
Version 1.0

Guide to Content Server
Developer Tools

Document Publication Date: Jun. 15, 2011

FATWIRE CORPORATION PROVIDES THIS SOFTWARE AND DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. In no event shall FatWire be liable for any direct, indirect, incidental, special, exemplary, or
consequential damages of any kind including loss of profits, loss of business, loss of use of data, interruption of business, however caused and on
any theory of liability, whether in contract, strict liability or tort (including negligence or otherwise) arising in any way out of the use of this
software or the documentation even if FatWire has been advised of the possibility of such damages arising from this publication. FatWire may
revise this publication from time to time without notice. Some states or jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions; therefore, this statement may not apply to you.

Copyright © 2011 FatWire Corporation. All rights reserved.

The release described in this document may be protected by one or more U.S. patents, foreign patents or pending applications.

FatWire, FatWire Content Server, FatWire Engage, FatWire Satellite Server, CS-Desktop, CS-DocLink, Content Server Explorer, Content Server
Direct, Content Server Direct Advantage, FatWire InSite, FatWire Analytics, FatWire TeamUp, FatWire Content Integration Platform, FatWire
Community Server and FatWire Gadget Server are trademarks or registered trademarks of FatWire, Inc. in the United States and other countries.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. AIX, AIX 5L, WebSphere, IBM, DB2, Tivoli and other IBM products
referenced herein are trademarks or registered trademarks of IBM Corporation. Microsoft, Windows, Windows Server, Active Directory, Internet
Explorer, SQL Server and other Microsoft products referenced herein are trademarks or registered trademarks of Microsoft Corporation. Red Hat,
Red Hat Enterprise Linux, and JBoss are registered trademarks of Red Hat, Inc. in the U.S. and other countries. Linux is a registered trademark of
Linus Torvalds. SUSE and openSUSE are registered trademarks of Novell, Inc., in the United States and other countries. XenServer and Xen are
trademarks or registered trademarks of Citrix in the United States and/or other countries. VMware is a registered trademark of VMware, Inc. in the
United States and/or various jurisdictions. Firefox is a registered trademark of the Mozilla Foundation. UNIX is a registered trademark of The
Open Group in the United States and other countries. Any other trademarks and product names used herein may be the trademarks of their
respective owners.

This product includes software developed by the Indiana University Extreme! Lab. For further information please visit
http://www.extreme.indiana.edu/.

Copyright (c) 2002 Extreme! Lab, Indiana University. All rights reserved.

This product includes software developed by the OpenSymphony Group (http://www.opensymphony.com/).

The OpenSymphony Group license is derived and fully compatible with the Apache Software License; see http://www.apache.org/LICENSE.txt.

Copyright (c) 2001-2004 The OpenSymphony Group. All rights reserved.

You may not download or otherwise export or reexport this Program, its Documentation, or any underlying information or technology except in
full compliance with all United States and other applicable laws and regulations, including without limitations the United States Export
Administration Act, the Trading with the Enemy Act, the International Emergency Economic Powers Act and any regulations thereunder. Any
transfer of technical data outside the United States by any means, including the Internet, is an export control requirement under U.S. law. In
particular, but without limitation, none of the Program, its Documentation, or underlying information of technology may be downloaded or
otherwise exported or reexported (i) into (or to a national or resident, wherever located, of) any other country to which the U.S. prohibits exports of
goods or technical data; or (ii) to anyone on the U.S. Treasury Department's Specially Designated Nationals List or the Table of Denial Orders
issued by the Department of Commerce. By downloading or using the Program or its Documentation, you are agreeing to the foregoing and you
are representing and warranting that you are not located in, under the control of, or a national or resident of any such country or on any such list or
table. In addition, if the Program or Documentation is identified as Domestic Only or Not-for-Export (for example, on the box, media, in the
installation process, during the download process, or in the Documentation), then except for export to Canada for use in Canada by Canadian
citizens, the Program, Documentation, and any underlying information or technology may not be exported outside the United States or to any
foreign entity or “foreign person” as defined by U.S. Government regulations, including without limitation, anyone who is not a citizen, national,
or lawful permanent resident of the United States. By using this Program and Documentation, you are agreeing to the foregoing and you are
representing and warranting that you are not a “foreign person” or under the control of a “foreign person.”

FatWire Content Server Guide to Content Server Developer Tools
Document Publication Date: Jun. 15, 2011
Product Version: 1.0

FatWire Technical Support
www.fatwire.com/Support

FatWire Headquarters
FatWire Corporation
330 Old Country Road
Suite 303
Mineola, NY 11501
www.fatwire.com

http://www.fatwire.com/Support/index.html
www.fatwire.com

3

Table of

Contents
1 About FatWire Content Server Developer Tools. 7

Introduction . 8
CSDT Architecture . 8

IDE Integration . 10
The CSDT Workspace . 10
Synchronization . 11
JSP Management. 11
Command-line Tool . 11
Using a Version Control System. 11

Next Steps . 13

2 Quick Start . 15

Prerequisites . 16
Setting Up Content Server Developer Tools . 16
Managing Content Server Resources in Eclipse . 18

3 Content Server Features in Eclipse . 21

FW Content Server Perspective . 22
Configuration Screen . 23
Project and Workspace in Eclipse. 24
CSDT Views . 25

‘FW Workspace Elements’ . 25
‘FatWire CS Log’ View . 26
‘Preview Browser’ View . 26
‘Advanced UI’ View . 27
‘Logging Configuration’ View . 27
‘FW Developer Reference’ View . 28
Wizards . 29

Data Synchronization (Export/Import) Tool. 29
Sync to Workspace (Export from Content Server) . 29
Guide to Content Server Developer Tools 1.0

Table of Contents
4

Sync to Content Server (Import into Content Server) . 30
Next Steps . 31

4 Developing JSPs . 33

JSP Development with CSDT . 34
Tag and Java API Completion. 35
Debugging . 36

5 Synchronization and Data Exchange . 37

CSDT Synchronization . 38
Synchronization Scenarios . 38
Dependency Resolution . 39

Data Exchange and Mappings . 40
ID Mapping . 40

Overriding a Resource’s fw_uid . 43
Using CSDT with Existing Resources . 43

Site Mappings . 44
Natural Site Mappings . 44
Overriding Natural Site Mappings With the Command-line Tool 45

6 Workspaces . 47

Introduction . 48
Workspace Structure . 48

Asset Storage Structure. 49
Code-Based Resource Storage Structure . 49
Attribute Editor Storage Structure . 50
Asset Type Storage Structure . 50

7 Command-Line Tool . 53

Introduction . 54
Running and Using the Command-Line Tool . 54

Example Commands . 56
Creating Modules . 56

8 Notes for Integrating with Version Control Systems 57

Version Control With CSDT . 58
Integrating CSDT With a VCS . 58
Working With a CSDT-Integrated VCS . 59

 Appendices

A. Development Team Integration Use Case .63
Today – Develop a Site and Associated Resources . 64
Guide to Content Server Developer Tools 1.0

Table of Contents
5

7:14 am – The New Project is Assigned . 64
7:34 am – Setting Up CSDT . 64
7:45 am – Create the Site Definition. 65
7:46 am – Create Resources for the Site . 66
8:12 am – The VCS Discussion . 67
9:42 am – Synchronizing Workspaces With a VCS . 67
10:12 am – The Other Team Members Synchronize their Workspaces to the SVN

Repository . 71
10:18 am – Synchronize the Workspace to the Content Server Instance 72
10:21 am – Assign Site Permissions . 75
10:22 am – The Start Menu Issue . 76
10:24 am – Resolving the Start Menu Issue . 76
11:17 am – Marketing Requests Changes. 78
11:22 am – Adding New Attributes to the Author Definition 79
11:25 am – Reviewing the Changes to the Site . 79
11:44 am – Modifying the Attributes of the Author Definition 80
11:53 am – The Team Updates Their Workspaces and Content Server Instances . . . 81
12:27 pm – The Team Creates a Template Asset for the Site. 82

Three Days Later... Deployment . 85
9:32 am – Preparing for Deployment . 85
10:04 am – Deploying the Site and its Resources. 88
10:55 am – The Deployment is Successful. 91

B. Using the Command-line Tool to Create Reusable Modules 93
Creating a Reusable Module . 94

Step I. List the Resources in the Content Server Instance . 94
Step II. List Start Menu Items. 95
Step III. Export All Resources to the Desired Workspace . 96
Step IV. Inspect the Module’s Content . 97
Step V. Archive the Module . 97
Step VI. Import the Module to a Content Server Instance . 97
Guide to Content Server Developer Tools 1.0

Table of Contents
6

Guide to Content Server Developer Tools 1.0

7

Chapter 1

About FatWire Content Server Developer
Tools
This chapter provides an overview of the FatWire Content Server Developer Tools
(CSDT).

This chapter contains the following topics:

• Introduction

• CSDT Architecture

• Next Steps
Guide to Content Server Developer Tools 1.0

Chapter 1. About FatWire Content Server Developer Tools

 Introduction
8

Introduction
This guide provides information and instructions about developing Content Server sites
using the FatWire Content Server Developer Tools (CSDT). CSDT enables developers to
work in a distributed environment using tools such as the Eclipse Integrated Development
Environment (IDE) and version control system (VCS) integration. CSDT does not
interfere or integrate with other development models. Using CSDT, a development team
can manage Content Server resources and exchange those resources with other members
of the team.

CSDT Architecture
On any computer running Content Server 7.6 with the Web Experience Management
(WEM) Framework installed, CSDT can be used to integrate Content Server with the
Eclipse IDE as shown in Figure 1, on page 9 and thus create a personal and flexible
developer’s environment:

• The developer interacts with CSDT (and therefore Content Server), primarily through
Eclipse, which upon integration provides a rich set of Content Server-specific tools for
managing assets and other types of Content Server resources.

• CSDT enables synchronization of resource development in Eclipse with resource
development in Content Server, and vice versa.

Although simple in concept and design, CSDT has many important implications. For
example, IDE-managed resources are stored as files in a file system, giving developers the
option to integrate with a version control system of their choice. At the same time, the files
are automatically converted to Content Server’s native asset representation and imported
into Content Server’s database. Synchronization can also be performed in the reverse
direction enabling developers to work either in Eclipse or directly in Content Server. More
information about CSDT capabilities can be found in the rest of this chapter.
Guide to Content Server Developer Tools 1.0

Chapter 1. About FatWire Content Server Developer Tools

 CSDT Architecture
9

 a

Figure 1: CSDT Process Flow

Developer works with
a CSDT-integrated
Eclipse to create and
manage code-based
Content Server
resources.

The metadata of the resources that are
saved in Eclipse are converted into multiple
files and stored in a file system structure
called the main CSDT workspace (resources
that are created and saved in the embedded
Advanced interface are an exception). Each
JSP and XML element associated with these
resources is placed in its own file.

1.

2.

Eclipse Plug-In

CSDT supports bi-directional
synchronization. Resources can either be
exported from Content Server to the main
CSDT workspace and/or imported into the
Content Server database from the main
CSDT workspace.

3.

Import

Export
Guide to Content Server Developer Tools 1.0

Chapter 1. About FatWire Content Server Developer Tools

 CSDT Architecture
10
IDE Integration
Using the Eclipse integration, developers can:

• Create, edit, and delete CSElement, Template, and SiteEntry assets, as well as
SiteCatalog and ElementCatalog entries

• Develop JSP elements with standard Eclipse features such as tag completion, syntax
highlighting, debugging, and so on

• Export and import assets, asset types, flex families, sites, roles, tree tabs, and start
menu items

• Preview Content Server pages within the Eclipse IDE using an embedded preview
browser

• View the Content Server log file in a dynamically refreshing panel

• Leverage existing Eclipse capabilities for integration with version control systems,
given the file system representation of Content Server resources

The CSDT Workspace
Content Server resources that are managed in Eclipse are stored as files in a file system
structure called the main CSDT workspace. This enables resources to be easily managed
and optionally exchanged with other Content Server instances. The main CSDT
workspace is the only workspace accessible from Eclipse.

In this guide, any mention of the CSDT workspace refers to the main CSDT workspace.
Custom CSDT workspaces are explicitly identified.

Note

When integrated with CSDT, Eclipse provides an embedded Content Server
Advanced interface, used to manage all types of Content Server resources. The
embedded Advanced interface is not covered in this guide. Content Server
resources created in the Advanced interface are not stored in a file system
structure; they are stored directly in the Content Server database. For information
about using the Advanced interface, see the Content Server Developer’s Guide,
Administrator’s Guide, and Advanced User’s Guide.

Note

Advanced developers can use the command-line tool to create any number of
custom CSDT workspaces for a Content Server instance. Custom workspaces are
not accessible from Eclipse. Creating a custom workspace is optional, and in most
distributed environments the only necessary workspace is the main CSDT
workspace. For more information, see Chapter 6, “Workspaces.”
Guide to Content Server Developer Tools 1.0

Chapter 1. About FatWire Content Server Developer Tools

 CSDT Architecture
11
Synchronization
CSDT enables you to synchronize resource development in the Eclipse IDE with resource
development in Content Server, ensuring that the CSDT workspace and Content Server
database are populated with the same content. Manual synchronization is bi-directional,
meaning you can import resources into Content Server and export resources to the CSDT
workspace.

Any resource developed in the Eclipse IDE is stored as a single file or multiple interrelated
files in the CSDT workspace. When you import a resource into Content Server, CSDT
converts the resource to native Content Server format (database representation) and stores
the resource in Content Server’s database. When you export resources that are developed
directly in Content Server to the Eclipse IDE, those resources are converted into files by
CSDT and stored in the CSDT workspace.

JSP Management
CSDT exposes JSPs at a well-known location in the CSDT workspace. This enables
developers to write and debug JSPs by working directly with the files. This way managing
(creating, editing, debugging) Content Server JSPs in Eclipse is the same as working with
any other JSP files. CSDT automatically synchronizes the files stored in the CSDT
workspace with Content Server. This synchronization also includes transparent flushing of
page and resultset caches in Content Server.

In addition, CSDT manages modifications made to all other files by automatically
synchronizing those changes to Content Server. However, if you modify Content Server
resources without using Eclipse or modify resources directly in Content Server, manual
synchronization is required.

Command-line Tool
CSDT provides a command-line utility which can be used for automation, deployment,
and certain development activities. The command-line tool is an export/import feature
intended for large-scale resource movement. However, unlike the Eclipse integration
which enables you to work only with Content Server resources that are exported to the
main CSDT workspace, the command-line tool enables you to work with Content Server
resources stored in any workspace.

Using a Version Control System
CSDT supports the exchange of resources between Content Server instances, this can be
accomplished with the implementation of a version control system. While CSDT does not
provide any tools for integrating with version control systems, the file system structure in
which CSDT stores resources in workspaces supports the implementation of version

Note

Automatic synchronization occurs when Content Server resources are edited,
created, or deleted in Eclipse. All changes are automatically synchronized with the
Eclipse-integrated Content Server instance and stored in the native database
structure. Synchronization to Content Server is automatic only when the Eclipse-
integrated Content Server instance is running.
Guide to Content Server Developer Tools 1.0

Chapter 1. About FatWire Content Server Developer Tools

 CSDT Architecture
12
control integration. A workspace’s file system structure enables the resources to be
tracked by a version control system.

Checking in resources from your workspace to a version control system enables you to
exchange those resources with other developers. You can also update your workspace with
the resources checked in to the version control system by other developers. Using a
version control system you can check out resources to any target system, including testing
servers, Management or Production Content Server systems, or another developer’s
Content Server instance.

Figure 2 illustrates an example of using CSDT with a version control system. This
example uses a dedicated Content Server instance to publish resources to a Management/
Production Content Server instance. Therefore, the Approval/Publishing feature provided
by Content Server can be used to publish resources that were checked out from the version
control system. This example is the recommended way to use a VCS with CSDT, but it is
not required.

Figure 2: Using CSDT with a version control system

Resources can either be
checked in to a version
control system from a
workspace or checked out to
a workspace from a VCS.

Check out resources
stored in the VCS to a
testing server before
publishing

Resources are checked out to
a Content Server instance
dedicated to publishing
resources to a management/
production system
Guide to Content Server Developer Tools 1.0

Chapter 1. About FatWire Content Server Developer Tools

 Next Steps
13
Next Steps
The rest of this guide provides information about using CSDT to manage Content Server
resources in a distributed development environment. The next chapter provides
instructions for installing CSDT and integrating a Content Server instance with the Eclipse
IDE. The next chapter also provides information to help you get started creating and
managing resources in an Eclipse-integrated Content Server instance. For information and
instructions, see Chapter 2, “Quick Start.”
Guide to Content Server Developer Tools 1.0

Chapter 1. About FatWire Content Server Developer Tools

 Next Steps
14
Guide to Content Server Developer Tools 1.0

15
Chapter 2

Quick Start
This chapter contains instructions for setting up CSDT and integrating a Content Server
instance with the Eclipse IDE. This chapter also provides a brief overview for managing
Content Server resources in Eclipse.

This chapter contains the following sections:

• Prerequisites

• Setting Up Content Server Developer Tools

• Managing Content Server Resources in Eclipse
Guide to Content Server Developer Tools 1.0

Chapter 2. Quick Start

 Prerequisites
16
Prerequisites
Before setting up Content Server Developer Tools, ensure the following requirements are
met:

• CSDT requires a fully functional, licensed Content Server 7.6 instance. The Content
Server instance must have the Web Experience Management (WEM) Framework
installed.

• After you have integrated Eclipse with Content Server, you must log in to Content
Server with general administrator credentials (for example, fwadmin/xceladmin).
This user must be a part of the RestAdmin group.

• To use the command-line tool feature, you must have an advanced knowledge of
CSDT. Information and instructions about running and using the command-line tool
are provided in Chapter 7, “Command-Line Tool.”

Setting Up Content Server Developer Tools
1. Install Eclipse 3.6 Helios J2EE edition on the computer Content Server 7.6 is

installed. You can download Eclipse from the following URL:

http://eclipsesource.com/en/downloads/eclipse-helios-download/

2. Unzip csdt.zip located in the rollup installer (Rollup/csdt). Open the csdt-
eclipse folder and save the com.fatwire.csdt.eclipsecsdt_1.0.0.jar file
to the plugins folder under your Eclipse installation.

3. Start your local Content Server.

4. Start Eclipse (eclipse.exe) and configure its settings according to your
preferences.

5. Open the “FatWire Content Server” perspective:

In the Eclipse menu bar, select Window > Open Perspective > Other ... > FatWire
ContentServer.

6. Integrate Content Server with the Eclipse IDE:

- If you are setting up CSDT for the first time, the configuration screen is
automatically displayed.

- If you have used CSDT before and wish to integrate a different Content Server
instance, navigate to the Eclipse menu bar and select FatWire > Configure.

In the configuration screen, fill in the following fields with the information for your
Content Server instance:

a. In the “Content Server Installation Directory” field, click Browse to select the
directory containing the futuretense.ini file for the Content Server instance.

b. In the “Username” field, enter the user name of a general administrator. This user
must be a member of the RestAdmin group.

c. In the “Password” field, enter the password for the user name you entered in
step b.

d. In the “Project name” field, enter a name for the project on which you will be
working.
Guide to Content Server Developer Tools 1.0

Chapter 2. Quick Start

 Setting Up Content Server Developer Tools
17

Project Exp
and FW Wo
Elements v
e. In the “Content Server Log File” field, enter the location of your log file (for
example, ContentServer/7.6.0/futuretense.txt)

f. Click OK.

The “FatWire Content Server” perspective opens. If you are accessing the Content
Server-integrated Eclipse for the first time, the FatWire Content Server
perspective looks as follows:

If the FatWire perspective is rendered as shown above, then you have successfully
installed and configured the CSDT plug-in.

Note

The panels containing the Eclipse and CSDT views are interchangeable. To
move a view to a different panel, click the view’s tab and drag it to the desired
panel.

lorer
rkspace
iews

Bottom panel views: FatWire CS Log, Preview Browser,
Logging Configuration, and Site Editor.

FatWire Toolbar, provides:

- Shortcut to the FatWire Content Server configuration screen

- Shortcuts for creating SiteEntry, CSElement, and Template assets

- Shortcuts for creating SiteCatalog and ElementCatalog entries

- Synchronization tool
Guide to Content Server Developer Tools 1.0

Chapter 2. Quick Start

 Managing Content Server Resources in Eclipse
18
7. (Optional) To associate the Content Server Tag Reference and Javadoc with Eclipse:

a. Download the TagReference.zip and javadoc.zip from the e-docs site, at
the following URL:

http://support.fatwire.com

b. Create a folder named “developerdocs” inside your Content Server installation
directory.

c. Extract the TagReference.zip and javadoc.zip inside the “developerdocs”
folder.

d. In Eclipse, open the “FW Developer Reference” view. In both the “Tag
Reference” and “Javadoc” tabs, click Home. The Content Server Tag Reference
and Javadoc are displayed in their respective tabs.

8. If you upgraded your Content Server system to version 7.6, and wish to use CSDT to
work with resources created prior to this release (existing resources), see “Using
CSDT with Existing Resources,” on page 43.

9. To quickly get started with managing Content Server resources in the FatWire Content
Server perspective, continue to the next section. Start with step 4.

Managing Content Server Resources in Eclipse
This section takes you through the Eclipse FatWire Content Server perspective by
summarizing the steps you would take to create, edit, and otherwise manage code-based
Content Server resources:

• SiteEntry assets

• CSElement assets

• Template assets

• ElementCatalog Entries

• SiteCatalog Entries

To manage Content Server resources in Eclipse

1. Start your local Content Server.

2. Start Eclipse.

3. Open the “FatWire Content Server” perspective:

In the Eclipse menu bar, select Window > Open Perspective > Other ... > FatWire
ContentServer.

4. To create resources, do the following:

- To create a SiteEntry asset, click the icon and fill in the forms.

- To create a CSElement asset, click the icon and fill in the forms.

- To create a Template asset, click the icon and fill in the forms.

- To create an ElementCatalog entry, click the icon and fill in the forms.

- To create a SiteCatalog entry, click the icon and fill in the forms.

For field definitions, see “Creating Template, CSElement, and SiteEntry Assets” in
the Content Server Developer’s Guide.
Guide to Content Server Developer Tools 1.0

Chapter 2. Quick Start

 Managing Content Server Resources in Eclipse
19
5. To manage the resources you create, edit, delete, or share with other sites use the
“FW Workspace Elements” view. Right-click the resource and select the desired
option. For information about the available options, see “‘FW Workspace Elements’,”
on page 25.

6. To display CSDT views in panels, do the following:

a. Select Window > Show View > Other....

b. In the “Show View” dialog box, select the desired view (located under the
FatWire Content Server folder):

- FW Advanced UI displays the embedded Advanced interface.

- FatWire CS Log displays the log file for Content Server. This view is only
available if you have specified the location of the Content Server log file in
the configuration screen (for instructions, see step 6 on page 16).

- FW Developer Reference displays the Content Server Tag Reference and
Javadoc, only if you have associated the Tag Reference and Javadoc with
your current Content Server instance (for instructions, see step 7 on page 18).

- FW Workspace Elements provides access to code-related resources. This
view displays the resources in a tree and groups each resource according to its
site affiliation.

- Logging Configuration displays a dynamically updating view of the log4j
configuration. In this view you can set the log levels of each Content Server
logger.

- Preview Browser displays an embedded preview browser.

For more information about the CSDT views, see “CSDT Views,” on page 25.

7. Synchronize Content Server resources by selecting the icon. The synchronization
tool enables you to either export data from Content Server to the CSDT workspace or
import data to Content Server from your CSDT workspace.

- For a quick overview of using the synchronization tool, see “Data
Synchronization (Export/Import) Tool,” on page 29.

- For detailed information about synchronizing resources, see Chapter 5,
“Synchronization and Data Exchange.”
Guide to Content Server Developer Tools 1.0

Chapter 2. Quick Start

 Managing Content Server Resources in Eclipse
20
Guide to Content Server Developer Tools 1.0

21
Chapter 3

Content Server Features in Eclipse
This chapter contains information about Content Server features that are provided in
Eclipse when it is integrated with CSDT.

• FW Content Server Perspective

• Next Steps
Guide to Content Server Developer Tools 1.0

Chapter 3. Content Server Features in Eclipse

 FW Content Server Perspective
22

Left panel co
the Project
and FW Wo
Elements v
FW Content Server Perspective
All CSDT functionality in Eclipse is grouped under the FatWire Content Server
perspective (Window > Open Perspective > Other... > FatWire ContentServer).

Figure 3: FatWire Content Server perspective:
Eclipse > Window > Open Perspective > Other... > FatWire ContentServer

The FatWire perspective contains the following:

• Configuration Screen

• Project and Workspace in Eclipse

• CSDT Views

• Data Synchronization (Export/Import) Tool

ntaining
Explorer
rkspace
iews

Bottom panel views: FatWire CS Log, Preview Browser,
Logging Configuration, and Site Editor.

FatWire Toolbar, provides:

- Shortcut to the FatWire Content Server configuration screen

- Shortcuts for creating SiteEntry, CSElement, and Template assets

- Shortcuts for creating SiteCatalog and ElementCatalog entries

- Synchronization tool
Guide to Content Server Developer Tools 1.0

Chapter 3. Content Server Features in Eclipse

 FW Content Server Perspective
23

ick to browse to
ur Content Server
tallation directory

ter your Content
rver user name
d password

ter the project
me for the
ntent Server
tance

ick to browse
your Content
rver log file
Configuration Screen
The configuration screen opens automatically on first access of Content Server-integrated
Eclipse. On subsequent access the configuration screen can be opened by selecting the
Configuration button on the FatWire Toolbar. This screen enables you to specify the
Content Server instance with which you wish to work.

The configuration screen requires the path to the Content Server installation directory, a
Content Server user that is part of the RestAdmin group, a project name for this Content
Server instance, and the path to your Content Server log file. After you fill in all the
required information, CSDT determines a number of other parameters for your Content
Server instance and displays them for your information in read-only fields. In addition, the
connection indicator will show whether CSDT is able to connect to the specified Content
Server instance.

Connection indicator

Cl
yo
ins

En
Se
an

En
na
Co
ins

Cl
to
Se
Guide to Content Server Developer Tools 1.0

Chapter 3. Content Server Features in Eclipse

 FW Content Server Perspective
24
Project and Workspace in Eclipse
Each Content Server instance that is accessed through Eclipse is assigned an Eclipse
project. The Eclipse project’s folder is displayed in the “Project Explorer” view. The
project is needed for tracking CSDT workspace items. Only one project is created by
default for each Content Server instance and only one Content Server instance can be
serviced by a project.

Each CSDT Eclipse project includes the
following elements:

• src – The CSDT workspace folder
for the current Content Server
instance. This folder contains all the
files for the resources stored in the
CSDT workspace. The resources in
this folder can be checked in to a
version control system.

• Config – Links to common
configuration files belonging to the
current Content Server instance.

• WEB-INF – Links to the current
Content Server instance’s WEB-INF
folder.

Note

The main purpose of the project is to facilitate information tracking and process
Eclipse events. Projects are managed by the CSDT plug-in. Do not open, close, or
modify the project.
Guide to Content Server Developer Tools 1.0

Chapter 3. Content Server Features in Eclipse

 FW Content Server Perspective
25
CSDT Views
• ‘FW Workspace Elements’

• ‘FatWire CS Log’ View

• ‘Preview Browser’ View

• ‘Advanced UI’ View

• ‘Logging Configuration’ View

• ‘FW Developer Reference’ View

• Wizards

‘FW Workspace Elements’
This view provides access to code-related resources. The resources are grouped according
to their site affiliation. If you select a resource, a quick summary of that resource is shown
in the text box at the bottom of the view.

Right-click a resource in the tree to view the available management options. The options
that are displayed to you depend on the resource you select:

• Show Metadata – Shortcut to the .main.xml file, which contains the metadata of
the selected item.

When you select an
item from the tree, a
summary of that item
is displayed in this
text box.

Any resource you create or
modify with CSDT is listed in
this view along with its
associated metadata,
dependencies, JSP and
XML files.

Click this button to refresh
the view.
Guide to Content Server Developer Tools 1.0

Chapter 3. Content Server Features in Eclipse

 FW Content Server Perspective
26
• Site Entry – View the resource’s site entry, share the site entry with other sites, create
a new site entry, and delete a site entry.

• Share – Manage the sites with which this resource is associated.

• Properties – Manage properties of this resource, such as cache criteria and default
arguments.

• Delete – Delete this resource.

‘FatWire CS Log’ View
This view shows a dynamically updating record of the Content Server log file. This view
can be used to monitor the behavior of your IDE-integrated Content Server instance.

‘Preview Browser’ View
This view provides a quick way to preview pages. To preview a web page with this view,
enter the name of the page to the URL in the address bar and press Enter or click Go. To
refresh the current page, use the Ctrl + r keyboard shortcut or click Go.
Guide to Content Server Developer Tools 1.0

Chapter 3. Content Server Features in Eclipse

 FW Content Server Perspective
27
‘Advanced UI’ View
This view displays the Content Server Advanced interface in an embedded browser. This
is equivalent to using the Advanced interface in a standalone browser.

‘Logging Configuration’ View
If you have migrated from Content Server’s existing logging system to Apache log4j, this
view displays a dynamically updating log4j configuration screen. The log4j configuration
screen enables you to view current loggers, change logger levels, add new loggers, and
search logs.

For information about using the log4j configuration screen, see the “System Tools”
chapter in the Content Server Administrator’s Guide.

Note

The Advanced interface utilizes a Java applet to display the left pane. For
information about running applets in browser views, see the Eclipse FAQ, located
at the following URL:

http://www.eclipse.org/swt/faq.php#browserapplets

If you are unable to run the applet, use the applet-free Advanced interface mode or
use a standalone browser to work in the Advanced interface.
Guide to Content Server Developer Tools 1.0

Chapter 3. Content Server Features in Eclipse

 FW Content Server Perspective
28

ab

d

avadoc
‘FW Developer Reference’ View
This view contains two tabs, one of which displays the Content Server Tag Reference and
the other displays the Javadoc. This information is only displayed if you have associated
the Content Server Tag Reference and Javadoc with Eclipse. Otherwise, the view displays
instructions for associating the Tag Reference and Javadoc with Eclipse. For instructions,
you can also refer to step 7 on page 18 in the “Setting Up Content Server Developer
Tools” section.

If the Tag Reference and Javadoc are not associated with Eclipse, the tabs
display the following:

If the Tag Reference and Javadoc are associated with Eclipse, the tabs
display the following:

Tag Reference t

Javadoc tab

Instructions for
downloading an
installing the Tag
Reference and J
Guide to Content Server Developer Tools 1.0

Chapter 3. Content Server Features in Eclipse

 FW Content Server Perspective
29
Wizards
Wizards can be invoked from either the FatWire menu or the FatWire Toolbar, and enable
you to create code-based Content Server resources. The available wizards are: SiteEntry,
CSElement, Template, ElementCatalog, SiteCatalog, the configuration tool, and the
synchronization tool.

Data Synchronization (Export/Import) Tool
The synchronization tool provides you with two tabs:

• Sync to Workspace (Export from Content Server)

• Sync to Content Server (Import into Content Server)

Sync to Workspace (Export from Content Server)
Sync to Workspace is used to export data from the IDE-integrated Content Server to your
CSDT workspace. In the process, CSDT serializes selected resources (transforms database
representations into files) and copies the serialized representation to the CSDT workspace.
You can then modify the resources in Eclipse.

Figure 4: synchronization icon > Sync to Workspace tab

Synchronization toolConfiguration tool

Template, CSElement,
SiteEntry, ElementCatalog,
and SiteCatalog wizards
Guide to Content Server Developer Tools 1.0

Chapter 3. Content Server Features in Eclipse

 FW Content Server Perspective
30
To export items from Content Server to your workspace

1. Select the items you wish to export. (To narrow down the list of items, go to the
“regex” search bar and enter the name of the asset type you are searching for. To
search for multiple asset types, enter a comma-separated list.)

2. Click Sync Selection to Workspace.

The assets you exported to your CSDT workspace are now listed in the
“FW Workspace Elements” tree tab.

Sync to Content Server (Import into Content Server)
Sync to Content Server is used to import resources from your CSDT workspace into the
IDE-integrated Content Server. In the process, CSDT transforms the selected resource to
its native Content Server representation and copies it to the Content Server database.

Figure 5: synchronization icon > Sync to ContentServer tab

To import items into Content Server from the workspace

1. Select the items you wish to import. (To narrow down the list of items, go to the
“regex” search bar and enter the name of the asset type you are searching for. To
search for multiple asset types, enter a comma-separated list.)

2. Click Sync Selection to ContentServer.
Guide to Content Server Developer Tools 1.0

Chapter 3. Content Server Features in Eclipse

 Next Steps
31
Next Steps
The rest of this guide provides information about using the Content Server features,
provided by CSDT, in the Eclipse IDE. Proceed to the next chapter (Chapter 4,
“Developing JSPs”) for information about JSP development in Eclipse.
Guide to Content Server Developer Tools 1.0

Chapter 3. Content Server Features in Eclipse

 Next Steps
32
Guide to Content Server Developer Tools 1.0

33
Chapter 4

Developing JSPs
This chapter contains information about developing Content Server JSPs with CSDT. This
chapter contains the following sections:

• JSP Development with CSDT

• Tag and Java API Completion

• Debugging
Guide to Content Server Developer Tools 1.0

Chapter 4. Developing JSPs

 JSP Development with CSDT
34

clipse editor
JSP Development with CSDT
CSDT supports the development of Content Server JSPs using the native Eclipse JSP
editor. The Eclipse JSP editor includes support for Content Server tag and Java API
completion, syntax highlighting, and debugging. Figure 6 shows an example of a Content
Server JSP in the Eclipse editor.

Figure 6: Eclipse JSP editor

Content Server JSPs can include page caching, resultset caching, and associated metadata
such as Template assets, CSElement assets, or ElementCatalog entries. The metadata of a
JSP enables Content Server to track and manage it. CSDT handles a JSP’s underlying
Content Server processes transparently, including tracking the JSP and its corresponding
metadata. When you save a JSP in Eclipse, CSDT automatically synchronizes those
changes with the current Content Server instance. Any metadata associated with the JSP is
also synchronized with Content Server automatically. This enables you to view the
changes in Content Server as soon as you save the JSP in Eclipse.

For example, if the JSP is associated with a Template asset, CSDT saves the Template
asset with the updated JSP.

E

Guide to Content Server Developer Tools 1.0

Chapter 4. Developing JSPs

 Tag and Java API Completion
35
Tag and Java API Completion
Eclipse provides tag and Java API completion features. Eclipse uses the tag libraries and
jar files belonging to the current Content Server instance to provide the appropriate code
completion for Content Server related tags and Java APIs. The Content Server tag libraries
and jar files are automatically linked to your Eclipse project, and contained within the
Eclipse project folder (located in the “Project Explorer” view):

• The tag libraries are contained in the futuretense_cs folder under the WEB-INF
folder.

• The jar files are contained under the main Eclipse project folder.

Associating the Content Server Javadoc and Tag Reference with Eclipse enables the tag
and Java API completion features to display information about each tag and piece of Java
code you use when managing a Content Server JSP. For example, when you are working
with a Content Server JSP and you begin to type the name of a tag, a window opens listing
code completion suggestions. If you associated the Tag Reference and Javadoc with
Eclipse, a second pop-up window is displayed containing information about each
suggestion (see Figure 7).

Note

When you use the tag and Java API completion feature, keep in mind the
following:

• Make sure you follow strict JSP coding standards. This way your code can be
deployed on any application server.

• Eclipse code completion displays all public Java methods contained within the
Content Server jars, only use the APIs that are in the FatWire documentation.
Using undocumented functionality is risky and unsupported.

Content Server jar files

Contains the Content Server
tag libraries
Guide to Content Server Developer Tools 1.0

Chapter 4. Developing JSPs

 Debugging
36
Figure 7: Tag and Java API completion feature

In addition to adding functionality to the tag and Java code completion features, the
Javadoc and Tag Reference are both made accessible in the “FW Developer Reference”
view. For more information, see “‘FW Developer Reference’ View,” on page 28.

Debugging
To debug Java and JSP code in CSDT, you must first attach the debugger to the JVM
process that runs Content Server. It is recommended to do so with remote debugging. To
attach the Content Server JVM, follow the instructions provided by Eclipse at the
following URL:

http://www.ibm.com/developerworks/library/os-ecbug/

Once the JVM is attached to the debugger, you can set breakpoints in your JSP and Java
code, view variables, and so on.
Guide to Content Server Developer Tools 1.0

37
Chapter 5

Synchronization and Data Exchange
This chapter provides information about the export/import features supported by CSDT.
This chapter also provides information about exchanging resources between Content
Server instances, and the CSDT mappings processes.

This chapter contains the following topics:

• CSDT Synchronization

• Data Exchange and Mappings
Guide to Content Server Developer Tools 1.0

Chapter 5. Synchronization and Data Exchange

 CSDT Synchronization
38
CSDT Synchronization
Synchronization is the bi-directional flow of resources between a Content Server instance
and its associated workspace. Using CSDT, you can perform the following
synchronization operations:

• Export/import assets with built-in dependency resolution and ID mapping.

• Export/import asset types, such as flex families and AssetMaker asset types.

• Export/import site definitions, roles, start menu items, and tree tabs.

• Export/import SiteCatalog and ElementCatalog entries.

• (Command-line tool operation) Perform site re-mapping. For example, creating
reusable modules which can be imported into any Content Server site.

Exporting or importing all resources of a given site enables you to track the entire site in a
version control system. Advanced developers can use the command-line tool to re-map the
resources of one site to another by creating reusable modules (custom workspaces).

Synchronization Scenarios
Depending on the scenario, resources are synchronized either automatically or manually.

Resources between Content Server and Eclipse are automatically synchronized when the
following actions are performed in Eclipse:

• Code-based resources (Templates, CSElements, SiteEntries, ElementCatalog entries,
and SiteCatalog entries) are created with the CSDT wizards in Eclipse.

• Code-based resources (Templates, CSElements, and ElementCatalog entries) stored in
the CSDT workspace are edited in Eclipse. This includes edits to JSP files, XML files,
metadata, and other files associated with the resource.

For example, if you edit a resource’s associated JSP file in the Eclipse editor, CSDT
automatically synchronizes the changes into the Content Server instance. Using the
Eclipse editor, advanced developers can also edit metadata files (.main.xml) of flex
definitions and CSDT will automatically synchronize the changes into Content Server.
However, we recommend using the Advanced interface to modify flex definitions.

In certain cases, resources must be manually synchronized using either the
Synchronization tool in the Eclipse IDE or (for advanced developers) the command-line
tool. Manual synchronization is required when:

• The Eclipse editor is not used to edit resources stored in the CSDT workspace. For
example, when resources are copied to the CSDT workspace from a shared network
file system or a version control system.

• Content Server resources are modified in the Advanced or Dash interface.

Note

The Eclipse IDE provides an embedded Advanced interface. However, Eclipse
does not detect the changes that are made using this interface. Therefore,
working in the embedded Advanced interface is the same as working in a
standalone browser running the Advanced interface.
Guide to Content Server Developer Tools 1.0

Chapter 5. Synchronization and Data Exchange

 CSDT Synchronization
39
• Content Server is not running while you are creating or editing resources in the
Eclipse IDE. Once Content Server is restarted, you must manually synchronize the
resources you created or edited.

Using the command-line tool to synchronize resources is mainly for deployment purposes,
such as nightly builds that are deployed to test servers. For example, an advanced
developer can embed a synchronization command into a script for an automated
deployment procedure. For information about running and using the command-line tool,
see Chapter 7, “Command-Line Tool.”

Dependency Resolution
Content Server resources often depend on other resources. For example, a flex asset
requires an associated flex definition to exist before it can be created. In turn, the flex
definition depends on a set of attributes and possibly other resources. Therefore, all flex
constructs require that the flex family exist on the system. To import a flex asset into an
empty Content Server system, you must first create a flex family to which the flex asset
will be associated. Then, create the following:

1. Create the flex attributes. For example, name, address, age, and so on.

2. Create the desired flex parent definitions.

3. Create flex definitions.

4. Create the desired flex parents.

5. Create flex assets.

When you export a flex asset, CSDT performs all dependency resolutions for that asset
and automatically exports all of its dependencies. Therefore, you only need to select the
desired resource (such as the desired flex asset) and CSDT computes all of the asset’s
dependencies.

Note

CSDT does not resolve a resource’s dependency on site definitions. This enables
you to choose whether you want to export or import an entire site, a subset of sites,
or completely ignore site definitions (for example, if you are using the command-
line tool to create a reusable module that can by imported into any site). For a
detailed example of creating a reusable module, see Appendix B, “Using the
Command-line Tool to Create Reusable Modules.”
Guide to Content Server Developer Tools 1.0

Chapter 5. Synchronization and Data Exchange

 Data Exchange and Mappings
40
Data Exchange and Mappings
CSDT uses ID and site mapping processes to enable developers to exchange resources
between Content Server instances. This section contains the following topics:

• ID Mapping

• Site Mappings

ID Mapping
Each resource created in Content Server is assigned a unique local identifier. A resource’s
local identifier is unique only to the Content Server instance on which it was created.
Since multiple Content Server instances will be used to create resources, it is possible for
two different resources, on separate Content Server instances, to have the same local
identifier.

To uniquely identify resources, CSDT assigns each resource a globally unique identifier
(fw_uid), which is unique across all Content Server instances. In addition, when you
import a resource into a Content Server instance, CSDT assigns a new local identifier to
that resource on that instance. If the resource references other assets (such as associations,
asset pointers, and flex definitions), a new local identifier is generated for each of those
assets. On subsequent imports to that Content Server instance, the resources are assigned
the same local identifier. CSDT maintains the resources’ fw_uid values across all
Content Server instances. If the resource and its referenced assets are imported back into
their original Content Server instance, CSDT re-maps their local identifiers back to their
original value.

For example, (as shown in Figure 8, on page 41) Developer A is working with a Content
Server instance named CS1 and Developer B is working with a Content Server instance
named CS2. Both developers created a completely different Template asset. Developer A
created Template A and Developer B created Template B. The two Template assets have
different fw_uid values and different names. However, since local identifiers are
randomly assigned, both Template assets, by chance, have been assigned the same local
identifier (12345). Developers A and B want to exchange Template assets between each
other’s Content Server instances. Developer A wants to import Template B into the CS1
instance, and Developer B wants to import Template A into the CS2 instance.

Figure 8 illustrates the steps both developers take to exchange Template assets between
their Content Server instances. Both Template assets’ local identifiers are re-mapped when
imported into the other developer’s Content Server instance. When Template A is
imported into the CS2 instance, the system assigns it the local identifier 52563. When
Template B is imported into the CS1 instance, the system assigns it the local identifier
22342. In each case, the fw_uid values for both Template assets remain the same.

Note

Certain Content Server resources, such as Template assets, flex attributes, and tree
tabs have unique name constraints. To avoid name conflicts, make sure each
resource is uniquely named across all Content Server instances.
Guide to Content Server Developer Tools 1.0

Chapter 5. Synchronization and Data Exchange

 Data Exchange and Mappings
41

CS1: Develo

1B.

Developer B
exports Template B
to his workspace

3B. Deve
Temp
works Developer B

copies
Template B to a
VCS or shared
file system

2B.

Develo
The sy
ID for t
remain

4B.
Figure 8: Exchanging two different assets with the same local identifier between two
Content Server instances

In Figure 9, on page 42, Developer A wants to deploy Template A to the Deployment
Content Server instance (managed by the system administrator) and Developer B wants to
deploy Template B to the same instance. Both Template assets have the same local
identifier (12345).

Developers A and B each export their Template to the main CSDT workspace for their
Content Server instance. They then copy their Templates to a VCS or shared file system.
From here, the system administrator copies both Template assets to the Deployment
Content Server’s main CSDT workspace. The system administrator then imports the two

Note

To exchange resources between Content Server instances, the developers in our
examples use a VCS or shared file system. For information about using a VCS, see
Chapter 8, “Notes for Integrating with Version Control Systems.”

Developer A Developer B

per A’s Content Server instance CS2: Developer B’s Content Server instance

2A.

Developer A copies
Template A to a VCS or
shared file system

4A.

loper A copies
late B to his
pace

3A.

Developer B
copies Template A
to his workspace

Developer B imports Template A.
The system generates a new local
ID for the asset. The fw_uid
remains the same.

per A imports Template B.
stem generates a new local
he asset. The fw_uid
s the same.

1A.

Developer A
exports Template A
to his workspace
Guide to Content Server Developer Tools 1.0

Chapter 5. Synchronization and Data Exchange

 Data Exchange and Mappings
42

CS

e
.
Template assets from the workspace to the Deployment Content Server. Upon import, the
system assigns both Templates a new local identifier. Template A is assigned the local
identifier of 45678 and Template B is assigned the local identifier of 98765. The assets’
fw_uid values remain the same.

Figure 9: Deploying two different assets with the same local identifier to a third Content
Server instance

1: Developer A’s Content Server instance CS2: Developer B’s Content Server instance

Developer B
Developer A

Developer A exports
Template A to his
workspace

Developer B exports
Template B to his
workspace

Developer B copies
Template B to a VCS or
shared file system

Developer A copies his
Template A to a VCS or
shared file system

Deployment Content Server:
Managed by the system administrator

1B.1A.

2A. 2B.

3. The system administrator copies both
Template assets to the main CSDT
workspace for the Deployment Content
Server instance

The system administrator imports both Template
assets to the Deployment Content Server instance. Th
system generates a new local identifier for each asset
The assets’ fw_uid values remain the same.

4.
Guide to Content Server Developer Tools 1.0

Chapter 5. Synchronization and Data Exchange

 Data Exchange and Mappings
43

The Resour
lists each Co
resource by
(with the exc
ElementCata
SiteCatalog
When a resource is exported to a workspace, it is identified only by its fw_uid.
ElementCatalog and SiteCatalog entries are not assigned an fw_uid because these entries
are uniquely identified by element name.

Overriding a Resource’s fw_uid
When a resource is created, a UUID value is automatically generated as its globally
unique identifier and stored in an asset attribute named fw_uid. Advanced developers can
use the Asset API to override the default fw_uid scheme with their own by modifying the
fw_uid attribute. For information about using the asset API, see the Content Server
Developer’s Guide and the Content Server Javadoc.

Using CSDT with Existing Resources
If you upgraded your Content Server system to version 7.6, and wish to use CSDT to work
with resources created prior to this release (existing resources), those resources must be
assigned an fw_uid value that is unique across all Content Server instances. Content
Server versions prior to 7.6 provided the fw_uid column to all assets and a number of
other resource types. However, the value of the fw_uid column is
CSSystem:[type]:id. In Content Server 7.6, a resource’s fw_uid is generated as a
UUID value.

Note

We recommend using the default Content Server fw_uid scheme. If you override
a resource’s default fw_uid value, you must make sure the value is unique across
all Content Server instances. Once you set a resource’s fw_uid attribute, do not
change the value.

ce ID column
ntent Server
its fw_uid
eption of
log and

entries).
Guide to Content Server Developer Tools 1.0

Chapter 5. Synchronization and Data Exchange

 Data Exchange and Mappings
44
CSDT can map resources with either type of fw_uid value, as long as the resource’s
fw_uid value is globally unique. Therefore, you can continue to use an existing
resource’s current fw_uid value (in the format of CSSystem:[type]:id).

When you are using CSDT to work with existing resources, do one of the following (or
both):

• We recommend continuing to use the existing resource’s current fw_uid value
(CSSystem:[type]:id). However, you must ensure that no other Content Server
instance has generated the same fw_uid value for a different resource. For example,
if you have a Content Server development instance and you published resources to a
management instance, the fw_uid values of the published resources remain the same
on both instances. Therefore, synchronizing resources between these two instances
using CSDT will not result in ID conflicts.

• If you have existing resources that were created on separate Content Server instances
with the same fw_uid values, those resources must be assigned a new, unique
fw_uid value. To avoid ID conflicts, you can either remove the current fw_uid value
and allow CSDT to generate a new UUID value when you export the resource from a
Content Server instance, or you can assign your own unique identifier to the resource.
For instructions, see “Overriding a Resource’s fw_uid,” on page 43.

Site Mappings
Most Content Server resources, such as assets, are associated with at least one site. When
a resource is exported from a Content Server instance to a workspace, it stores a complete
(canonical) list of sites with which it is associated in its .main.xml file. The resource’s
canonical list remains the same on every Content Server instance, unless you add a new
site affiliation, remove a current one, or (if you are an advanced developer) override the
resource’s natural site mapping using the command-line tool.

Natural Site Mappings
By default, CSDT maps resources to their associated sites by referencing the canonical list
stored in a resource’s .main.xml file. If any of the sites referenced in this list exist on the
Content Server instance to which the resource is imported, CSDT maps the resource to
those sites. If none of the sites referenced in the resource’s canonical list exist on the
Content Server instance, the import fails.

For example, Developer A installs two sites – News and Sports. On a separate Content
Server instance, Developer B also installs two sites – News and Weather. Both developers
import the same Template asset into their Content Server instances. This Template asset is
associated with both the Sports and Weather sites (both sites are referenced in the asset’s
canonical list). Upon import, CSDT references the Template asset’s canonical list and then
maps the asset to the Sports site on Developer A’s environment and the Weather site on
Developer B’s environment.

Note

If you assign a resource a new fw_uid, make sure to assign the new fw_uid
value to every instance of that resource. For example, if you published the
resource to another Content Server instance before modifying its fw_uid
value, make sure you assign the same fw_uid to both copies of that resource.
Guide to Content Server Developer Tools 1.0

Chapter 5. Synchronization and Data Exchange

 Data Exchange and Mappings
45
When Developers A and B share the changes they made to the Template asset with each
other, CSDT maps the asset to the appropriate sites on both Content Server instances. The
canonical list enables CSDT to recognize the sites with which the Template asset is
associated, even when the asset is exported into an instance where some of those sites are
not installed.

Overriding Natural Site Mappings With the Command-line
Tool
Advanced developers can use the command-line tool to import a resource into sites that
are not referenced in its canonical list. The command-line tool enables you to create
reusable modules, which are workspaces containing resources that can be imported into
any site.

For example, a developer creates a blogging solution within the FirstSiteII sample site.
This solution includes resources such as a flex family, assets, and Templates. The
developer wants the resources to be imported into various sites, including sites that do not
exist yet. Since he is an advanced developer, he uses the command-line tool to export the
desired resources to an empty workspace, and then archives the content of this workspace
(using a .zip or .tar format). Using the command-line tool, other developers can then
customize the site mappings of the resources contained in this module and manually
specify the sites into which the module will be imported.

For more information about using the command-line tool, see Chapter 7, “Command-Line
Tool.” For a detailed scenario of creating a reusable module, see Appendix B, “Using the
Command-line Tool to Create Reusable Modules.”
Guide to Content Server Developer Tools 1.0

Chapter 5. Synchronization and Data Exchange

 Data Exchange and Mappings
46
Guide to Content Server Developer Tools 1.0

47
Chapter 6

Workspaces
This chapter contains information about how CSDT stores resources exported from an
integrated Content Server instance.

This chapter contains the following topics:

• Introduction

• Workspace Structure
Guide to Content Server Developer Tools 1.0

Chapter 6. Workspaces

 Introduction
48
Introduction
A workspace is a disk-based repository of serialized Content Server data which represent
resources from either the workspace’s Content Server instance or another instance’s
workspace. Workspaces can store any type of Content Server resource including assets,
flex families, sites, and so on. Each workspace is associated with one Content Server
instance.

By default, Eclipse provides each Content Server instance with a main CSDT workspace
(located in the Eclipse project folder) which is used for continuous development when
working in the Eclipse IDE. Custom workspaces can be created by advanced developers
using the CSDT command-line tool. Custom workspaces can be used for special projects
such as creating modules. (For more information about creating custom workspaces, see
Chapter 7, “Command-Line Tool.”)

With the use of a version control system (such as Subversion) or a shared file system,
resources stored on one workspace can be exchanged with other workspaces. Any
resource exported from a Content Server instance into the associated workspace can be
copied to another Content Server instance’s workspace. This makes the resource available
for import into the second workspace’s associated Content Server instance. For more
information about sharing resources between different workspaces, see Chapter 8, “Notes
for Integrating with Version Control Systems.”

Workspace Structure
Workspaces are created under the export/envision folder inside the Content Server
installation directory. The main CSDT workspace is located under the export/
envision/cs_workspace folder. The main CSDT workspace is the only visible
workspace in the Eclipse project folder.

All workspaces have the same structure. Each resource contained in a workspace is stored
as a single file or several interrelated files. The main file for each resource ends in
.main.xml and contains resource-specific metadata. This main file also contains links to
other files associated with the resource (such as an attached document, a JSP file, or a
blob). This enables each resource to be fully self-contained, as long as all of a resource’s
associated files are stored in the workspace. Otherwise, the resource is incomplete.

If a resource has multiple files, those files are listed in the bottom section of the
.main.xml file as storable0, storable1, and so on. The associated files of any given
resource have similar names. This way, all of a resource’s associated files appear together,
except ElementCatalog entries which are stored separately to preserve their original root
path.

The location of a resource’s files in the workspace depends on the type of resource. The
workspace is divided into the following sections:

• src/_metadata – The metadata section of a given resource which contains assets,
asset types, sites, roles, and so on. In addition, legacy XML code is stored under the
ELEMENTS/ subfolder.

• src/jsp/cs_deployed – This section stores a resource’s JSP file under its proper
path.
Guide to Content Server Developer Tools 1.0

Chapter 6. Workspaces

 Workspace Structure
49
Since workspaces have a highly consistent structure, resources from one workspace can be
copied to another. As with all file system copy operations, ensure you are not overwriting
files that have the same name.

Asset Storage Structure
Assets are stored under folders named src/_metadata/ASSET/asset type. Under
this structure there is a two-level hash-based hierarchy, which contains asset data. The
name of the asset file is based on the asset name and its fw_uid value. If the asset
includes attached documents or blobs, the file name is based on the asset name, attribute
name, fw_uid value, and the name of the document or blob (if any).

For example, a Document_C asset named FSII IES_Manual.pdf contains an attached
document called IES_MDPlayer_Manual.pdf. Therefore, this asset is stored as two
separate files:

• The first is the .main.xml file, which contains the asset’s metadata and links to the
files associated with the asset:

.src/_metadata/ASSET/Document_C/8/0/FSII IES_MDPlayer_Manual
.pdf(aa0b47b5-f558-49d4-a6ac2ee012d1b75).main.xml

• The second is the actual document, which is a PDF file in this example:

.src/_metadata/ASSET/Document_C/8/0/FSII IES_MDPlayer_Manual
.pdf.FSIIDocumentFile(aa0b47b5-f558-49d4-8a6a-c2ee012d1b75)
.IES_MDPlayer_Manual.pdf

Code-Based Resource Storage Structure
Templates, CSElements, and ElementCatalog entries are stored under the storage path
required by their code elements. The JSP files associated with code-based resources are
stored in the workspace under src/jsp/cs_deployed and the XML elements are stored
under src/_metadata/ELEMENTS. The metadata files of code-based resources are
stored under the same name as the resource’s JSP with the appended .main.xml
extension. Therefore, the code-based resource’s metadata, JSP, and XML files are grouped
together in the workspace.

Note

Since all file names of the asset are based on the asset’s name, renaming the asset
also renames the file. If you are tracking the asset in VCS, delete the file with the
old name.
Guide to Content Server Developer Tools 1.0

Chapter 6. Workspaces

 Workspace Structure
50
Attribute Editor Storage Structure
Attribute editors are tracked as assets, but also have implicit references to a set of
ElementCatalog entries. An attribute editor’s ElementCatalog entries are tracked
independently.

For example, the TextArea editor uses the OpenMarket/Gator/AttributeTypes/
TEXTAREA ElementCatalog entry, which is registered as a dependency. CSDT maintains
the following files for the TextArea editor:

• The .main.xml file:

src/_metadata/ASSET/AttrTypes/9/10/TextArea(e64f983d-9c7c-
489baedb-476d56f8121e).main.xml

• The urlxml metadata file:

src/_metadata/ASSET/AttrTypes/9/10/TextArea.urlxml(e64f983d-
9c7c-489b-aedb-476d56f8121e).1095346398911.txt

• The ElementCatalog entry, tracked as an independent resource:

- The .main.xml file of the ElementCatalog entry:

src/_metadata/ELEMENTS/OpenMarket/Gator/AttributeTypes/
TEXTAREA.xml.main.xml

- The attribute editor’s element code:

src/_metadata/ELEMENTS/OpenMarket/Gator/AttributeTypes/
TEXTAREA.xml

Asset Type Storage Structure
Asset types have a main metadata part and a set of elements. For example, the following is
the structure of a Page asset type:

• The main metadata of the page is stored in the .main.xml file:

src/_metadata/Asset_Type/Page(b8d8ae9-14cc-4554-b80e-
0c22e39a3ec8).main.xml

• The associated elements are tracked independently (each element has its own
.main.xml file):

src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
SearchForm.xml

src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
CheckDelete.xml

src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
ContentForm.xml.main.xml

src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
ContentDetails.xml.main.xml

src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
LoadSiteTree.xml

src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
IndexReplace.xml.main.xml

src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
LoadTree.xml

src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
IndexAdd.xml.main.xml
Guide to Content Server Developer Tools 1.0

Chapter 6. Workspaces

 Workspace Structure
51
src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
SearchForm.xml.main.xml

src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
IndexReplace.xml

src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
PreviewPage.xml.main.xml

src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
LoadTree.xml.main.xml

src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
PreUpdate.xml

src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
Tile.xml.main.xml

src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
SimpleSearch.xml

src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
SimpleSearch.xml.main.xml

src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
ContentForm.xml

src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
AppendSelectDetailsSE.xml

src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
LoadSiteTree.xml.main.xml

src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
AppendSelectDetails.xml.main.xml

src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
ManageSchVars.xml

src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
PreviewPage.xml

src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
CheckDelete.xml.main.xml

src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
ManageSchVars.xml.main.xml

src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
PreUpdate.xml.main.xml

src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
AppendSelectDetails.xml

src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
IndexCreateVerity.xml.main.xml

src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
ContentDetails.xml

src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
PostUpdate.xml

src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
IndexAdd.xml

src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
IndexCreateVerity.xml

src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
Tile.xml

src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
AppendSelectDetailsSE.xml.main.xml

src/_metadata/ELEMENTS/OpenMarket/Xcelerate/AssetType/Page/
PostUpdate.xml.main.xml
Guide to Content Server Developer Tools 1.0

Chapter 6. Workspaces

 Workspace Structure
52
Guide to Content Server Developer Tools 1.0

53
Chapter 7

Command-Line Tool
This chapter is for advanced developers and provides information about running and using
the command-line tool.

This chapter contains the following sections:

• Introduction

• Running and Using the Command-Line Tool

• Creating Modules
Guide to Content Server Developer Tools 1.0

Chapter 7. Command-Line Tool

 Introduction
54
Introduction
The CSDT command-line tool can be used for deployment and other resource movement
activities. Unlike the Eclipse integration, which enables you to work only with the CSDT
workspace, the command-line tool enables you to work with any workspace. The
command-line tool also provides import and export features which are not available when
working in the Eclipse IDE. For example, developers can create reusable modules, which
are workspaces containing resources that can be imported into any site.

Running and Using the Command-Line Tool
To run the command-line tool:

1. Unzip csdt.zip, which is located in the rollup installer (Rollup/csdt). Open the
csdt-client folder and place the csdt-client.jar file in the classpath. Make
sure you have met all the requirements listed in the Supported Platform Document.

2. Run the command-line tool (cmd) and type the following command:

java com.fatwire.csdt.client.main.CSDT [ContentServer url]
username= username password= password
cmd=export|import|listcs|listds [options]

Replace the placeholder parameters with the information about your development
environment and the desired command you wish to execute:

- ContentServer url – The URL of your local Content Server instance,
including the Content Server servlet (for example, http://localhost:8080/
cs/ContentServer)

- username and password – The user name and password of a Content Server
general administrator. This user must be a member of the RestAdmin group (for
example, fwadmin/xceladmin).

- cmd – The command to execute. The following commands are available:

- export - Export data from Content Server to a workspace

- import - Import data into Content Server from a workspace

- listcs - List Content Server content

- listds - List workspace content

- options – Specify one of the following to either import or export:

- resources - Specify which resources you wish to import or export in a
semicolon-separated list of resource type and resource ID. To specify multiple
resources, use a comma-separated list. To specify all resources of a given
type, use the * symbol. If you are exporting a resource (to a workspace),
specify the resource’s local ID. For example, use

Note

The Supported Platform Document is available on our e-docs site, at
http://support.fatwire.com. The site is password protected. Accounts
can be opened from the home page.
Guide to Content Server Developer Tools 1.0

Chapter 7. Command-Line Tool

 Running and Using the Command-Line Tool
55
resources=Content_C:12345;Product_C:* to export a specific
Content_C asset and all Product_C assets.

If you are importing a resource (to a Content Server instance), specify the
resource’s fw_uid. To get the resource’s fw_uid, use the listds option.
The following is a full listing of resource selectors:

- @SITE – Specify the desired sites

- @ROLE – Specify the desired roles

- @ASSET_TYPE – Specify the desired asset types

- @TREETAB – Specify the desired tree tabs

- @STARTMENU – Specify the desired start menu items

- @ELEMENTCATALOG – Specify the desired ElementCatalog entries

- @SITECATALOG – Specify the desired site catalog entries

- @ALL_NONASSETS – Use this short-hand notation to select all non-asset
resources

- @ALL_ASSETS – Use this short-hand notation to select all available assets

- asset type – Specify assets of a certain type.

- fromSites - Select resources from specified sites only.

- toSites - (Import only) Override the natural site affiliation during import
with a comma-separated list of sites. Specified sites must exist on the target
system.

- modifiedSince - (Assets only) Select only resources that have been
modified since the specified date. The date format is yyyy-mm-dd
hh:MM:ss.

- datastore – (Optional) Specify the workspace you wish to either export
Content Server resources to or import Content Server resources from. If you
do not specify a value for this parameter, the main CSDT workspace is
specified by default. If you are exporting resources and specify a workspace
that does not exist, the command-line tool automatically creates the
workspace and exports the desired resources to it.

Note

To verify that selectors are picking up the correct resources before
import or export, use listcs for export activities and listds for
import activities. These commands fine-tune the selectors before
execution by providing a list of the resources that will be moved.

If resources have dependencies, they are exported and imported
automatically. However, dependencies are not listed using the listcs
and listds commands.
Guide to Content Server Developer Tools 1.0

Chapter 7. Command-Line Tool

 Creating Modules
56
Example Commands
The following is a list of example commands that can be executed using the command-line
tool:

• This command exports the specified Content_C assets and all Product_C assets that
belong to FirstSiteII and were modified since the specified date. Since no workspace
is specified, the CSDT workspace is used by default:

java com.fatwire.csdt.client.main.CSDT http://localhost:8080/
cs/ContentServer username=bob password=password
resources=Content_C:123432123423,11234234212,111234341234;Pr
oduct_C:* fromSite=FirstSiteII modifiedSince=2010-08-08
19:14:00 cmd=export

• This command imports the specified Content_C asset and all Product_C assets found
in the workspace. Since no workspace is specified, the CSDT workspace is used by
default:

java com.fatwire.csdt.client.main.CSDT http://localhost:8080/
cs/ContentServer username=bob password=password
resources=Content_C:aad618e9-f04e-4ee4-b902-
076224bb6f7b;Product_C:* fromSite=FirstSiteII cmd=import

• This command exports all resources from the site SecondSiteII into a workspace
named “TheOutput”:

java com.fatwire.csdt.client.main.CSDT http://localhost:8080/
cs/ContentServer username=bob password=password
resources=@ALL_ASSETS:*;@ALL_NONASSETS:*
fromSite=SecondSiteII datastore=TheOutput cmd=export

• This command imports all assets and tree tabs from the workspace named “TheInput”
into the site MySite:

java com.fatwire.csdt.client.main.CSDT http://localhost:8080/
cs/ContentServer username=bob password=password
resources=@ALL_ASSETS:*;@TREETAB:* toSites=MySite
datastore=TheInput cmd=import

Creating Modules
Modules are sets of related resources exported from your Content Server instance into a
given workspace. The datastore parameter enables you to specify the workspace you
wish to either export Content Server resources to or import Content Server resources from.
If you export Content Server resources to a workspace that does not exist, the command-
line tool automatically creates that workspace and exports the desired resources into it.

Modules are reusable, and their content can be imported into any CM sites (even if the site
is not listed in the resources’ canonical list of sites). To import a module into a CM site,
you must execute an import command. In the datastore parameter, specify the
workspace that contains the desired resources and in the toSites parameter, specify the
site(s) to which you wish to import those resources. This imports the content of the
workspace into the specified CM site(s).
Guide to Content Server Developer Tools 1.0

57
Chapter 8

Notes for Integrating with Version Control
Systems
This chapter provides information about storing the resources, contained in the CSDT
workspace folder, in a version control system (VCS). This enables you to share the
resources in your CSDT workspace with other developers.

This chapter contains the following topic:

• Version Control With CSDT
Guide to Content Server Developer Tools 1.0

Chapter 8. Notes for Integrating with Version Control Systems

 Version Control With CSDT
58
Version Control With CSDT
Version control systems (VCS) provide you with the ability to create source code
repositories. A VCS can provide advanced tools for versioning, branching, and managing
source files. The file system structure in which the CSDT workspace stores Content
Server resources enables those resources to be stored on any VCS and enables complete
CM sites to be tracked in a VCS.

Integrating CSDT With a VCS
The CSDT workspace is located in the src folder of the Eclipse project. This folder can
be accessed directly from the Content Server installation directory (under export/
envision/cs_workspace/src). To copy the content of your CSDT workspace folder
to a VCS, you must first determine which VCS you wish to use. Then, check-in the
resources stored in the CSDT workspace to the VCS. The VCS you choose to use,
determines the steps you must take to check resources in from the Eclipse IDE.

In some cases Eclipse supports the VCS you choose to use by providing a plug-in which
allows you to check resources into the VCS directly from Eclipse. For example, if you use
the Subversion repository to store the content of your CSDT workspace, the Eclipse IDE
supports the Subclipse plug-in. Therefore, you can check resources into the Subversion
directory directly from the Eclipse IDE.

The CSDT workspace stores all resources as one or more files, depending on the type of
resource. If you check a resource into a VCS, you must also check-in all associated files of
that resource. For example, an asset that contains attached documents (such as a PDF) is
represented by a metadata file (.main.xml) and the associated document file(s). All
associated files of the asset must be checked in to the VCS. Otherwise, the check-in fails.
For a detailed description of the CSDT workspace layout and for information about how
resources are mapped to workspace files, see Chapter 6, “Workspaces.”

Note

Checking data into a VCS from the CSDT workspace does not require an
extensive understanding of the CSDT workspace file structure. Instead, most VCS
clients detect incremental changes to the CSDT workspace folder and indicate
those changes during a VCS commit operation.
Guide to Content Server Developer Tools 1.0

Chapter 8. Notes for Integrating with Version Control Systems

 Version Control With CSDT
59
Working With a CSDT-Integrated VCS
When you check Content Server resources into a VCS from your CSDT workspace, you
are able to exchange those resources with other developers and track changes to those
resources over time. The following is an example of a development team using a VCS to
share Content Server resources:

Developer A creates a resource in Content Server and exports it to the CSDT workspace.
Developer A then checks that resource into a VCS. From the VCS, Developer B can then
check-out the resource to his own CSDT workspace. This developer can now modify the
resource and then check the changes back into the VCS. Developer A, as well as the rest of
the development team, can now see the changes made to the resource from the VCS. This
enables the members of the development team to synchronize their CSDT workspaces
with the most recent changes made to the resource. Additional developers can join the
group by checking-out resources from the VCS into their own, respective CSDT
workspaces. As the project advances, the cycle of adding and modifying resources
continues.

Note

Content Server provides a revision tracking system for resources that are kept
within a given Content Server instance. The Content Server revision tracking
system cannot be integrated with a VCS.
Guide to Content Server Developer Tools 1.0

Chapter 8. Notes for Integrating with Version Control Systems

 Version Control With CSDT
60
Guide to Content Server Developer Tools 1.0

61
Appendices
This part contains the following appendices:

• Appendix A, “Development Team Integration Use Case”

• Appendix B, “Using the Command-line Tool to Create Reusable Modules”
Guide to Content Server Developer Tools 1.0

62
Guide to Content Server Developer Tools 1.0

63
A p p e n d i x A

Development Team Integration Use Case
This appendix contains a development scenario involving a team of developers using
CSDT to create a CM site and resources. The development team uses the synchronization
tool provided by CSDT to manage and exchange resources between multiple Content
Server instances. Using the command-line tool, the CM site and its resources will then be
deployed as a nightly build.

The sequence of events for the scenario are as follows:

• Today – Develop a Site and Associated Resources

• Three Days Later... Deployment
Guide to Content Server Developer Tools 1.0

Appendix A. Development Team Integration Use Case

 Today – Develop a Site and Associated Resources
64
Today – Develop a Site and Associated Resources

7:14 am – The New Project is Assigned
Artie the architect wakes up and finds himself appointed the leader of a new web-based
project.

7:34 am – Setting Up CSDT
Artie gets some coffee and installs a Content Server instance on his laptop. He then starts
the Eclipse IDE and configures CSDT.

Note

To successfully integrate Eclipse with a Content Server instance, the configuration
screen requires Artie to enter the user name and password of a general
administrator. This user must be a member of the RestAdmin group.
Guide to Content Server Developer Tools 1.0

Appendix A. Development Team Integration Use Case

 Today – Develop a Site and Associated Resources
65
7:45 am – Create the Site Definition
Artie creates the site definition (naming the site “Acceptance” in this scenario) by using
the embedded Advanced interface view in Eclipse.

Artie could have used a separate browser window running the Advanced interface to
create the site definition. However, being a huge Eclipse fan, he indulges in the fact that he
can usually write complete Content Server sites without leaving Eclipse.
Guide to Content Server Developer Tools 1.0

Appendix A. Development Team Integration Use Case

 Today – Develop a Site and Associated Resources
66
7:46 am – Create Resources for the Site
Artie primes the site:

• Enables asset types.

• Assigns permissions.

• Creates and enables a flex family to store information assets (author information
assets in this scenario) for the site:

- Flex Attribute: Author_A

- Flex Parent Definition: Author_PD

- Flex Definition: Author_CD

- Flex Parent: Author_P

- Flex Asset: Author_C

- Flex Filter: Author_F

• Creates flex attributes (authorName and authorBio) and a flex definition
(fictionAuthor). He then adds the attributes to the flex definition.
Guide to Content Server Developer Tools 1.0

Appendix A. Development Team Integration Use Case

 Today – Develop a Site and Associated Resources
67
8:12 am – The VCS Discussion
Artie arrives at the office and meets with the rest of the development team – Sonoko
(coder), Matthäus (coder), and Yogesh (system engineer). The discussion is about whether
to use a version control system for the project:

Yogesh: I can set up a version control system in-house, but I would like to avoid
doing extra work. Do you guys really want one?

Artie: Well, we expect this project to last several months. We could just create a
shared folder on the network and synchronize all our work to it. However,
we have to be careful not to overwrite each other’s work. For example, if
two people are working on the same Template asset, they will have to wait
for each other.

Sonoko: Artie, do you remember how the last project turned out to be very intense
toward the end? Waiting for other people to finish their work it so
unnerving when you have all this pressure from the management. I would
much rather use a version control system. Also, can we keep the
repository on the web this time so I can work from Stellarbucks when I’m
bored?

Matthäus: I have to agree with Sonoko. We can get SVN hosting for next to nothing.
We can even get an SVN with SSL for peace of mind.

Yogesh: If I don’t have time to set up an in-house SVN, I could at least get you an
SVN hosting subscription.

Artie: OK then, I guess we’ll go with SVN. Anything else?

Artie and the rest of the development team decide to use SVN to track the resources of
their site.

9:42 am – Synchronizing Workspaces With a VCS
Artie and his team install the Subclipse plug-in from http://subclipse.tigris
.org/. Now, Artie needs to check in the site and resources he created earlier:

1. Using the CSDT Synchronization screen in Eclipse, Artie accesses the “Sync to
Workspace” tab and enters the @Site selector in the search field to retrieve a listing of
all the sites on his Content Server instance.
Guide to Content Server Developer Tools 1.0

Appendix A. Development Team Integration Use Case

 Today – Develop a Site and Associated Resources
68
Artie selects the site he created earlier (“Acceptance” site) and clicks the Sync
Selection to Workspace option to export the site definition from his Content Server
instance to his workspace.

2. Next, Artie exports the site’s associated flex family to the workspace. He uses the
@ASSET_TYPE selector to list all the assets on his Content Server instance. To narrow
down the results, he uses the Author_ search string. Artie then selects all listed items
and clicks Sync Selection to Workspace.

The flex family types are serialized to the workspace, including their type-specific
ElementCatalog entries.
Guide to Content Server Developer Tools 1.0

Appendix A. Development Team Integration Use Case

 Today – Develop a Site and Associated Resources
69
3. Now, Artie exports the flex definition to his workspace. He uses the Author_CD
selector, which lists all available definitions of that type. In this case, there is only one
definition (fictionAuthor).

Note

Artie did not select the flex attributes (Author_A instances) on which the site
definition depends because he knows CSDT synchronizes them automatically
with the definition.
Guide to Content Server Developer Tools 1.0

Appendix A. Development Team Integration Use Case

 Today – Develop a Site and Associated Resources
70
4. Artie takes a quick look at his workspace in the Eclipse “Project Explorer” view to
verify that all his work is there. From top to bottom, he sees the following under the
project’s src folder:

- _metadata.ASSET_TYPE entries for each asset type he synchronized

- _metadata.ASSET.Author_A files for both of the Author_A attributes

- _metadata.ASSET.Author_CD file for the serialized definition

- _metadata.ELEMENTS entries for ElementCatalog entries related to each of the
serialized asset types

- _metadata.SITE entry for the site definition

Looks like all the resources are in Artie’s workspace now. However, this is all on
Artie’s laptop and the team has no access to it. Time to check-in.

Note

Artie could have looked in the export/envision/cs_workspace folder in
his Content Server installation directory to see the same data.
Guide to Content Server Developer Tools 1.0

Appendix A. Development Team Integration Use Case

 Today – Develop a Site and Associated Resources
71
5. Using Subclipse, Artie connects to the development team’s SVN repository and shares
his CSDT project by committing his main CSDT workspace folder (src folder) to the
SVN repository.

10:12 am – The Other Team Members Synchronize their
Workspaces to the SVN Repository

Sonoko and Matthäus just finished setting up their own, individual Eclipse-integrated
Content Server instances. They both connect their Eclipse projects to the SVN repository.

Since Artie checked the site and its resources into the SVN repository earlier, Subclipse
detects that the target location already exists:

Note

The main CSDT workspace is located under the src folder in the Eclipse
“Project Explorer” view. Only commit the files that are located inside the src
folder. All other files are auxiliary local resources and must not be committed.
Guide to Content Server Developer Tools 1.0

Appendix A. Development Team Integration Use Case

 Today – Develop a Site and Associated Resources
72
Sonoko and Matthäus both synchronize their main CSDT workspaces with the resources
Artie made available in the SVN repository. Those resources are now accessible on both
Sonoko and Matthäus’ main CSDT workspaces.

However, the resources are not synchronized with Sonoko or Matthäus’ Content Server
instances yet.

10:18 am – Synchronize the Workspace to the Content Server
Instance

Sonoko opens the CSDT Synchronization screen and selects the Sync to Content Server
tab. All resources contained in Sonoko’s main CSDT workspace are listed.
Guide to Content Server Developer Tools 1.0

Appendix A. Development Team Integration Use Case

 Today – Develop a Site and Associated Resources
73
As required, she will first import the site definition, then the flex family, and then the
assets, in separate runs as described below:

1. Import the site definition (“Acceptance” in this scenario):

Sonoko imports the site definition first. She narrows down her search by using the
Site.*Accepta expression in the search field. She then selects the site
(“Acceptance”) and synchronizes it to her Content Server instance by clicking Sync to
ContentServer.

Using the “FW Log” view, Sonoko verifies that the site is imported successfully:

Note

Matthäus will do the same later, when he finishes his meeting with Marketing.
Guide to Content Server Developer Tools 1.0

Appendix A. Development Team Integration Use Case

 Today – Develop a Site and Associated Resources
74
2. Sonoko opens the synchronization screen again, and import the site’s flex family,
starting with the flex attribute (Author_A in this scenario):

Since Sonoko did not set up the “Acceptance” site’s flex family on her Content Server
instance, she must first import the flex attribute (Author_A) to her Content Server
instance. Once the flex attribute is imported, she can then synchronize the rest of the
asset types that comprise the site’s flex family to her Content Server instance.

3. As a final step, Sonoko synchronizes the flex definition, which automatically imports
the required attributes.

The “FW Log” view shows that the local asset identifiers of all the site’s resources are
re-mapped when imported into the new Content Server instance.
Guide to Content Server Developer Tools 1.0

Appendix A. Development Team Integration Use Case

 Today – Develop a Site and Associated Resources
75
10:21 am – Assign Site Permissions
After synchronizing the resources to her Content Server instance, Sonoko assigns site
permissions to herself. These permissions enable her to access the site and its resources
from the Advanced interface.

Note

To access the tree applet in the new site, Sonoko must assign at least one tree tab to
the site.
Guide to Content Server Developer Tools 1.0

Appendix A. Development Team Integration Use Case

 Today – Develop a Site and Associated Resources
76
10:22 am – The Start Menu Issue
Sonoko logs into the site, and clicks the New option. However, she finds there are no start
menu items available. Of course, Artie did not check the site’s start menu items into the
SVN repository.

10:24 am – Resolving the Start Menu Issue
Sonoko sends Artie an IM informing him that he forgot to check in the new site’s start
menu items.

1. Artie synchronizes the site’s start menu items to his main CSDT workspace.
Guide to Content Server Developer Tools 1.0

Appendix A. Development Team Integration Use Case

 Today – Develop a Site and Associated Resources
77
2. Artie then checks the site’s start menu items into the SVN repository.

3. Sonoko just got a cup of earl grey tea with two sugars. She comes back to her desk to
find that Artie committed the start menu items to the SVN. Sonoko then updates her
Eclipse project. She accesses the SVN repository and synchronizes the start menu
items to her main CSDT workspace. She then imports those start menu items to her
Content Server instance.
Guide to Content Server Developer Tools 1.0

Appendix A. Development Team Integration Use Case

 Today – Develop a Site and Associated Resources
78
4. Without restarting her Content Server instance, Sonoko clicks Search.

The start menu items she imported into her Content Server instance are listed:

11:17 am – Marketing Requests Changes
Subject: Proposed Author Definition Changes

Date: Wed, 16 Feb 2011 11:17:39

From: matthäus.companynone.com

To: Tech-Development

Team,

I just synchronized your changes into my system. As per my meeting
with Marketing, we must have date of birth and birthplace
attributes in the Author Definition. I noticed these attributes do
not exist, so I will add them. Artie, can you review the changes I
make when you have the chance?

Regards,

Matthäus
Guide to Content Server Developer Tools 1.0

Appendix A. Development Team Integration Use Case

 Today – Develop a Site and Associated Resources
79
11:22 am – Adding New Attributes to the Author Definition
Matthäus creates the attributes Marketing requested and adds them to the flex definition
(Author definition in this scenario). He then exports the new attributes and the flex
definition to his main CSDT workspace and commits them to the SVN repository.

11:25 am – Reviewing the Changes to the Site
Artie retrieves the modified Author definition from SVN and imports it into his Content
Server instance.
Guide to Content Server Developer Tools 1.0

Appendix A. Development Team Integration Use Case

 Today – Develop a Site and Associated Resources
80
Subject: RE: Proposed Author Definition Changes

Date: Wed, 16 Feb 2011 11:37:31

From: artie.companynone.com

To: matthäus.companynone.com

Matthäus,

Thank you for taking care of this. Corporate standards require
us to capitalize the first letter of each subsequent word. I
will delete the birthplace attribute and add birthPlace
instead.

Thank you,

Artie

11:44 am – Modifying the Attributes of the Author Definition
1. Artie creates the “birthPlace” attribute and adds it to the flex definition. He then

removes the original “birthplace” attribute from the site definition.

2. Artie commits the new attribute and the changes to the Author definition to the SVN
repository. He then verifies that the “birthplace” attribute has a status of “VO,”
indicating the attribute is voided.

When Sonoko and Matthäus update their Content Server instances, the “birthplace”
attribute will correspondingly be voided on their own workspaces.
Guide to Content Server Developer Tools 1.0

Appendix A. Development Team Integration Use Case

 Today – Develop a Site and Associated Resources
81
11:53 am – The Team Updates Their Workspaces and Content
Server Instances

1. Sonoko and Matthäus update their main CSDT workspaces with the resources Artie
checked in to the SVN repository.

2. They then import the resources in their workspaces to their Content Server instances
by opening the “Synchronize to Content Server” tab. For convenience, they sorted by
the “Modified Date” column so the most recent changes are shown on top.

Any voided attributes (such as the “birthplace” attribute Artie voided) show a status
hint (status=VO) in the “Name” column.

3. Sonoko and Matthäus import these changes from their workspaces to their Content
Server instances. Their workspaces and Content Server instances are now up to date.
Guide to Content Server Developer Tools 1.0

Appendix A. Development Team Integration Use Case

 Today – Develop a Site and Associated Resources
82
12:27 pm – The Team Creates a Template Asset for the Site
1. (12:27 pm) Matthäus creates a Template asset for the site’s “Welcome” page.

2. (12:34 pm) Matthäus edits the Template asset and previews the changes in the
“FW Preview Browser” view. As soon as he saves the changes made to the Template
asset’s JSP, he uses the Ctrl-r keyboard command to refresh the preview browser.
Guide to Content Server Developer Tools 1.0

Appendix A. Development Team Integration Use Case

 Today – Develop a Site and Associated Resources
83
3. (12:39 pm) Matthäus commits the Template’s .jsp and .main.xml files to the SVN
repository.

Subclipse finds all changes to the project and brings those changes to the attention of
the developer. Since the only new asset was the Template asset, Matthäus is able to
deduce that the .main.xml file is the Template’s metadata and the JSP file is the
Template’s code.

4. (12:44 pm) Sonoko makes some touch ups to the Template’s JSP file in her own
workspace.
Guide to Content Server Developer Tools 1.0

Appendix A. Development Team Integration Use Case

 Today – Develop a Site and Associated Resources
84
5. Sonoko reviews the changes to the JSP file and then commits those changes to the
SVN.

Note

If another team member were to modify and check in this file at the same time
as Sonoko, SVN would indicate to Sonoko that another version of the file is
already checked in. She would then be able to integrate those changes with her
own to avoid inadvertent overwrites.
Guide to Content Server Developer Tools 1.0

Appendix A. Development Team Integration Use Case

 Three Days Later... Deployment
85
Three Days Later... Deployment
Yogesh uses the command-line tool to deploy the site. For information about the
commands used in this section, see Chapter 7, “Command-Line Tool.”

9:32 am – Preparing for Deployment
Yogesh finally got around to setting up the test environment and is preparing to deploy the
current build using the command-line tool. He installed a Content Server system on
hardware that matches the environment used in production.

To test the CSDT import before adding it to a fully-automated nightly script

1. Using the command-line tool, Yogesh checks the “Acceptance” site and its resources
out of SVN and into the workspace of the target Content Server instance.

Command:

Output:

A mysite/src
A mysite/src/_metadata
A mysite/src/_metadata/ASSET
A mysite/src/_metadata/ASSET/Author_A
A mysite/src/_metadata/ASSET/Author_A/10
A mysite/src/_metadata/ASSET/Author_A/10/14
A mysite/src/_metadata/ASSET/Author_A/10/14/authorName(cbf4d8aa-
d23a-4f0d-b55d-a87a0e9bbf33).main.xml
A mysite/src/_metadata/ASSET/Author_A/11
A mysite/src/_metadata/ASSET/Author_A/11/79
A mysite/src/_metadata/ASSET/Author_A/11/79/birthPlace(42afd458-
e90c-4e18-a4b6-47d322b46414).main.xml
A mysite/src/_metadata/ASSET/Author_A/5
A mysite/src/_metadata/ASSET/Author_A/5/64
A mysite/src/_metadata/ASSET/Author_A/5/64/birthplace(49d63312-
c74d-4ccd-bb7f-4dc698a9da22).main.xml
A mysite/src/_metadata/ASSET/Author_A/15
A mysite/src/_metadata/ASSET/Author_A/15/76
A mysite/src/_metadata/ASSET/Author_A/15/76/DOB(9fe04c6e-36e7-4ee3-
8c76-8c02edf74136).main.xml
A mysite/src/_metadata/ASSET/Author_A/71
A mysite/src/_metadata/ASSET/Author_A/71/74
A mysite/src/_metadata/ASSET/Author_A/71/74/authorBio(ada2d6be-
ef14-4766-b446-911bfa838835).main.xml
A mysite/src/_metadata/ASSET/Author_CD

go to the workspace location under export/envision/
cs_workspace in the CS install directory

create if not there
/home$ mkdir /opt/cs/export/envision/cs_workspace
/home$ cd /opt/cs/export/envision/cs_workspace

checkout site from svn
/opt/cs/export/envision/cs_workspace$ svn checkout svn://

yoursvnhost/projects/mysite/src
Guide to Content Server Developer Tools 1.0

Appendix A. Development Team Integration Use Case

 Three Days Later... Deployment
86
A mysite/src/_metadata/ASSET/Author_CD/76
A mysite/src/_metadata/ASSET/Author_CD/76/4
A mysite/src/_metadata/ASSET/Author_CD/76/4/fictionAuthor(71d6067b-
35f6-47f4-ae97-3876303abb37).main.xml
A mysite/src/_metadata/ASSET_TYPE
A mysite/src/_metadata/ASSET_TYPE/Author_F(5f9b4964-e9be-4f25-a413-
877e8a5c7469).main.xml
A mysite/src/_metadata/ASSET_TYPE/Author_P(1552d907-5f38-400b-9460-
36e46d14abc3).main.xml
A mysite/src/_metadata/ASSET_TYPE/Author_A(162d0b70-7e69-4266-acca-
2f472e3d71bd).main.xml
A mysite/src/_metadata/ASSET_TYPE/Author_CD(33faf87e-9e8f-4f49-
97cd-424810408938).main.xml
A mysite/src/_metadata/ASSET_TYPE/Author_PD(7c748df3-d149-4b71-
802a-64b11360e74b).main.xml
A mysite/src/_metadata/ASSET_TYPE/Author_C(d1497b50-665c-4b0c-80a7-
d25f61566be4).main.xml
A mysite/src/_metadata/STARTMENU
A mysite/src/_metadata/STARTMENU/Find+Author+Attribute(2f6b2552-
efde-493b-995f-ff13287f95e0).main.xml
...

2. Yogesh runs a workspace listing (cmd=listds) to verify that the site and all of its
resources will be imported into the Content Server instance. He uses the
@ALL_ASSETS and @ALL_NONASSETS selectors to generate listings of all asset and
non-asset resources in the workspace:

- Command to use the @ALL_ASSETS selector:

Output:
Resource Type ||| Resource Id ||| Name |||
Description ||| Modified On
--

Author_A ||| cbf4d8aa-d23a-4f0d-b55d-a87a0e9bbf33 ||| authorName (
status=ED) ||| author name ||| 2011-02-17 15:26:34.000
Author_A ||| 42afd458-e90c-4e18-a4b6-47d322b46414 ||| birthPlace (
status=PL) ||| place of birth ||| 2011-02-17 15:26:34.000
Author_A ||| 9fe04c6e-36e7-4ee3-8c76-8c02edf74136 ||| DOB (
status=PL) ||| date of birth ||| 2011-02-17 15:26:34.000
Author_CD ||| 71d6067b-35f6-47f4-ae97-3876303abb37 |||
fictionAuthor (status=ED) ||| authors who write fiction |||
2011-02-17 15:26:34.000
Author_A ||| ada2d6be-ef14-4766-b446-911bfa838835 ||| authorBio (
status=ED) ||| author biography ||| 2011-02-17 15:26:34.000
Author_A ||| 49d63312-c74d-4ccd-bb7f-4dc698a9da22 ||| birthplace (
status=VO) ||| author birthplace ||| 2011-02-17 15:12:43.000
Template ||| 89b05c0f-227b-4dcb-961e-2ab6e6af2dae ||| welcome
(Typeless status=PL) ||| welcome page ||| 2011-02-17 23:18:18.000

/opt/cs/export/envision/cs_workspace$ export
CLASSPATH=csdt-client-1.0.2.jar

/opt/cs/export/envision/cs_workspace$ java
com.fatwire.csdt.client.main.CSDT

http://localhost:9010/cs/ContentServer username=fwadmin
password=xceladmin resources=@ALL_ASSETS cmd=listds
Guide to Content Server Developer Tools 1.0

Appendix A. Development Team Integration Use Case

 Three Days Later... Deployment
87
- Command to use the @ALL_NONASSETS selector:

Output:
Resource Type ||| Resource Id ||| Name |||
Description ||| Modified On
--

@STARTMENU ||| 66edea6d-218e-41b7-b5ac-ec3453bd53b7 ||| New Author
() ||| null ||| 2011-02-18 11:02:23.000
@STARTMENU ||| c416c0d6-98a7-4ebf-babb-78d0699698de ||| Find
Author Filter () ||| null ||| 2011-02-18 11:02:23.000
@ASSET_TYPE ||| 162d0b70-7e69-4266-acca-2f472e3d71bd ||| Author_A
() ||| Author Attribute ||| 2011-02-18 11:02:23.000
@STARTMENU ||| 2821ef28-39a2-4008-9a94-296fc0fd4f29 ||| Find
Author Definition () ||| null ||| 2011-02-18 11:02:23.000
@STARTMENU ||| d45be3de-a8e0-4479-a909-f79e9320e84f ||| Find
Author () ||| null ||| 2011-02-18 11:02:23.000
@STARTMENU ||| 2f6b2552-efde-493b-995f-ff13287f95e0 ||| Find
Author Attribute () ||| null ||| 2011-02-18 11:02:23.000
@ASSET_TYPE ||| 7c748df3-d149-4b71-802a-64b11360e74b ||| Author_PD
() ||| Author Parent Def ||| 2011-02-18 11:02:23.000
@STARTMENU ||| 208aee2a-ad16-433a-9ee8-6658ce8f3abf ||| New Author
Attribute () ||| null ||| 2011-02-18 11:02:23.000
@STARTMENU ||| 8428e490-b99c-4bea-b5a1-1c1768fa9d7d ||| Find
Author Parent () ||| null ||| 2011-02-18 11:02:23.000
@ASSET_TYPE ||| d1497b50-665c-4b0c-80a7-d25f61566be4 ||| Author_C
() ||| Author ||| 2011-02-18 11:02:23.000
…

3. Yogesh then makes sure all necessary asset types will be imported by using the
@ASSET_TYPE:* selector:

Command:

Output:

Resource Type ||| Resource Id ||| Name ||| Description
||| Modified On
--

Author_A ||| cbf4d8aa-d23a-4f0d-b55d-a87a0e9bbf33 ||| authorName (
status=ED) ||| author name ||| 2011-02-17 15:26:34.000
Author_A ||| 42afd458-e90c-4e18-a4b6-47d322b46414 ||| birthPlace (
status=PL) ||| place of birth ||| 2011-02-17 15:26:34.000

/opt/cs/export/envision/cs_workspace$ export
CLASSPATH=csdt-client-1.0.2.jar

/opt/cs/export/envision/cs_workspace$ java
com.fatwire.csdt.client.main.CSDT

http://localhost:9010/cs/ContentServer username=fwadmin
password=xceladmin resources=@ALL_NONASSETS cmd=listds

/opt/cs/export/envision/cs_workspace$ java
com.fatwire.csdt.client.main.CSDT

http://localhost:9010/cs/ContentServer username=fwadmin
password=xceladmin ‘resources=@ASSET_TYPE:*’ cmd=listds
Guide to Content Server Developer Tools 1.0

Appendix A. Development Team Integration Use Case

 Three Days Later... Deployment
88
Author_A ||| 9fe04c6e-36e7-4ee3-8c76-8c02edf74136 ||| DOB (status=PL
) ||| date of birth ||| 2011-02-17 15:26:34.000
Author_CD ||| 71d6067b-35f6-47f4-ae97-3876303abb37 ||| fictionAuthor (
status=ED) ||| authors who write fiction ||| 2011-02-17 15:26:34.000
Author_A ||| ada2d6be-ef14-4766-b446-911bfa838835 ||| authorBio (
status=ED) ||| author biography ||| 2011-02-17 15:26:34.000
Author_A ||| 49d63312-c74d-4ccd-bb7f-4dc698a9da22 ||| birthplace (
status=VO) ||| author birthplace ||| 2011-02-17 15:12:43.000
Template ||| 89b05c0f-227b-4dcb-961e-2ab6e6af2dae ||| welcome
(Typeless status=PL) ||| welcome page ||| 2011-02-17 23:18:18.000

4. Yogesh notes that all necessary resources for the site will be imported into the build.

10:04 am – Deploying the Site and its Resources
Using the command-line tool, Yogesh runs the import sequence.

1. First, he imports the site:

Command:

Output:

 *** Importing batch 1297868431526
Importing DSKEY @SITE-Acceptance (batch 1297868431526)
Saved Acceptance (batch 1297868431526)
*** Completed importing batch 1297868431526

2. Then, the flex family:

Command:

Output:

*** Importing batch 1298064678765
Importing DSKEY @ASSET_TYPE-162d0b70-7e69-4266-acca-2f472e3d71bd
(batch 1298064678765)
Importing DSKEY @ELEMENTCATALOG-OpenMarket/Xcelerate/AssetType/
Author_A/LoadTree (batch 1298064678765)
Saved OpenMarket/Xcelerate/AssetType/Author_A/LoadTree (batch
1298064678765)
…

/opt/cs/export/envision/cs_workspace$ java
com.fatwire.csdt.client.main.CSDT

http://localhost:9999/cs/ContentServer username=fwadmin
password=xceladmin 'resources=@SITE:Acceptance' cmd=import

/opt/cs/export/envision/cs_workspace$ java
com.fatwire.csdt.client.main.CSDT

http://localhost:9999/cs/ContentServer username=fwadmin
password=xceladmin 'resources=@ASSET_TYPE:*' cmd=import
Guide to Content Server Developer Tools 1.0

Appendix A. Development Team Integration Use Case

 Three Days Later... Deployment
89
3. Next, the assets:

Command:

Output:

*** Importing batch 1298064679760
Importing DSKEY Author_A-cbf4d8aa-d23a-4f0d-b55d-a87a0e9bbf33 (batch
1298064679760)
Dependency @ASSET_TYPE-Author_A already exists, skipping.
Saved Author_A:1295889071437 (batch 1298064679760)
Importing DSKEY Author_A-42afd458-e90c-4e18-a4b6-47d322b46414 (batch
1298064679760)
Dependency @ASSET_TYPE-Author_A already exists, skipping.
Saved Author_A:1295889071441 (batch 1298064679760)
Importing DSKEY Author_A-9fe04c6e-36e7-4ee3-8c76-8c02edf74136 (batch
1298064679760)
Dependency @ASSET_TYPE-Author_A already exists, skipping.
Saved Author_A:1295889071445 (batch 1298064679760)
Importing DSKEY Author_CD-71d6067b-35f6-47f4-ae97-3876303abb37 (batch
1298064679760)
Importing DSKEY Author_A-ada2d6be-ef14-4766-b446-911bfa838835 (batch
1298064679760)
Dependency @ASSET_TYPE-Author_A already exists, skipping.
Saved Author_A:1295889071449 (batch 1298064679760)
Dependency @ASSET_TYPE-Author_C already exists, skipping.
Dependency @ASSET_TYPE-Author_P already exists, skipping.
Dependency @ASSET_TYPE-Author_CD already exists, skipping.
Dependency @ASSET_TYPE-Author_PD already exists, skipping.
Dependency @ASSET_TYPE-Author_F already exists, skipping.
Dependency @ASSET_TYPE-Author_A already exists, skipping.
Saved Author_CD:1295889071453 (batch 1298064679760)
Importing DSKEY Author_A-49d63312-c74d-4ccd-bb7f-4dc698a9da22 (batch
1298064679760)
Dependency @ASSET_TYPE-Author_A already exists, skipping.
Saved Author_A:1295889071460 (batch 1298064679760)
Importing DSKEY Template-89b05c0f-227b-4dcb-961e-2ab6e6af2dae (batch
1298064679760)
Saved Template:1295889071461 (batch 1298064679760)
*** Completed importing batch 1298064679760

4. Since this is a delivery install, start menu items are optional. However, Yogesh
imports the start menu items because he wants to use the Advanced interface to verify
that all of the resources are successfully imported.

/opt/cs/export/envision/cs_workspace java
com.fatwire.csdt.client.main.CSDT

http://localhost:9999/cs/ContentServer username=fwadmin
password=xceladmin 'resources=@ALL_ASSETS' cmd=import
Guide to Content Server Developer Tools 1.0

Appendix A. Development Team Integration Use Case

 Three Days Later... Deployment
90
Command:

Output:

*** Importing batch 1298064681075
Importing DSKEY @STARTMENU-66edea6d-218e-41b7-b5ac-ec3453bd53b7 (batch
1298064681075)
Saved 1297720502210 (batch 1298064681075)
Importing DSKEY @STARTMENU-c416c0d6-98a7-4ebf-babb-78d0699698de (batch
1298064681075)
Saved 1297720502230 (batch 1298064681075)
Importing DSKEY @STARTMENU-2821ef28-39a2-4008-9a94-296fc0fd4f29 (batch
1298064681075)
Saved 1297720502222 (batch 1298064681075)
Importing DSKEY @STARTMENU-d45be3de-a8e0-4479-a909-f79e9320e84f (batch
1298064681075)
Saved 1297720502206 (batch 1298064681075)
Importing DSKEY @STARTMENU-2f6b2552-efde-493b-995f-ff13287f95e0 (batch
1298064681075)
Saved 1297720502214 (batch 1298064681075)
Importing DSKEY @STARTMENU-208aee2a-ad16-433a-9ee8-6658ce8f3abf (batch
1298064681075)
Saved 1297720502218 (batch 1298064681075)
Importing DSKEY @STARTMENU-8428e490-b99c-4bea-b5a1-1c1768fa9d7d (batch
1298064681075)
Saved 1297720502238 (batch 1298064681075)
Importing DSKEY @STARTMENU-2d31208a-4053-4fc1-a0d4-3789b23bd897 (batch
1298064681075)
Saved 1297720502226 (batch 1298064681075)
Importing DSKEY @STARTMENU-480cc5d1-3e73-4a92-85ef-48d0e44b81ef (batch
1298064681075)
Saved 1297720502242 (batch 1298064681075)
Importing DSKEY @STARTMENU-84309e2b-54ed-4e08-9244-84d331a60742 (batch
1298064681075)
*** Completed importing batch 1298064681075

/opt/cs/export/envision/cs_workspace$ java
com.fatwire.csdt.client.main.CSDT

http://localhost:9999/cs/ContentServer username=fwadmin
password=xceladmin 'resources=@STARTMENU:*' cmd=import
Guide to Content Server Developer Tools 1.0

Appendix A. Development Team Integration Use Case

 Three Days Later... Deployment
91
10:55 am – The Deployment is Successful
Yogesh concludes that the import sequence was successful. He plans to automated daily
installs on this system by writing the following script:

The script will run as a cron job at five past midnight every night.

Reinstall ContentServer to start with a clean slate.
Optionally skip this and just do an update
Reinstall_CS()

Bring in the latest source from SVN
SVN_Update()

Prepare for import: compile any Java code such as url
assemblers and flex filters, etc

Prepare the database with any custom settings, etc.
preImport()

Run the CSDT import sequence
CSDT_Import()

Run the test suite – sanity, performance, acceptance tests
runTestSuite()

Report results to the team by email so they know about any
failures first thing in the morning

runReports()
Guide to Content Server Developer Tools 1.0

Appendix A. Development Team Integration Use Case

 Three Days Later... Deployment
92
Guide to Content Server Developer Tools 1.0

93
A p p e n d i x B

Using the Command-line Tool to Create
Reusable Modules
CSDT provides the ability to reuse and share resources in the form of modules. Modules
are workspaces that are not site-specific and contain resources such as Templates, flex
families, and ElementCatalog entries. Unlike the standard export/import functionality
where assets are added to sites using natural mappings, modules typically utilize site
overriding so they can be imported into any site you designate.

This appendix contains the following section:

• Creating a Reusable Module
Guide to Content Server Developer Tools 1.0

Appendix B. Using the Command-line Tool to Create Reusable Modules

 Creating a Reusable Module
94
Creating a Reusable Module
Artie has a flex family with a flex definition that he wants to reuse in other sites. He also
has a Template asset associated with the flex definition. In the following scenario, Artie
will create a module containing these resources. This scenario uses the command-line tool
to create a module containing the resources Artie and his team developed in Appendix A,
“Development Team Integration Use Case.”

Step I. List the Resources in the Content Server Instance
Artie uses the command-line tool to browse his Content Server instance. He uses the
resources=@ALL_ASSETS and the fromSites=Acceptance selectors to list all the
assets of the “Acceptance” site. The command Artie uses is listcs, which lists all the
resources on his Content Server instance.

Command:

Output:

Resource Type ||| Resource Id ||| Name ||| Description
||| Modified On

Author_CD ||| 1297720502271 ||| fictionAuthor (status=ED) ||| authors who
write fiction ||| 2011-02-17 15:10:41
Author_A ||| 1297720502260 ||| authorName (status=ED) ||| author name |||
2011-02-17 14:46:40
Author_A ||| 1297720502265 ||| authorBio (status=ED) ||| author biography
||| 2011-02-17 14:46:40
Author_A ||| 1297720502289 ||| 1297720502289 (status=VO) ||| author
birthplace ||| 2011-02-17 15:12:35
Author_A ||| 1297720502293 ||| DOB (status=PL) ||| date of birth |||
2011-02-17 14:46:40
Author_A ||| 1297720502305 ||| birthPlace (status=PL) ||| place of birth
||| 2011-02-17 15:10:22
Template ||| 1297720502331 ||| welcome (Typeless, status=ED) ||| welcome
page ||| 2011-02-17 23:18:18

Note

To use the command-line tool, Artie must specify the user name and password of a
general administrator in each command he executes. This user must be a member
of the RestAdmin group. In this scenario, Artie uses fwadmin/xceladmin.

/opt/cs/export/envision/cs_workspace$ export CLASSPATH=csdt-
client-1.0.2.jar

/opt/cs/export/envision/cs_workspace$ java
com.fatwire.csdt.client.main.CSDT

http://localhost:9010/cs/ContentServer username=fwadmin
password=xceladmin resources=@ALL_ASSETS
fromSites=Acceptance cmd=listcs
Guide to Content Server Developer Tools 1.0

Appendix B. Using the Command-line Tool to Create Reusable Modules

 Creating a Reusable Module
95
Artie notes that there are five Author_A flex attribute instances (one of which is voided),
one Author_CD flex definition, and a Template asset.

Step II. List Start Menu Items
Artie further uses the command-line tool to browse for any start menu items that are
assigned to the “Acceptance” site.

Command:

Output:

Resource Type ||| Resource Id ||| Name ||| Description
||| Modified On

@STARTMENU ||| 1297720502206 ||| Find Author ||| null ||| -
@STARTMENU ||| 1297720502214 ||| Find Author Attribute ||| null ||| -
@STARTMENU ||| 1297720502222 ||| Find Author Definition ||| null ||| -
@STARTMENU ||| 1297720502230 ||| Find Author Filter ||| null ||| -
@STARTMENU ||| 1297720502238 ||| Find Author Parent ||| null ||| -
@STARTMENU ||| 1297720502246 ||| Find Author Parent Def ||| null ||| -
@STARTMENU ||| 1297720494070 ||| Find CSElement, FirstSiteII ||| Find
CSElement ||| -
@STARTMENU ||| 1297720494086 ||| Find Page, FirstSiteII ||| Find Page |||
-
@STARTMENU ||| 1297720494078 ||| Find SiteEntry, FirstSiteII ||| Find
SiteEntry ||| -
@STARTMENU ||| 1297720494066 ||| Find Template, FirstSiteII ||| Find
Template ||| -
@STARTMENU ||| 1297720502210 ||| New Author ||| null ||| -
@STARTMENU ||| 1297720502218 ||| New Author Attribute ||| null ||| -
@STARTMENU ||| 1297720502226 ||| New Author Definition ||| null ||| -
@STARTMENU ||| 1297720502234 ||| New Author Filter ||| null ||| -
@STARTMENU ||| 1297720502242 ||| New Author Parent ||| null ||| -
@STARTMENU ||| 1297720502250 ||| New Author Parent Def ||| null ||| -
@STARTMENU ||| 1297720501427 ||| New CSElement ||| null ||| -
@STARTMENU ||| 1297720494052 ||| New Page, FirstSiteII ||| New Page ||| -
@STARTMENU ||| 1297720501431 ||| New SiteEntry ||| null ||| -
@STARTMENU ||| 1297720501435 ||| New Template ||| null ||| -

/opt/cs/export/envision/cs_workspace$ java
com.fatwire.csdt.client.main.CSDT

http://localhost:9010/cs/ContentServer username=fwadmin
password=xceladmin 'resources=@STARTMENU:*'
fromSites=Acceptance cmd=listcs
Guide to Content Server Developer Tools 1.0

Appendix B. Using the Command-line Tool to Create Reusable Modules

 Creating a Reusable Module
96
Step III. Export All Resources to the Desired Workspace
Artie wants to create a module using all of the resources listed in steps I and II. He runs the
following command to export all of the resources, at one time, into the specified
workspace:

Output:

*** Exporting batch 1298385511005
Exporting ASSETDATA Author_CD:1297720502271 (batch 1298385511005)
Exporting ASSETDATA Author_A:1297720502260 (batch 1298385511005)
Exporting ASSET_TYPE Author_A (batch 1298385511005)
Exporting ELEMENTCATALOG OpenMarket/Xcelerate/AssetType/Author_A/
LoadSiteTree (batch 1298385511005)
Exporting ELEMENTCATALOG OpenMarket/Xcelerate/AssetType/Author_A/
AppendSelectDetails (batch 1298385511005)
Exporting ELEMENTCATALOG OpenMarket/Xcelerate/AssetType/Author_A/
AppendSelectDetailsSE (batch 1298385511005)
Exporting ELEMENTCATALOG OpenMarket/Xcelerate/AssetType/Author_A/IndexAdd
(batch 1298385511005)
Exporting ELEMENTCATALOG OpenMarket/Xcelerate/AssetType/Author_A/
IndexReplace (batch 1298385511005)
Exporting ELEMENTCATALOG OpenMarket/Xcelerate/AssetType/Author_A/
IndexCreateVerity (batch 1298385511005)
Exporting ELEMENTCATALOG OpenMarket/Xcelerate/AssetType/Author_A/
ContentDetails (batch 1298385511005)
Exporting ELEMENTCATALOG OpenMarket/Xcelerate/AssetType/Author_A/
ContentForm (batch 1298385511005)
Exporting ELEMENTCATALOG OpenMarket/Xcelerate/AssetType/Author_A/
PostUpdate (batch 1298385511005)
Exporting ELEMENTCATALOG OpenMarket/Xcelerate/AssetType/Author_A/
PreUpdate (batch 1298385511005)
...

All asset types for the flex family are included in the export. In addition, all elements
belonging to those types are included as well. This information, although not usually
modified, is necessary in order to make the module Artie is creating reusable on other
Content Server instances.

/opt/cs/export/envision/cs_workspace$ java
com.fatwire.csdt.client.main.CSDT

http://localhost:9010/cs/ContentServer username=fwadmin
password=xceladmin 'resources=@STARTMENU:*;@ALL_ASSETS'
fromSites=Acceptance cmd=export datastore=authorModule
Guide to Content Server Developer Tools 1.0

Appendix B. Using the Command-line Tool to Create Reusable Modules

 Creating a Reusable Module
97
Step IV. Inspect the Module’s Content
Artie inspects the authorModule workspace on his file system.

Artie notes that the Template asset, flex family members, asset types, and start menu items
were all exported to the workspace on his file system.

Step V. Archive the Module
Artie creates a .zip file archive of the authorModule workspace and saves it.

Step VI. Import the Module to a Content Server Instance
Artie decides to import the module into the FirstSiteII sample site.

1. Artie unzips the module into the workspace location of the target Content Server
instance.
Guide to Content Server Developer Tools 1.0

Appendix B. Using the Command-line Tool to Create Reusable Modules

 Creating a Reusable Module
98
2. Using the command-line tool, Artie imports the asset types and start menu items into
the target Content Server instance.

Command:

Output:

*** Importing batch 1298052933085
Importing DSKEY @STARTMENU-4340b65d-a9e4-4131-ac7f-51185a79b18d (batch
1298052933085)
Saved 1297720494070 (batch 1298052933085)
Importing DSKEY @STARTMENU-0a2decd4-b6be-418c-9992-a4332480bb20 (batch
1298052933085)
Saved 1297720501435 (batch 1298052933085)
Importing DSKEY @STARTMENU-66edea6d-218e-41b7-b5ac-ec3453bd53b7 (batch
1298052933085)
Saved 1297720502210 (batch 1298052933085)
Importing DSKEY @STARTMENU-c416c0d6-98a7-4ebf-babb-78d0699698de (batch
1298052933085)
Saved 1297720502230 (batch 1298052933085)
Importing DSKEY @ASSET_TYPE-162d0b70-7e69-4266-acca-2f472e3d71bd
(batch 1298052933085)
Dependency @ASSET_TYPE-Author_A already exists, skipping.
Importing DSKEY @ELEMENTCATALOG-OpenMarket/Xcelerate/AssetType/
Author_A/LoadSiteTree (batch 1298052933085)
Saved OpenMarket/Xcelerate/AssetType/Author_A/LoadSiteTree (batch
1298052933085)
Importing DSKEY @ELEMENTCATALOG-OpenMarket/Xcelerate/AssetType/
Author_A/AppendSelectDetails (batch 1298052933085)
Saved OpenMarket/Xcelerate/AssetType/Author_A/AppendSelectDetails
(batch 1298052933085)
Importing DSKEY @ELEMENTCATALOG-OpenMarket/Xcelerate/AssetType/
Author_A/AppendSelectDetailsSE (batch 1298052933085)
Saved OpenMarket/Xcelerate/AssetType/Author_A/AppendSelectDetailsSE
(batch 1298052933085)
Importing DSKEY @ELEMENTCATALOG-OpenMarket/Xcelerate/AssetType/
Author_A/IndexAdd (batch 1298052933085)
Saved OpenMarket/Xcelerate/AssetType/Author_A/IndexAdd (batch
1298052933085)
...

D:\FatWire\JSKdemo\ContentServer>java com.fatwire.csdt
.client.main.CSDT

http://localhost:8080/cs/ContentServer username=fwadmin
password=xceladmin resources=@ALL_NONASSETS cmd=import
datastore=authorModule toSites=FirstSiteII
Guide to Content Server Developer Tools 1.0

Appendix B. Using the Command-line Tool to Create Reusable Modules

 Creating a Reusable Module
99
3. Artie access the Advanced interface for the FirstSiteII sample site and confirms that
the asset types and start menu items were imported successfully.

4. Now, Artie imports the assets.

Command:

Output:

 *** Importing batch 1298480206533
Importing DSKEY Author_A-cbf4d8aa-d23a-4f0d-b55d-a87a0e9bbf33 (batch
1298480206533)
Dependency @ASSET_TYPE-Author_A already exists, skipping.
Saved Author_A:1297837451977 (batch 1298480206533)
Importing DSKEY Author_A-42afd458-e90c-4e18-a4b6-47d322b46414 (batch
1298480206533)
Dependency @ASSET_TYPE-Author_A already exists, skipping.
Saved Author_A:1297837451981 (batch 1298480206533)
Importing DSKEY Author_A-9fe04c6e-36e7-4ee3-8c76-8c02edf74136 (batch
1298480206533)
Dependency @ASSET_TYPE-Author_A already exists, skipping.
Saved Author_A:1297837451985 (batch 1298480206533)
Importing DSKEY Author_CD-71d6067b-35f6-47f4-ae97-3876303abb37 (batch
1298480206533)
Importing DSKEY Author_A-ada2d6be-ef14-4766-b446-911bfa838835 (batch
1298480206533)
Dependency @ASSET_TYPE-Author_A already exists, skipping.
Saved Author_A:1297837451989 (batch 1298480206533)
Dependency @ASSET_TYPE-Author_C already exists, skipping.
Dependency @ASSET_TYPE-Author_P already exists, skipping.
Dependency @ASSET_TYPE-Author_CD already exists, skipping.
Dependency @ASSET_TYPE-Author_PD already exists, skipping.

D:\FatWire\JSKdemo\ContentServer>java com.fatwire.csdt
.client.main.CSDT http://localhost:8080/cs/ContentServer
username=fwadmin password=xceladmin resources=@ALL_ASSETS
cmd=import datastore=authorModule toSites=FirstSiteII
Guide to Content Server Developer Tools 1.0

Appendix B. Using the Command-line Tool to Create Reusable Modules

 Creating a Reusable Module
100
Dependency @ASSET_TYPE-Author_F already exists, skipping.
Dependency @ASSET_TYPE-Author_A already exists, skipping.
Saved Author_CD:1297837451993 (batch 1298480206533)
Importing DSKEY Template-89b05c0f-227b-4dcb-961e-2ab6e6af2dae (batch
1298480206533)
Saved Template:1297837452000 (batch 1298480206533)
*** Completed importing batch 1298480206533

5. Artie verifies that the flex definition is imported into the FirstSiteII sample site
successfully:

6. Using the command-line tool, he also imports the Template asset. He then accesses the
Advanced interface again to verify the Template asset is imported correctly.

The entire module is imported successfully into the FirstSiteII sample site. This module
can be reused and imported into any desired Content Server instance.
Guide to Content Server Developer Tools 1.0

	Guide to Content Server Developer Tools
	Contents
	About FatWire Content Server Developer Tools
	Introduction
	CSDT Architecture
	IDE Integration
	The CSDT Workspace
	Synchronization
	JSP Management
	Command-line Tool
	Using a Version Control System

	Next Steps

	Quick Start
	Prerequisites
	Setting Up Content Server Developer Tools
	Managing Content Server Resources in Eclipse

	Content Server Features in Eclipse
	FW Content Server Perspective
	Configuration Screen
	Project and Workspace in Eclipse
	CSDT Views
	‘FW Workspace Elements’
	‘FatWire CS Log’ View
	‘Preview Browser’ View
	‘Advanced UI’ View
	‘Logging Configuration’ View
	‘FW Developer Reference’ View
	Wizards

	Data Synchronization (Export/Import) Tool
	Sync to Workspace (Export from Content Server)
	Sync to Content Server (Import into Content Server)

	Next Steps

	Developing JSPs
	JSP Development with CSDT
	Tag and Java API Completion
	Debugging

	Synchronization and Data Exchange
	CSDT Synchronization
	Synchronization Scenarios
	Dependency Resolution

	Data Exchange and Mappings
	ID Mapping
	Overriding a Resource’s fw_uid
	Using CSDT with Existing Resources

	Site Mappings
	Natural Site Mappings
	Overriding Natural Site Mappings With the Command-line Tool

	Workspaces
	Introduction
	Workspace Structure
	Asset Storage Structure
	Code-Based Resource Storage Structure
	Attribute Editor Storage Structure
	Asset Type Storage Structure

	Command-Line Tool
	Introduction
	Running and Using the Command-Line Tool
	Example Commands

	Creating Modules

	Notes for Integrating with Version Control Systems
	Version Control With CSDT
	Integrating CSDT With a VCS
	Working With a CSDT-Integrated VCS

	Development Team Integration Use Case
	Today - Develop a Site and Associated Resources
	7:14 am - The New Project is Assigned
	7:34 am - Setting Up CSDT
	7:45 am - Create the Site Definition
	7:46 am - Create Resources for the Site
	8:12 am - The VCS Discussion
	9:42 am - Synchronizing Workspaces With a VCS
	10:12 am - The Other Team Members Synchronize their Workspaces to the SVN Repository
	10:18 am - Synchronize the Workspace to the Content Server Instance
	10:21 am - Assign Site Permissions
	10:22 am - The Start Menu Issue
	10:24 am - Resolving the Start Menu Issue
	11:17 am - Marketing Requests Changes
	11:22 am - Adding New Attributes to the Author Definition
	11:25 am - Reviewing the Changes to the Site
	11:44 am - Modifying the Attributes of the Author Definition
	11:53 am - The Team Updates Their Workspaces and Content Server Instances
	12:27 pm - The Team Creates a Template Asset for the Site

	Three Days Later... Deployment
	9:32 am - Preparing for Deployment
	10:04 am - Deploying the Site and its Resources
	10:55 am - The Deployment is Successful

	Using the Command-line Tool to Create Reusable Modules
	Creating a Reusable Module
	Step I. List the Resources in the Content Server Instance
	Step II. List Start Menu Items
	Step III. Export All Resources to the Desired Workspace
	Step IV. Inspect the Module’s Content
	Step V. Archive the Module
	Step VI. Import the Module to a Content Server Instance

