different tags are used to read each type of information. To read the value of name,
we use the asset:load tag, which creates an object to represent the Display Elements
asset in memory, followed by the asset:get tag, which reads one field from the loaded
asset.

Like blob-type attributes, the values for asset-type attribute are ids. In this case, the id
refers to a Spark_Contact attribute. Once the id is obtained, the asset can be loaded and
the attributes read in the same manner as any other asset.

Documents Element
The Documents JSP (OpenMarket/Flame/SparkSample/Document) lists all human
resources documents. It demonstrates how to filter assetsets using searchstates, retrieve
multiple attributes for multiple assets and generate a link to blob data.

A searchstate is used to specify selection criteria for assets that will be included in an
assetset. In this example, we specify that the asset must have a value for the Keyword
attribute equal to HR to select only human resources documents.

To retrieve multiple attribute values for multiple assets, a container must be created to
specify the attributes and hold the results. The listobject tags are used to create this
container, with a row for each attribute to be read. Instead of using the
assetset:getattributevalues tag, we must use the
assetset:getmulitplevalues tag. This tag uses conventions that include the asset’s
id to name the lists containing the attribute values.

Finally, to create links that point to the document data, we use the satellite:blob tag
with different arguments. The first difference is the blobheader. We set this to
application/octet-stream, which is a generic binary data content type. Some
browsers will automatically detect the actual type of the document and launch the
associated application, while others might prompt the user to save the file to disk.

The second change is the omission of the service attribute. In the Ads portlet, we specified
“img src” as the service because we wanted to display an image using the img html tag.

In this case, we want a direct URL to the blob data, so we do not specify a service. The
third change is the inclusion of the outstring parameter so that we can use the value to link
the document to the title.

Generic Index Elements
The Generic Index Elements (OpenMarket/Flame/SparkSample/
IndexPage,OpenMarket/Flame/SparkSample/IndexPageNews) point to the same
JSP OpenMarket/Flame/SparkSample/index.jsp using different assettype
parameter. The generic index JSP lists all assets of a given type, linking their names to a
detailed display of the asset. This JSP is used for both the Jobs portlet and the News
portlet. It demonstrates how to add parameters to a portlet link. As in the Ads portlet, we
use the asset:list tag to get a list of all assets of a given type.

In this case, the type is specified in the portlet configuration and passed into the JSP by the
portlet class (see SparkIndexDetails portlet above). Then the portlet iterates through
the list of assets and passes the id of each asset in a portlet link using the portlet:param
tag with the portlet:renderUrl tag. We also pass a parameter that indicates the
Delivery Portlet Developer’s Guide: Content Server 7.6 Patch 2

Portlet Classes and Sample Portlets

 Display Elements
19
details of the asset should be displayed. This causes the portlet class to dispatch the
request to the details JSP specified in the portlet configuration.

Note

If an element is called by multiple portlets and this element is using something
common (such as Java script functions), use the function name
<ics:getnamespace>_function_name. This will make the function appear
different in each portlet. This treatment is equivalent to <portlet:namespace>
in the portal environment.
Delivery Portlet Developer’s Guide: Content Server 7.6 Patch 2

Portlet Classes and Sample Portlets

 Display Elements
20
Delivery Portlet Developer’s Guide: Content Server 7.6 Patch 2

	Delivery Portlet Developer’s Guide
	Contents
	About This Guide
	Audience
	Related Documents
	Conventions
	Third-Party Libraries

	Portlet Classes and Sample Portlets
	Overview
	Spark Sample Site
	Portlet Classes
	Sample Portlets
	Display Elements
	News Detail Element
	Ad Display Element
	Jobs Detail Element
	Documents Element
	Generic Index Elements

