

Oracle® WebCenter Sites
Developer’s Guide for the Community Application

11g Release 1 (11.1.1)

February 2012

Oracle WebCenter Sites Developer's Guide for the Community Application, 11g Release 1 (11.1.1)

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Primary Author: Promila Chitkara

Contributing Author: Alex Vushkan, Tatiana Kolubayev

Contributor: Igor Dzyuba, Sailaxmi Rajanala

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface .. vii

1 Introduction to Oracle WebCenter Sites: Community

1.1 Technical Overview of Oracle WebCenter Sites: Community ... 1-1
1.2 Prerequisites .. 1-2

2 Integrating the Community Application With Social Networking Services

2.1 About Authentication Plug-Ins... 2-1
2.2 Integrating with Facebook... 2-1
2.2.1 Create a Facebook Application for the Community Application................................. 2-2
2.2.2 Configure Facebook Application’s Authentication Settings on the Community

Application .. 2-3
2.3 Integrating with Twitter... 2-5
2.3.1 Create a Twitter Application for the Community Application 2-5
2.3.2 Configure Twitter Application’s Authentication Settings on the Community

Application .. 2-6
2.4 Integrating with Janrain... 2-7
2.4.1 Create a Janrain Application for the Community Application..................................... 2-8
2.4.2 Configure Janrain Application’s Authentication Settings on the Community

Application .. 2-12
2.5 Enabling Social Networking Services on WebSphere Application Server 2-14
2.5.1 Export Security Certificate from Facebook ... 2-15
2.5.2 Export Security Certificate from Twitter... 2-16
2.5.3 Export Security Certificate From Janrain .. 2-17
2.5.4 Import Security Certificates into WAS .. 2-18

3 Customizing the Community Application’s Functionality

3.1 Overview of Community Data Model ... 3-1
3.1.1 Comments ... 3-3
3.1.1.1 CommentFeed... 3-3
3.1.1.2 CommentRecord... 3-4
3.1.2 Reviews ... 3-6
3.1.2.1 ReviewFeed ... 3-7
3.1.2.2 ReviewRecord ... 3-8
3.1.3 Ratings.. 3-10

iv

3.1.3.1 RatingFeed ... 3-11
3.1.3.2 RatingRecord.. 3-12
3.1.4 Polls... 3-13
3.1.5 Topics.. 3-14
3.1.6 Visitors.. 3-16
3.1.6.1 User.. 3-16
3.1.6.2 UserIdentity.. 3-17
3.1.6.3 UserLink.. 3-18
3.2 Customizing CSS and Widget Templates .. 3-18
3.2.1 Customizing CSS: Color Schema and Skinning ... 3-18
3.2.1.1 Customizing Comments and Reviews Widgets ... 3-19
3.2.1.2 Customizing Other Widgets .. 3-21
3.2.2 Customizing a Widget Template.. 3-25
3.2.2.1 Understanding Community Widgets Templates.. 3-25
3.2.2.1.1 Context Variable Access Points .. 3-25
3.2.2.1.2 Dynamic Scripting.. 3-26
3.2.2.1.3 Widget Sources and Templates .. 3-26
3.2.2.1.4 Model-View-Controller Pattern .. 3-26
3.2.2.1.5 Model-View-Controller Regions .. 3-26
3.2.2.1.6 Nested Templates... 3-27
3.2.2.1.7 Customization Workflow.. 3-27
3.2.2.1.8 Attach Points in the Widget Template Structure... 3-28
3.2.2.2 Creating a Sample Template .. 3-32
3.2.2.3 Loading Custom Data Sets ... 3-34
3.3 Creating a Custom Word Filter.. 3-35
3.4 Creating a CAPTCHA Generator .. 3-38

4 Securing the Community Application

4.1 About Security... 4-1
4.2 Generating Security Certificates ... 4-2
4.3 Exporting Certificates From JKS Files.. 4-3
4.4 Deploying Certificates to the Community Applications... 4-3
4.5 Configuring the Community Application... 4-3

5 Translating the Community Application’s Functionality into Different
Languages

5.1 About Localization.. 5-1
5.1.1 Language Detection for the Community Interface .. 5-2
5.1.2 Language Detection for Community Widgets ... 5-2
5.2 Adding a New Language to the Community Application ... 5-3
5.3 Registering the New Language in the Community Application ... 5-3

6 Monitoring Community Application Performance

6.1 About Caching... 6-1
6.1.1 The Community Application With Cache ... 6-2
6.1.1.1 Regular Caching ... 6-3

v

6.1.1.2 Stale Caching... 6-4
6.1.1.3 Caching Dependencies... 6-5
6.2 Configuring Cache in the Community Application .. 6-7
6.3 Optimizing User-Generated Content (UGC) in the Community Application................... 6-7

A Guidelines for Maintaining the Community Application

A.1 Widget Deployment Guidelines .. A-1
A.2 Adjusting Logging Levels... A-1
A.2.1 Configuring log4j Loggers... A-2
A.2.2 Enabling Logging for SEO Widget JAR Files ... A-2
A.3 Reporting Issues ... A-3

Index

vi

vii

Preface

This guide begins with an overview of the Community application and its developers.
It continues to the process of integrating the Community application with Facebook,
Twitter, and Janrain. This guide also provides information about customizing and
securing the Community application, as well as translating its functionality into
various languages. Finally, this guide includes guidelines and tips for maintaining the
Community application experience.

Applications discussed in this guide are former FatWire products. Naming
conventions are the following:

■ Oracle WebCenter Sites is the current name of the product previously known as
FatWire Content Server. In this guide, Oracle WebCenter Sites is also called WebCenter
Sites.

■ Oracle WebCenter Sites: Community is the current name of the application
previously known as FatWire Community Server. In this guide, Oracle WebCenter
Sites: Community is also called the Community application.

■ Oracle WebCenter Sites: Web Experience Management Framework is the current name
of the environment previously known as FatWire Web Experience Management
Framework. In this guide, Oracle WebCenter Sites: Web Experience Management
Framework is also called WEM Framework.

■ Oracle WebCenter Sites: Satellite Server is the current name of the application
previously known as FatWire Satellite Server. In this guide, Oracle WebCenter Sites:
Satellite Server is also called Satellite Server.

The Community application integrates with Oracle WebCenter Sites according to
specifications in the Oracle WebCenter Sites 11g Release 1 (11.1.1.x) Certification Matrix.
For additional information, see the release notes for the Community application.
Check the WebCenter Sites documentation site regularly for updates to the Certification
Matrix and release notes.

Audience
This guide is for Community application developers who are familiar with the default
functionality of the Community application.

Related Documents
For more information, see the following documents:

■ Oracle WebCenter Sites Installation Guide for the Community Application

■ Oracle WebCenter Sites User’s Guide for the Community Application

viii

■ Oracle WebCenter Sites Administrator’s Guide

Conventions
The following text conventions are used in this document:

Third-Party Libraries
Oracle WebCenter Sites and its applications include third-party libraries. For
additional information, see Oracle WebCenter Sites 11gR1: Third-Party Licenses.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Introduction to Oracle WebCenter Sites: Community 1-1

1Introduction to Oracle WebCenter Sites:
Community

Oracle WebCenter Sites: Community (the Community application) is a social
computing application designed to gather visitors’ comments, reviews, and ratings on
web site content. The Community application also enables administrators and
moderators to create and manage polls that can be used to survey site visitors about
desired topics. This chapter includes the following sections:

■ Section 1.1, "Technical Overview of Oracle WebCenter Sites: Community"

■ Section 1.2, "Prerequisites"

1.1 Technical Overview of Oracle WebCenter Sites: Community
The Community application’s functionality such as comments, reviews, and polls is
developed as separate modules called widgets. Each widget can be deployed on a web
site by using its JavaScript code snippet, which renders the widget in a browser. The
ability to deploy widgets in a browser makes deployment simple and
platform-independent. The widget deployment approach also facilitates high scale
maintenance and upgrades.

Community widgets are compatible with most server-side and backend technologies,
and therefore, there are no major deployment prerequisites that developers must
know of. Since the Community application is an add-on for WebCenter Sites, it can be
developed separately from WebCenter Sites.

The use of JavaScript enables developers to create easy-to-use and feature-rich widget
interfaces. Developers can build dynamic screens that are responsive to user actions
and do not require the whole web page to be re-loaded. As soon as a widget is
deployed on a web page, it starts rendering and loading dynamic content such as lists
of comments, reviews, or particular poll information from the data repository. The
data for a widget is loaded using JavaScript, with the help of a remote scripting
technology similar to AJAX. This technology also facilitates the deployment of the
Community application on a domain other than the original web site domain.
Figure 1–1 shows the post-deployment web site environment.

Prerequisites

1-2 Oracle WebCenter Sites Developer's Guide for the Community Application

Figure 1–1 Client Web Site Environment After Deploying Community Functionality

To become familiar with the Community object data model on which the Community
widgets are based, see Section 3.1, "Overview of Community Data Model."

1.2 Prerequisites
Developers must understand how the Community application is installed and know
the Community interface. To effectively use this guide, developers must have
experience with the following:

■ WEM Framework, REST API, and WEM Admin interface.

■ Oracle WebCenter Sites asset model and Oracle WebCenter Sites: Satellite Server
for caching.

■ Central Authentication Service (CAS) used for Web Single Sign-On.

■ Deployment of web applications on Oracle WebLogic Server, WebSphere
Application Server or Tomcat application server.

2

Integrating the Community Application With Social Networking Services 2-1

2Integrating the Community Application With
Social Networking Services

The Community application’s widgets are designed to leverage the authentication
APIs of Facebook, Twitter, and Janrain on your web site. Community widgets enable
the visitors of your web site (or blogs) to use their existing social networking profiles
to provide feedback on your company’s content and to share the same content on their
social networking profiles. This chapter describes how to integrate the Community
application with Facebook, Twitter, and Janrain.

This chapter includes the following sections:

■ Section 2.1, "About Authentication Plug-Ins"

■ Section 2.2, "Integrating with Facebook"

■ Section 2.3, "Integrating with Twitter"

■ Section 2.4, "Integrating with Janrain"

■ Section 2.5, "Enabling Social Networking Services on WebSphere Application
Server"

2.1 About Authentication Plug-Ins
Developers can leverage third-party authentication providers in the following ways:

■ Use the built-in support of Facebook and Twitter, which is available
out-of-the-box with the Community application.

■ Use the authentication hub, Janrain, to enable access to most prevalent providers
available online. Janrain is a SaaS solution that provides integration services with a
number of online authentication providers such as Facebook, Twitter, Google, and
so on. The more services supported, the more chances that the site visitor has an
identity in one of these services, which they may use to log in.

2.2 Integrating with Facebook
On a web site, visitors’ Facebook identities are authenticated via a trusted bridge,
which is established between the Community application and Facebook at each login
attempt. To enable this bridge, you must first create a Facebook application using the
Community application’s production site URL. Then, configure the Facebook
authentication properties on the application server on the production system of the
Community application. This section describes how to:

■ Create a Facebook Application for the Community Application

Integrating with Facebook

2-2 Oracle WebCenter Sites Developer's Guide for the Community Application

■ Configure Facebook Application’s Authentication Settings on the Community
Application

2.2.1 Create a Facebook Application for the Community Application

To create a Facebook application for the Community application:

1. Log in to Facebook to access the "Apps" page:
https://developers.facebook.com/apps

2. On the top right corner of the page, click Create New App to display the "New
App" dialog box.

3. In the "App Display Name" field, enter a name for the Community application.

4. Select the I agree to the Facebook Platform Policies check box, then click
Continue.

Figure 2–1 New App - Facebook

5. On the "Security Check Required" page, in the "Text in the box" field, enter the
displayed CAPTCHA text. Then, click Submit.

6. Under "Basic", copy the values of "App ID" and "App Secret" parameters
(Figure 2–2). You will need these values while configuring the Facebook
authentication properties on the application server.

Figure 2–2 App ID And App Secret

7. Under "Select how your app integrates with Facebook", click the gray text next to
"Website" to display the "Site URL" input field, as shown in Figure 2–3.

Note: Steps and screens shown in this section may not match the
Facebook interface at the time when you create an application. If you
see new fields and require help, contact product support.

Integrating with Facebook

Integrating the Community Application With Social Networking Services 2-3

Figure 2–3 Select How Your App Integrates With Facebook

8. In the "Site URL" field, enter the Community application’s production address,
then click Save Changes.

2.2.2 Configure Facebook Application’s Authentication Settings on the Community
Application

To configure Facebook application’s authentication properties on the Community
application server:

1. In the application server home on the production system, navigate to the
cos.war/WEB-INF/classes directory. For example, if you are using Tomcat, go to
<App__Server_Home>/webapps/cos/WEB-INF/classes.

2. Open the setup_auth.properties file, then scroll down to the "Facebook
Application Settings" section.

3. For widgets.external_auth.facebook.attrs.client_id and widgets.external_
auth.facebook.attrs.client_secret configuration properties, enter the
application ID and application secret values you copied at the time of creating the
Facebook application.

The "Facebook Application Settings" section should look like this:

Facebook Application Settings
#######################################

Facebook application id
#
widgets.external_auth.facebook.attrs.client_id=1111111111111111111
#
Facebook application secret
#
widgets.external_auth.facebook.attrs.client_secret=571bf600e8d23

4. After saving the configuration file, restart the application server.

5. Open the Community application on the management side as a general
administrator: http://host:port/cs/login.

6. Choose the desired site.

7. From the "Login Bar" menu, choose Configure.

8. In the "Login and Social Settings" section, under "Enabled native social
integration", select the Enable Facebook login check box (Figure 2–4), then click
Save.

Integrating with Facebook

2-4 Oracle WebCenter Sites Developer's Guide for the Community Application

Figure 2–4 Enable Facebook Login

9. Restart the management and production environments.

10. Access the web site on which the widget is deployed.

The Facebook login button is displayed (Figure 2–5) in the Community widget’s
"Login" screen.

Figure 2–5 Facebook Login Button

Integrating with Twitter

Integrating the Community Application With Social Networking Services 2-5

2.3 Integrating with Twitter
You can integrate the Community application with Twitter just like you integrated it
with Facebook. That is, first create a Twitter application using the production site
URL, then update the authentication properties on the application server to include
the Twitter application’s required information.

This section describes how to:

■ Section 2.3.1, "Create a Twitter Application for the Community Application"

■ Section 2.3.2, "Configure Twitter Application’s Authentication Settings on the
Community Application"

2.3.1 Create a Twitter Application for the Community Application
To create a Twitter application:

1. Log in to Twitter’s developers central at https://dev.twitter.com/.

2. Under "Create applications that integrate Twitter", click Create an app.

3. Under "Application Details", enter the required information as follows:

a. In the "Name" and "Description" fields, enter a name for the Community
application and a description.

b. In the "WebSite" field, enter the Community application’s production server
URL. For example, http://production.acme.com.

c. In the "Callback URL" field, enter the production host location of the
Community application, which is the same as the URL in step b.

d. Select the Yes, I agree check box.

e. Under "CAPTCHA", enter the words you see on the screen.

f. Click Create your Twitter application.

4. From the "Details" page, copy the values of "Consumer key" and "Consumer
secret" properties displayed in the "OAuth settings" section (Figure 2–6). You will
need these values to configure the authentication properties on the application
server.

Note: If your Community application is running on Oracle
WebLogic Server or Tomcat application server, then the procedures
described in Section 2.2.1, "Create a Facebook Application for the
Community Application" and Section 2.2.2, "Configure Facebook
Application’s Authentication Settings on the Community Application"
are all you require to integrate the Community application with
Facebook. However, on a WebSphere Application Server instance, you
must also perform the export/import procedures described in
Section 2.5, "Enabling Social Networking Services on WebSphere
Application Server" to enable communication between the
Community application and this social networking service.

Integrating with Twitter

2-6 Oracle WebCenter Sites Developer's Guide for the Community Application

Figure 2–6 OAuth Settings

2.3.2 Configure Twitter Application’s Authentication Settings on the Community
Application

To configure the authentication properties on the Community application’s server:

1. In the application server home on the production system, navigate to the
cos.war/WEB-INF/classes directory. For example, if you are using Tomcat, go to
<App_Server_Home>\webapps\cos\WEB-INF\classes.

2. Open the setup_auth.properties file, then scroll down to the "Twitter
Application Settings" section.

3. For widgets.external_auth.twitter.attrs.consumer_key and
widgets.external_auth.twitter.attrs.consumer_secret configuration
properties, enter the consumer key and consumer secret values you copied earlier.

The "Twitter Application Settings" section should look like this:

Twitter Application Settings
Twitter consumer key
#
widgets.external_auth.twitter.attrs.consumer_key=uh5nvtwCg5WjBD9UHM29eQ
#
Twitter consumer secret
#
widgets.external_auth.twitter.attrs.consumer_secret=CaYaLDk9IZBConpQVkxk

4. After saving the configuration file, restart the application server.

5. Open the Community application on the management side as a general
administrator: http://host:port/cs/login.

Integrating with Janrain

Integrating the Community Application With Social Networking Services 2-7

6. Choose the desired site.

7. From the "Login Bar" menu, choose Configure.

8. In the "Login and Social Settings" section, under "Enabled native social
integration", select the Enable Twitter Login check box, then click Save.

9. Restart the management and production environments.

10. Access the web site on which the widget is deployed.

The Twitter login button is displayed (Figure 2–7) in the Community widget’s
"Login" screen on the web site on which the widget is deployed.

Figure 2–7 Twitter Login Button

2.4 Integrating with Janrain
The Community application integrates with Janrain, and Janrain integrates with a
number of third-party services. From this list of services, visitors can choose a service
that they already use to log in to your site.

To configure Janrain support:

1. Create an account on Janrain’s web site.

2. Create a Janrain Application for the Community Application.

Note: If your Community application is running on Oracle
WebLogic Server or Tomcat application server, then the procedures
described in Section 2.3.1, "Create a Twitter Application for the
Community Application" and Section 2.3.2, "Configure Twitter
Application’s Authentication Settings on the Community Application"
are all you require to integrate the Community application with
Twitter. However, on a WebSphere Application Server instance, you
must also perform the export/import procedures described in
Section 2.5, "Enabling Social Networking Services on WebSphere
Application Server" to enable communication between the
Community application and this social networking service.

Integrating with Janrain

2-8 Oracle WebCenter Sites Developer's Guide for the Community Application

3. Configure Janrain Application’s Authentication Settings on the Community
Application.

2.4.1 Create a Janrain Application for the Community Application
To perform the steps described in this section, you must have a Janrain account.
Register your company on the Janrain web site by choosing the "Enterprise"
subscription plan.

To create a Janrain application:

1. Go to www.rpxnow.com, then from the drop-down list on the toolbar, as shown
in Figure 2–8, select Create Application.

Figure 2–8 Create Janrain Application

2. Fill in the required fields, then click Create Application.

Figure 2–9 Purchase a Plus Application

3. From the "Deployment" menu, choose Application Settings.

Integrating with Janrain

Integrating the Community Application With Social Networking Services 2-9

Figure 2–10 Application Settings

4. In the "Application Info" section, unique values for your newly created application
are displayed under "Application Domain", "App ID", and "API Key (Secret)".
Copy these values as you will need them when you configure Janrain support on
the Community application’s production server.

Figure 2–11 Required Application Parameters

5. In the "Domain Whitelist" box, specify the web site domains on which the
Community application widgets will be deployed (Figure 2–12).

Integrating with Janrain

2-10 Oracle WebCenter Sites Developer's Guide for the Community Application

Figure 2–12 Domain Whitelist

6. In this step, you will enable the identity providers to be listed on the web site on
which Community widgets will be deployed. Therefore, visitors will be able to use
one of their existing online identities to add comments and ratings on your web
site content.

a. From the "Deployment" menu, choose Sign-in for Web.

Figure 2–13 Sign-in for Web

b. Click the Choose Providers link, and drag each provider to "Your Widget".

Integrating with Janrain

Integrating the Community Application With Social Networking Services 2-11

Figure 2–14 Configuration of Identity Providers

7. Configuring identity providers will allow site visitors to choose a provider for
which they already have login credentials. When an identity provider is enabled,
its configuration wizard is displayed. For example, Figure 2–15 shows the
configuration wizard for Google. Complete the configuration steps for each
enabled provider.

Figure 2–15 Google Configuration Via Janrain

8. Configure social sharing with Janrain. This step will enable your web site visitors
to share selected content via their profiles on social networking sites. From the
"Deployment" menu, choose Social Sharing for Web.

Integrating with Janrain

2-12 Oracle WebCenter Sites Developer's Guide for the Community Application

Figure 2–16 Configuration of Social Networking Services Providers

2.4.2 Configure Janrain Application’s Authentication Settings on the Community
Application

After configuring the Janrain application, configure Janrain authentication settings on
the production Community application.

1. In the application server on the production system, navigate to the
cos.war/WEB-INF/classes directory. For example, if you are using Tomcat, go to
<App_Server_Home>\webapps\cos\WEB-INF\classes.

2. Open the setup_auth.properties file, then scroll down to the "Janrain
Application Settings" section.

3. Enable Janrain support by setting the widgets.external_
auth.janrain.attrs.enabled property to true.

4. For widgets.external_auth.janrain.attrs.app_domain, widgets.external_
auth.janrain.attrs.app_id, and widgets.external_auth.janrain.attrs.app_
secret configuration properties, enter the application domain, application ID, and
API key you copied earlier.

The "Janrain Application Settings" section should look like this:

Janrain Application Settings
#######################################
#
Enabling Janrain support
Default is "false"
#
widgets.external_auth.janrain.attrs.enabled=true
#

Integrating with Janrain

Integrating the Community Application With Social Networking Services 2-13

Jainrain application domain
#
widgets.external_auth.janrain.attrs.app_domain=http://fw.rpxnow.com/
#
Jainrain application id
#
widgets.external_auth.janrain.attrs.app_id=gajo1d134dfk3tgcoien
#
Jainrain application secret
#
widgets.external_auth.janrain.attrs.app_secret=5asdf234jasdfk531

5. After saving the configuration file, restart the application server.

6. Open the Community interface, then go to Login Bar > Configure.

7. Select Enable integration with Janrain platform (Figure 2–17), then click Save. In
addition, you can select the Social sharing of comments and reviews via
dedicated Janrain widget check box if you configured the sharing option on the
Janrain site.

Figure 2–17 Janrain Support Enabled

8. Restart the management and production environments.

9. On the web site on which the Community application widgets are deployed,
verify that the configured identity providers are displayed in the Community
widget’s "Login" screen, as shown in Figure 2–18.

Note: Download the Janrain XD file to your local drive.

To enable cross-domain communication, upload this file to the web
site on which the Community application widgets will be deployed,
and specify the file’s new path in the "Janrain XD file URL" field. For
instance, if the full URL of this file on the site is
http://acme.com/rpx_xdcomm.html, then the value in the "Janrain XD
file URL" field should be /rpx_xdcomm.html.

Enabling Social Networking Services on WebSphere Application Server

2-14 Oracle WebCenter Sites Developer's Guide for the Community Application

Figure 2–18 Login Screen with Identity Provider Links

2.5 Enabling Social Networking Services on WebSphere Application
Server

If you integrated the Community application with Facebook, Twitter, or Janrain on a
WAS instance, then you must also perform the procedures described in this section to
enable communication between the Community application and these social
networking sites.

This section includes the following:

■ Section 2.5.1, "Export Security Certificate from Facebook"

■ Section 2.5.2, "Export Security Certificate from Twitter"

■ Section 2.5.3, "Export Security Certificate From Janrain"

■ Section 2.5.4, "Import Security Certificates into WAS"

Note: If your Community application is running on Oracle
WebLogic Server or Tomcat application server, then the procedures
described in Section 2.4.1, "Create a Janrain Application for the
Community Application" and Section 2.4.2, "Configure Janrain
Application’s Authentication Settings on the Community Application"
are all you require to integrate the Community application with
Janrain. However, on a WebSphere Application Server instance, you
must also perform the export/import procedures described in
Section 2.5, "Enabling Social Networking Services on WebSphere
Application Server" to enable communication between the
Community application and this social networking service.

Enabling Social Networking Services on WebSphere Application Server

Integrating the Community Application With Social Networking Services 2-15

2.5.1 Export Security Certificate from Facebook
If you enabled native social integration and the Facebook login option in your
Community application (for reference, see Figure 2–17), export the Facebook
certificate. You will need this certificate to enable Facebook on WAS.

1. To get the Facebook security certificate, open this URL in FireFox:
https://developers.facebook.com/docs/reference/api

2. From the "Tools" menu, choose Page Info.

3. On the "Security" tab, click View Certificate (Figure 2–19) to display the
"Certificate Viewer" dialog box.

Figure 2–19 Facebook Security Certificate

4. On the "Details" tab, click Export.

5. From the "Save in" dropdown list, choose a directory in which you want to save
this certificate.

6. In the "Save Certificate to File" dialog box, choose X.509 Certificate (DER) from
the "Save as type" field.

7. Click Save.

Tip: The native login can be disabled via the Community interface >
Login Bar > Configure. If you disable this feature, then the "Login"
screen displayed on the web site will require visitors’ local credentials
(as used on the web site).

Note: Facebook additionally requires the Entrust.net secure server
certificate, which you can download from your Internet Explorer by
choosing Internet Options > Content > Certificates > Entrust.net
Secure Server Certification Authority.

Enabling Social Networking Services on WebSphere Application Server

2-16 Oracle WebCenter Sites Developer's Guide for the Community Application

2.5.2 Export Security Certificate from Twitter
If you enabled native social integration and the Twitter login option in your
Community application (for reference, see Figure 2–17), export the Twitter certificate.

1. To get the Twitter security certificate, open this URL in FireFox:
https://api.twitter.com

The "Secure Connection Failed" dialog box is displayed.

2. From the "Tools" menu, choose Page Info.

3. On the "Security" tab, click View Certificate.

The "Certificate Viewer" dialog box (Figure 2–20) is displayed.

Figure 2–20 Twitter Security Certificate

4. On the "Details" tab, click Export.

The "Save Certificate to File" dialog box is displayed.

5. From the "Save in" dropdown list, choose the directory in which you want to save
this certificate.

6. From the "Save as type" field, choose X.509 Certificate (DER), as shown in
Figure 2–21.

Tip: The native login can be disabled via the Community interface >
Login Bar > Configure. If you disable this feature, then the "Login"
screen displayed on the web site will require visitors’ local credentials
(as used on the web site).

Enabling Social Networking Services on WebSphere Application Server

Integrating the Community Application With Social Networking Services 2-17

Figure 2–21 Save Certificate to File

7. Click Save.

2.5.3 Export Security Certificate From Janrain
To export the Janrain security certificate:

1. Open this URL in FireFox: https://rpxnow.com/

2. From the "Tools" menu, choose Page Info.

3. On the "Security" tab, click View Certificate to display the "Certificate Viewer"
dialog box (Figure 2–22).

Enabling Social Networking Services on WebSphere Application Server

2-18 Oracle WebCenter Sites Developer's Guide for the Community Application

Figure 2–22 Janrain Security Certificate

4. On the "Details" tab, click Export.

5. From the "Save in" dropdown list, choose a directory in which you want to save
this certificate.

6. In the "Save Certificate to File" dialog box, choose X.509 Certificate (DER) from
the "Save as type" field.

7. Click Save.

2.5.4 Import Security Certificates into WAS
To import Facebook, Twitter, or Janrain security certificates into WAS:

1. Log in to the WAS administrative console.

2. Expand Security, then click SSL certificate and key management.

3. Under "Configuration settings", click Manage endpoint security configurations,
as shown in Figure 2–23.

Enabling Social Networking Services on WebSphere Application Server

Integrating the Community Application With Social Networking Services 2-19

Figure 2–23 Configuration Settings

4. Under the "Local Topology" tab, expand Outbound, then select the appropriate
outbound configuration to get to the (cell).

5. Under "Related Items" on the right side, click Key stores and certificates.

6. Under "Preferences", select the CellDefaultTrustStore key store, as shown in
Figure 2–24.

Enabling Social Networking Services on WebSphere Application Server

2-20 Oracle WebCenter Sites Developer's Guide for the Community Application

Figure 2–24 Preferences - CellDefaultTrustStore

7. Under "Additional Properties" on the right side, click Signer certificates.

8. Under "Preferences", click Add (Figure 2–25).

Figure 2–25 Preferences - Add

Enabling Social Networking Services on WebSphere Application Server

Integrating the Community Application With Social Networking Services 2-21

9. In the "Alias" field, enter graph.facebook.com_cert, api.twitter.com_cert, or
rpxnow.com_cert depending on the certificate you are adding, as shown in
Figure 2–26.

10. In the "File name" field, enter the path to the saved Facebook/Twitter certificates,
as shown in Figure 2–26.

11. From "Data type", choose Binary DER data, as shown in Figure 2–26.

Figure 2–26 SSL Certificate and Key Management - Data Type

12. Click Apply.

Enabling Social Networking Services on WebSphere Application Server

2-22 Oracle WebCenter Sites Developer's Guide for the Community Application

3

Customizing the Community Application’s Functionality 3-1

3Customizing the Community Application’s
Functionality

The Community application provides a number of customizability and extension
points, such as CSS, templates, and Search Engine Optimization (SEO), which you can
use to alter the appearance and functionality of any Community widget. However,
using customizability and extension points may not always meet particular customers’
project requirements because of certain web site design or usage related strategies
applied to the widgets. In such scenarios, consider working with WebCenter Sites data
structures directly and rendering them separately in a custom way in page templates.

This chapter describes WebCenter Sites data structures in details. It includes the
following sections:

■ Section 3.1, "Overview of Community Data Model"

■ Section 3.2, "Customizing CSS and Widget Templates"

■ Section 3.3, "Creating a Custom Word Filter"

■ Section 3.4, "Creating a CAPTCHA Generator"

3.1 Overview of Community Data Model
The Community application uses WebCenter Sites as its data repository and
communicates with it through REST APIs provided by Web Experience Management
(WEM) Framework. Storing the Community application's data structures in the
WebCenter Sites repository leverages the WebCenter Sites asset model and caching
system.

The object data model of the Community application consists of the following
categories and their objects:

■ User-Generated Content

– Comments

– Object: CommentFeed

– Object: CommentRecord

– Reviews

– Object: ReviewFeed

– Object: ReviewRecord

– Ratings

– Object: RatingFeed

Overview of Community Data Model

3-2 Oracle WebCenter Sites Developer's Guide for the Community Application

– Object: RatingRecord

– Polls

– Object: Poll

– Common Infrastructure: Topics

– Object: Topic

■ Visitors

– Object: User

– Object: UserIdentity

– Object: UserLink

Figure 3–1 provides a graphical overview of these categories and objects. The
"User-Generated Content" section shows that business objects are related to
Community widgets, such as comments and reviews. Each user-generated content
(UGC) entry—if posted by a registered user—has a set of user objects (see the
"Visitors" section) associated with it.

Figure 3–1 Categories and Object Layout

Objects shown in Figure 3–1 are stored in the WebCenter Sites database tables, as
specified in Table 3–1.

Table 3–1 Database Table Names of Objects

Object Database Table Name

CommentFeed cos_comment_feed

CommentRecord cos_comment_record

ReviewFeed cos_review_feed

ReviewRecord cos_review_record

Overview of Community Data Model

Customizing the Community Application’s Functionality 3-3

3.1.1 Comments
The following types of primary objects are associated with comments:

■ CommentFeed

■ CommentRecord

3.1.1.1 CommentFeed
This object represents the computed summary information about the web page on
which the widget is deployed. The CommentFeed object is created in the database
when the page on which the Comments widget is deployed is accessed for the first
time.

To determine the connection between comments and the page on which they should
be displayed, the Community application uses the web page URL, which is the
application-generated key in the widget deployment tag, or "Resource ID", which
administrators can specify during widget deployment. If the web page URL is
available as the key, then the hash generated from the page URL is recorded in the
CommentFeed object. If the resource ID is specified, it is recorded in the
CommentFeed object. The CommentFeed object stores comments, and it has a
one-to-many association with the CommentRecord objects that represent comments.

The CommentFeed objects are stored as a cos_comment_feed basic asset in WebCenter
Sites and correspondingly as a cos_comment_feed table in the database. Table 3–2
describes the structure of this asset.

RatingFeed cos_rating_feed

RatingRecord cos_rating_record

Polls cos_poll

Topics cos_topic

User cos_user

UserIdentity cos_user_id

UserLink cos_user_link

Table 3–2 Structure of the "cos_comment_feed" AssetType

Property Type Description

id BIGINT Unique asset identifier or primary key of
AssetType.

Table 3–1 (Cont.) Database Table Names of Objects

Object Database Table Name

Overview of Community Data Model

3-4 Oracle WebCenter Sites Developer's Guide for the Community Application

3.1.1.2 CommentRecord
This object represents a comment posted by a visitor on a site page. It is logically
linked to the CommentFeed object through a many-to-one relationship via the cos_
root_id field. In other words, many CommentRecord objects can be linked to one
CommentFeed object.

cos_resource_id VARCHAR(256) Identifier of the discussion. It is a logical
link that the Community application uses
to associate a list of comments with the
page on which visitors posted comments.
This link is established during widget
deployment by specifying the value of the
"Resource ID" field on the deployment
page or the resource_id attribute in the
widget code snippet. If it is not specified,
the Community application uses the hash
of the page URL as a resource ID. It is
recommended that you come up with
your own strategy of resource_id
generation. For example, to make it easier
to find this object in the database, you can
use the page ID as the resource ID.

cos_url VARCHAR(256) URL that hosts the comment discussion
thread.

cos_date_created DATE Date when the feed object was created.

cos_date_modified DATE Latest modification date of a feed.

cos_modified_by VARCHAR(256) ID of the user who last modified the feed.

cos_owner VARCHAR(256) ID of the user who created the feed object.
(The feed object is created during the first
page load when a widget is just deployed.
Typically it is done using a guest session,
so -1 is a typical value.)

cos_approved_count BIGINT Number of comments that successfully
passed moderation and are displayed to
visitors.

cos_pending_count BIGINT Number of comments that have not
passed moderation yet.

cos_ext_type VARCHAR(256) ID of the content category. It describes the
type of content to which comments are
attached: file, article, blog, and so on.
(Specified as the "Resource Type"
parameter on the deployment page or the
resource_type attribute in the widget
deployment code snippet.)

cos_resource_title VARCHAR(256) Title of the page on which the Comments
widget is deployed. By default, the value
of the window title is recorded here. Page
designers may customize this value by
specifying the resource_title attribute
in the deployment code snippet.

Table 3–2 (Cont.) Structure of the "cos_comment_feed" AssetType

Property Type Description

Overview of Community Data Model

Customizing the Community Application’s Functionality 3-5

Table 3–3 Structure of the cos_comment_record assetType

Property Type Description

id BIGINT Identifier of a comment.

cos_text VARCHAR(4000) Content of a posted comment. Its
VARCHAR(4000) data type is translated
into the most effective type of storage (for
example, CLOB), depending on the
database on which WebCenter Sites is
installed.

cos_root_id BIGINT Association to the CommentFeed object
representing the page on which the
conversation is happening. The value of the
corresponding cos_comment_feed.id item is
stored here.

Use this column to query all the comments
posted on a page.

cos_state_value VARCHAR(450) State of a comment reflecting the stage of
comment moderation.

If manual moderation is enabled, the value
may be:

■ pending.new (newly posted)

■ pending.modified (manual
moderation)

If a comment has either passed moderation
or is auto-published, the value will be:

■ approved.all

If a comment has not passed through either
automatic filters or moderator, then the
values are:

■ inappropriate.robotdetected

■ inappropriate.humandetected

To simplify navigation for moderators, the
Community interface includes filters based
on these categories.

cos_owner BIGINT ID of the visitor who posted the comment,
or -1 if it is a guest entry.

cos_owner_ip VARCHAR(256) Client's IP address from which the comment
was posted.

cos_guest_name VARCHAR(450) Display name of a registered user or a guest
who posted the comment entry. This field is
used in the Community interface to display
and sort comments by author names
without posting extra requests to database.

cos_guest_email VARCHAR(450) If guest (unauthenticated visitors) posts are
enabled in commenting permissions, and
visitors are required to specify their email
ID, then the email ID is saved in this
column.

cos_level BIGINT Level of a comment in the comment thread,
if replies to comments are enabled. The
bigger the number, the deeper the comment
is posted in the tree.

The initial value is 1.

Overview of Community Data Model

3-6 Oracle WebCenter Sites Developer's Guide for the Community Application

3.1.2 Reviews
The following types of primary objects are associated with reviews. These objects are
similar to those of comments:

■ ReviewFeed

■ ReviewRecord

cos_parentid BIGINT ID of the immediate parent comment to
which a reply is posted.

cos_parent0id - cos_
parent9id

BIGINT Chain of comment parents in the hierarchy.
The path from the leaf to the root.

cos_flagged VARCHAR(32) true or false based on whether the
comment has been flagged and reported by
other visitors.

cos_flagged_count BIGINT The number of times a comment is flagged.

cos_record_rank VARCHAR(450) Counts of helpfulness reports ("Yes" and
"No") made on a comment, separated by
comma, starting with zero. The initial value
is 0,0.

cos_record_rank_
calculated

INTEGER Pre-calculated rank of a comment according
to helpfulness reported by other visitors.
This is calculated by subtracting the count
of "No" from the count of "Yes".

cos_date_created DATE Date when the comment was posted.

cos_date_modified DATE Latest modification date of a comment
(registered users are allowed to modify their
comments, or moderator may modify a
comment.).

cos_reply_count BIGINT If the discussion thread is enabled and
replies can be posted to comments, then the
number of replies to the current comment
are recorded here.

This count is not recursive, and therefore,
only immediate child comments are
considered (the children of children are
excluded).

cos_thread_order VARCHAR(450) String generated in a special format. It
enables ordering of comments by thread
hierarchy using a simple WEM REST query
and alphabetical ordering. The generation
strategy is as follows:

■ If it is a root level comment (that is, it
has not been posted as a reply to
another comment), the value of the
cos_date_created field in the
hexadecimal format is recorded.

■ If a comment has a parent comment, the
concatenation value of parent's cos_
comment_record.cos_thread_order
field and the underscore "_" field, as
well as its cos_date_created field in
the hexadecimal format.

Table 3–3 (Cont.) Structure of the cos_comment_record assetType

Property Type Description

Overview of Community Data Model

Customizing the Community Application’s Functionality 3-7

3.1.2.1 ReviewFeed
This object represents a list of reviews posted on a site page. The ReviewFeed object is
very similar to the CommentFeed object described in Section 3.1.1.1, "CommentFeed."
The Community application uses the same code infrastructure to handle these objects.
However, to simplify maintenance on the database schema level, the data for
CommentFeed and ReviewFeed is stored in two separate tables. The only difference
between CommentFeed and ReviewFeed is that the latter includes additional
information pertaining to the average rank calculated across all posted reviews.

The ReviewFeed object is created in the database when the page on which the Reviews
widget is deployed is accessed for the first time.

To determine the connection between reviews and the page on which they should be
displayed, the Community application uses the web page URL, which is the
application-generated key in the widget deployment tag, or "Resource ID", which
administrators can specify during widget deployment. If the web page URL is
available as the key, then the hash generated from the page URL is recorded in the
ReviewFeed object. If the resource ID is specified, it is recorded in the ReviewFeed
object. The ReviewFeed object stores reviews, and it has a one-to-many association
with the ReviewRecord objects that represent reviews.

The review feed objects are stored as a cos_review_feed basic asset in WebCenter
Sites and correspondingly as a cos_review_feed table in the database. Table 3–4
describes the structure of this asset.

Table 3–4 Structure of cos_review_feed AssetType

Property Type Description

id BIGINT Unique asset identifier or primary key of
the AssetType.

cos_resource_id VARCHAR(256) Identifier of a discussion. It is a logical link
that the Community application uses to
associate a list of reviews with the page on
which the reviewed topic is posted. This
link is established during widget
deployment by specifying the value of the
"Resource ID" field on the deployment
page or the resource_id attribute in the
widget code snippet. If it is not specified,
the Community application uses the hash
of the page URL as a resource ID. It is
recommended that you devise your own
strategy of resource_id generation. For
example, to make it easier to find this
object in the database, you can use the page
ID as the resource ID.

cos_url VARCHAR(256) URL hosting the discussion to which
reviews are being posted.

cos_date_created DATE Date when the feed object was created.

cos_date_modified DATE Latest modification date of a feed.

cos_modified_by VARCHAR(256) ID of the user who last modified the feed.

cos_owner VARCHAR(256) ID of the user who created the feed object.
(The feed object is created during the first
page load when a widget is just deployed.
Typically it is done using a guest session,
so -1 is a typical value.)

Overview of Community Data Model

3-8 Oracle WebCenter Sites Developer's Guide for the Community Application

3.1.2.2 ReviewRecord
This object represents a review posted by a visitor on a site page. It is logically linked
to the ReviewFeed object through a many-to-one relationship via the cos_root_id
field.

cos_approved_count BIGINT Number of reviews that successfully
passed moderation and are displayed to
visitors.

cos_pending_count BIGINT Number of reviews that have not pass
moderation yet.

cos_rank FLOAT Calculated as a mean, the average of all
ranks that have been given to the reviews
posted on a page. For example, if two
reviews were posted on a page, out of
which one has been given three stars and
another five stars, then the value in this
field will be 3+5/2 = 4.

cos_rank_
precalculation

VARCHAR(450) Comma separated list of counts of ranks
posted. This list contains five items in total.
Each position (index) in the list holds the
count of the corresponding number of stars
given to a review. For example, if there are
three reviews, out of which one has been
given three stars and the others five stars,
0-s will be given for missing positions, and
therefore, the list will contain 0,0,1,0,2.
Note the counts of reviews posted at
corresponding positions. From concrete
position, you can know the number of
votes/stars.

cos_thumbs_up_rank VARCHAR(450) If the review type is set to thumbs
up/down, the votes are recorded in this
field. This is a denormalized field that
holds a count of thumbs up and thumbs
down separated by comma. For example, if
out of three reviews, two have got thumb
up and one thumb down, then the value of
this field will be 2,1,.

cos_ext_type VARCHAR(256) ID of the content category describing the
type of content to which the reviews are
attached, for example, file, article, blog,
and so on. (Specified as the "Resource
Type" parameter on the deployment page
or the resource_type attribute in the widget
deployment code snippet.)

cos_resource_title VARCHAR(256) Title of the page on which the Reviews
widget is deployed. By default, the value
of the window title is recorded here. Page
designers may customize this value by
specifying the resource_title attribute in
the deployment code snippet.

Table 3–5 Structure of the cos_review_record AssetType

Property Type Description

id BIGINT Identifier of a review.

Table 3–4 (Cont.) Structure of cos_review_feed AssetType

Property Type Description

Overview of Community Data Model

Customizing the Community Application’s Functionality 3-9

cos_text VARCHAR(4000) Content of a review posted. Its
VARCHAR(4000) data type is translated
into the most effective type of storage (for
example, CLOB), depending on the
database on which WebCenter Sites is
installed.

cos_title VARCHAR(450) Title of a review posted.

cos_rank FLOAT Number of stars (rank) given to a review
by a visitor. If the rating type is thumbs
up/down, then 5 is the value for a
thumbs up and 1 for a thumbs down.

cos_thumbs_up INTEGER If the rating type is configured to be
thumbs up/down, the rank value stored
here is: 1 for thumbs up and -1 for
thumbs down.

cos_rating_type INTEGER Type of a given review rank. Possible
value codes are:

0 - Stars

1 - Thumbs up/down

cos_root_id BIGINT Association to the ReviewFeed object
representing the page on which reviews
are submitted.

The value of the corresponding cos_
review_feed.id item is stored here. Use
this column to query all the reviews
posted on a page.

cos_state_value VARCHAR(450) State of a review reflecting the stage of
content moderation.

If manual moderation is enabled, the
value may be:

■ pending.new (newly posted)

■ pending.modified (manual
moderation happened)

If a review has either passed moderation
or was auto-published, the value will be:

■ approved.all

If a review has not passed through either
automatic filters or moderator, values
will be:

■ inappropriate.robotdetected

■ inappropriate.humandetected

To simplify navigation for moderators,
the Community interface includes filters
based on these categories.

cos_owner BIGINT ID of the visitor who posted the review,
or -1 if it is a guest entry.

cos_owner_ip VARCHAR(256) Client's IP address from which the review
was posted.

Table 3–5 (Cont.) Structure of the cos_review_record AssetType

Property Type Description

Overview of Community Data Model

3-10 Oracle WebCenter Sites Developer's Guide for the Community Application

3.1.3 Ratings
This object contains the list of ratings that visitors give to topics or any posts on a page.
This is very similar to the ReviewFeed object.

The Ratings object is created in the database when a web page is accessed for the first
time after the deployment of the Ratings widget on a web site.

To determine the connection between ratings and the page on which they should be
displayed, the Community application uses the web page URL, which is the
application-generated key in the widget deployment tag, or "Resource ID", which
administrators can specify during widget deployment. If the web page URL is
available as the key, then the hash generated from the page URL is recorded in the
RatingFeed object. If the resource ID is specified, it is recorded in the RatingFeed
object. The RatingFeed object stores ratings, and it has a one-to-many association with
the RatingRecord objects that represent ratings.

The rating feed objects are stored as the cos_rating_feed basic asset in the WebCenter
Sites repository and correspondingly as the cos_rating_feed table in the database.

The following types of primary objects are associated with ratings:

■ RatingFeed

■ RatingRecord

cos_guest_name VARCHAR(450) Display name of a registered user or a
guest who posted the review entry. This
field is used to display and sort reviews
by author names in the Community
interface without making extra requests
to database.

cos_guest_email VARCHAR(450) If guest (unauthenticated visitors) posts
are enabled in reviewing permissions and
visitors are required to specify their email
ID, the email ID value is saved in this
column.

cos_flagged VARCHAR(32) true or false based on whether a review
has been flagged and reported by other
visitors.

cos_flagged_count BIGINT The number of times a review has been
flagged by others.

cos_record_rank VARCHAR(450) Counts of helpfulness reports ("Yes" and
"No") made on a review, separated by
comma, starting with zero. The initial
value is 0,0.

cos_record_rank_
calculated

INTEGER Pre-calculated rank of a review according
to helpfulness reported by other visitors.
It is the count of "No" subtracted from the
count of "Yes".

cos_date_created DATE Date when the review was posted.

cos_date_modified DATE Latest modification date of a review.
(Only registered users are allowed to
modify their reviews. Moderator can also
modify a review, if needed.)

Table 3–5 (Cont.) Structure of the cos_review_record AssetType

Property Type Description

Overview of Community Data Model

Customizing the Community Application’s Functionality 3-11

Table 3–6 and Table 3–7 describe the structure of the cos_rating_feed assetType.

3.1.3.1 RatingFeed

Table 3–6 Structure of the cos_rating_feed AssetType

Property Type Description

id BIGINT Identifier of an object which holds a list of
ratings posted on a page.

cos_resource_id VARCHAR(256) Identifier of the ratings on a particular web
page.

It is a logical link which enables the
Community application to associate a list of
ratings with the relevant page. This link is
established during widget deployment by
specifying the value of the "Resource ID" field
on the deployment page or the resource_id
attribute in the widget code snippet. This
value can be generated or filled manually. If
this value is not specified, the Community
application uses the hash of page URL as a
resource ID.

It is recommended that you create your own
strategy to generate resource_id. For
example, to make the database search of this
object easier, you can use the page ID as the
resource ID.

cos_url VARCHAR(256) URL of the web page on which visitors leave
their ratings.

cos_date_created DATE Date when the feed object is created.

cos_date_modified DATE Last modified date of a feed.

cos_owner VARCHAR(256) ID of the user who created the feed object
initially. (This happens during the first page
load when a widget is just deployed.
Typically, the feed object is created via a
guest session, so -1 is a typical value.)

cos_approved_count BIGINT Number of ratings that successfully passed
moderation and are counted in the general
rating calculation.

cos_pending_count BIGINT Number of ratings that have not passed
moderation yet.

cos_stars_rank FLOAT Average (mean) of all star type ratings posted
by visitors. For example, if out of the two
ratings, one is a three-star rank and another is
a five-star rank, then the value is calculated as
3+5/2 = 4.

cos_stars_rank_
precalculation

VARCHAR(450) Comma separated list of counts of ratings.
This list contains five items in total. Each
position (index) in the list holds the count of
the corresponding number of stars given. For
example, if out of the three ratings given, one
is a three-star and the other two are five-star,
then 0-s in this list signify missing positions.
So the list will include: 0,0,1,0,2. Note the
counts of ratings left at corresponding
positions. From concrete positions you can
know the number of votes/stars.

Overview of Community Data Model

3-12 Oracle WebCenter Sites Developer's Guide for the Community Application

3.1.3.2 RatingRecord
This object represents a rating posted by a visitor on a site page. It is logically linked to
the RatingFeed object via the "cos_root_id" field. This object is based on the
many-to-one relationship model.

cos_thumbs_up_rank VARCHAR(450) If the rating type is set to thumbs up/down,
then the ratings are recorded in this field.
This is a denormalized field to hold a comma
separated count of thumbs up and thumbs
down. For example, if out of the three ratings,
the two are thumbs up and one is thumbs
down, then the value stored will be equal to
2,1.

cos_likeit_count BIGINT If the like it rating type is deployed, then
the number of likes are recorded in this field.

cos_recommend_
count

BIGINT If the recommend rating type is deployed, then
the number of recommendations is recorded
in this field.

cos_ext_type VARCHAR(256) ID of a content category. It describes the type
of content to which the ratings are attached:
file, article, blog, and so on. These are
specified as the value of the "Resource Type"
parameter on the deployment page or the
resource_type attribute in the widget
deployment code snippet.

cos_resource_title VARCHAR(256) Title of the page on which the Ratings widget
is deployed. By default the value of the
window title is recorded as the page title.
Page designers can customize this value by
specifying the resource_title attribute in
the deployment code snippet.

Table 3–7 Structure of the cos_rating_record AssetType

Property Type Description

id BIGINT Identifier of a rating.

cos_thumbs_up INTEGER If the rating type is configured to be thumbs
up/down, then the rank value recorded here
is: 1 if it is thumbs up and -1 if it is thumbs
down.

cos_rating_type_value INTEGER Type of rating rank.

Possible value codes are: 0 - stars, 1 - thumbs
up/down, 2 - like it, 3 - recommend.

cos_root_id BIGINT Association to the RatingFeed object
representing the page on which ratings are
submitted. The value of the corresponding
cos_rating_feed.id item is recorded here.
Use this column to query all the ratings
posted on a page.

Table 3–6 (Cont.) Structure of the cos_rating_feed AssetType

Property Type Description

Overview of Community Data Model

Customizing the Community Application’s Functionality 3-13

3.1.4 Polls
The Polls functionality is represented in a single table in the database. When an
administrator creates a poll, the corresponding row is inserted into this table
(Table 3–8).

cos_state_value VARCHAR(450) State of ratings reflecting the stage of content
moderation.

If manual moderation is enabled, the value
may be pending.new (newly posted) or
pending.modified (manual moderation).

If a rating has either passed moderation or
was auto-published, the value will be
approved.all.

If a rating has not pass through either
automatic filters or moderator, then the
value will be inappropriate.robotdetected
or inappropriate.humandetected.

To simplify navigation for moderators, the
Community interface provides filters for
these categories on the right-side panel.

cos_owner BIGINT ID of the visitor who posted the rating. Or -1
if it is a guest entry.

cos_owner_ip VARCHAR(256) Client's IP address from which the rating is
posted.

cos_guest_name VARCHAR(450) Display name of a registered user or a guest
who gave the rating. This field is used to
display and sort ratings by author names in
the Community interface without making
extra requests to the database.

Table 3–8 Structure of the cos_poll AssetType

Property Type Description

id BIGINT Identifier of a poll instance.

cos_uid VARCHAR(256) Unique string identifier of the poll instance.
It is embedded into the deployment code
snippet along with the regular ID so that if
the integer ID is lost during data migration,
the system can look up this poll by UID, thus
preventing existing deployments from
breaking.

cos_chart_type INTEGER Type of the chart in which poll results are to
be displayed.

Possible values are:

■ 0 - Pie chart

■ 1 - Bar chart

■ 2 - Flat Results (percents are shown for
options)

Table 3–7 (Cont.) Structure of the cos_rating_record AssetType

Property Type Description

Overview of Community Data Model

3-14 Oracle WebCenter Sites Developer's Guide for the Community Application

3.1.5 Topics
The Topics functionality allows to gather and precalculate statistics, such as review
counts, rating values, and so on, across the Community application widgets so that the
collected information can be easily and efficiently queried later. The precalculation
and optimization of visitors’ feedback is important because this type of content may
appear on the home page of a site or on the visitor's dashboard that lists most
discussed/reviewed/rated articles.

cos_theme INTEGER ID of the theme to be applied to Poll on a
web site. Possible values are:

■ 0 - Basic

■ 1 - Advanced

■ 2 - No design

■ 3 - Open design

cos_start_date DATE Date when the poll is started and opened for
votes. The start date of the poll voting
campaign.

cos_finish_date DATE Date when the poll is closed and no more
voting is allowed. The end date of poll
voting campaign.

cos_result_required VARCHAR(32) Boolean value (true or false) that specifies
whether to show results after voting.

cos_results_view INTEGER Determines how poll results are shown:

■ 0 - In a pop-up

■ 1 - In place

■ Inside the poll widget

cos_results_width INTEGER Widget for poll results pop-up in pixels.

cos_title VARCHAR(450) Title of the poll.

cos_question VARCHAR(450) Main poll question.

cos_options VARCHAR(4000) List of poll options to be available for voting
in the JSON format. The metadata includes
ID of the vote used by the Community
application internally, the option title, color,
and the number of votes left. For example:

[{"id":"n0","count":1,"color":"#1751a7
","value":"Avatar"},{"id":"n1","count"
:0,"color":"#8aa717","value":"Matrix"}
]

cos_thankyou_note VARCHAR(450) Message to be shown to visitors after their
vote.

cos_disclaimer_
required

VARCHAR(32) Boolean value (true or false) that specifies
whether to show the disclaimer text for poll
or not.

cos_disclaimer VARCHAR(450) Disclaimer text to be shown at the bottom of
the Poll widget.

cos_votes INTEGER Total number of votes on the current poll
campaign.

Table 3–8 (Cont.) Structure of the cos_poll AssetType

Property Type Description

Overview of Community Data Model

Customizing the Community Application’s Functionality 3-15

Web pages on which the Community application widgets are deployed and activities
performed on those pages become the primary focus of the Topics functionality.
Therefore, statistics are aggregated across tables such as CommentFeed, ReviewFeed,
and RatingFeed.

Table 3–9 Structure of the cos_topic AssetType

Property Type Description

id BIGINT Identifier of a topic instance.

cos_url VARCHAR(450) URL of the page on which widgets are
deployed.

cos_title VARCHAR(450) HTML title of the page with which this topic
is associated.

cos_resource_id VARCHAR(450) Resource ID of the page that links the UGC
content to the page on which widgets are
deployed.

cos_date_created DATE Date when the topic is created. That is, when
the page on which widgets are deployed is
accessed for the first time using a browser.

cos_comments_feed_id BIGINT Relation between the corresponding
CommentFeed object and the
CommentFeed.id field. This is a source object
from which the statistics are aggregated.

cos_comment_count BIGINT Number of comments posted on the page
with which a particular topic is associated.

cos_comments_
resource_type

VARCHAR(450) Content category (such as a blog or article)
assigned to the Comments widget deployed
on the page. It might be either the default
category value or the customized category
uploaded on the Appearance settings page.

cos_comments_date_
modified

DATE Date when the CommentFeed object is last
updated with statistic values (the number of
comments posted, and so on).

cos_reviews_feed_id BIGINT Relation to the ReviewFeed object with
which a topic is associated.

cos_review_count BIGINT Number of reviews posted on a page with
which a topic is associated.

cos_reviews_resource_
type

VARCHAR(450) Content category (such as a blog or article)
assigned to the Reviews widget deployed on
a page. It might be either a default category
or the customized category uploaded on the
Appearance settings page.

cos_reviews_date_
modified

DATE Date when the ReviewFeed object is last
updated with statistic values (the number of
reviews posted, ranks, and so on).

cos_ratings_feed_id BIGINT Relation to the RatingFeed object with which
a particular topic is associated.

cos_rating_count BIGINT Number of ratings posted on a page with
which this topic is associated.

cos_ratings_resource_
type

VARCHAR(450) Content category (such as blog, article, and
so on) assigned to the Ratings widget
deployed on a page. It might be either a
default category or the customized category
uploaded on the Appearance settings page.

Overview of Community Data Model

3-16 Oracle WebCenter Sites Developer's Guide for the Community Application

3.1.6 Visitors
The following types of primary objects are associated with visitors:

■ User

■ UserIdentity

■ UserLink

3.1.6.1 User
The User table represents a visitor profile maintained by the Community application,
and it contains visitor-sensitive data such as display name, email, or avatar picture.

cos_ratings_date_
modified

DATE Date when the RatingFeed object is last
updated with statistic values (the number of
ratings posted, their ranks, and so on).

cos_rank FLOAT Rank of the current topic among other
topics. The current ranking schema is based
on the frequency statistics and is calculated
as a sum of the following fields: cos_
review_count + cos_comment_count + cos_
rating_count.

Table 3–10 Structure of the cos_user AssetType

Property Type Description

id BIGINT Identifier of a user profile.

cos_email VARCHAR(450) Email of a web site visitor. May not be
populated if visitors logged in using
Facebook, Twitter, or through Janrain. The
visitors that registered locally may use it to
recover their passwords when needed.

cos_display_name VARCHAR(450) Display name of a user. Either provided by a
visitor during registration or taken from the
social networking service using which the
user logged in.

cos_profile_type_code INTEGER Type of the user profile.

Possible values are:

■ 0 - Regular user or visitor

■ 1 - Editorial or management user (for
example, content moderator)

■ 2 - System user or the user used by the
system to open connections internally.

Table 3–9 (Cont.) Structure of the cos_topic AssetType

Property Type Description

Overview of Community Data Model

Customizing the Community Application’s Functionality 3-17

3.1.6.2 UserIdentity
The two options for storing visitor credentials are LDAP and the WebCenter Sites
database. The database option is set by default.

When the database is used, credentials of a user are stored in the UserIdentity table
and associated with the corresponding visitor profile using the UserLink table.

packed_identities VARCHAR(4000) Denormalized list of visitor identities in the
JSON format. These identities are used
during authentication, and therefore, they
are linked to this profile.

For example: [{"username":"john"}]

The "username" field is related to a
corresponding UserIdentity entry via the
UserIdentity.cos_username field. For the
visitor profile of the user who logged in
using a social network service via Janrain,
the user name will include the "jr:" prefix:

[{"username":"jr:http://twitter.com/ac
count/profile?user_id=3333333"}]

cos_picture_blob BINARY For a profile of a local user who registered
locally and did not use a social networking
service, the customized avatar is stored in
this field.

cos_picture_url VARCHAR(450) For a profile of a user who used a social
networking service to log in, the URL of the
avatar picture is stored here.

Table 3–11 Structure of the cos_user_id AssetType

Property Type Description

id BIGINT Identifier of a user’s credentials.

cos_username VARCHAR(256) User name used for authentication.

cos_email VARCHAR(256) Email of a user for the purpose of recovering
user’s password when needed.

cos_provider_id VARCHAR(256) Type of identity provider used for
authenticating a visitor.

Possible values are:

■ none - if this is the identity of a system
user who opened connections
internally.

■ ldap - if visitor authenticates via LDAP

■ wem-db - if visitor authenticates via the
Community application plug-in that
uses a WebCenter Sites assetTypes.

cos_encryption_type VARCHAR(256) Encryption algorithm applied to secure the
password of a user identity. The algorithm
used in the current version of the system is
blowfish.

cos_password VARCHAR(256) Encrypted value of a password used for
authentication.

Table 3–10 (Cont.) Structure of the cos_user AssetType

Property Type Description

Customizing CSS and Widget Templates

3-18 Oracle WebCenter Sites Developer's Guide for the Community Application

3.1.6.3 UserLink
Table 3–12 links UserIdentity to User so that a visitor’s identities (that have credentials
for authentication) are properly associated with the visitor’s user profile. This is a
denormalized table so that some of the fields from the UserIdentity table are cached
here as well.

3.2 Customizing CSS and Widget Templates
You can customize Community widgets in the following ways:

■ Color Schema and Skinning via CSS. The CSS is customized when a widget's
look-and-feel must match that of the web site on which the widget is deployed.

■ Redesign via Widget Templates. Widget templates are customized when a
widget requires significant changes, such as a new layout or enhancements to
functionality.

The following sections describe how to perform these customizations:

■ Section 3.2.1, "Customizing CSS: Color Schema and Skinning"

■ Section 3.2.2, "Customizing a Widget Template"

3.2.1 Customizing CSS: Color Schema and Skinning
The general steps for customizing the CSS are:

1. Download the standard CSS skin of the widget.

2. Modify CSS styles for the interface elements that require customization.

3. Apply the customized CSS.

Table 3–12 Structure of the cos_user_link AssetType

Property Type Description

id BIGINT Identifier of a user link.

cos_username VARCHAR(256) User name from the UserIdentity object with
which this link associates the User object.

cos_email VARCHAR(256) Email from the UserIdentity object with
which this link associates the User object.

cos_provider_id VARCHAR(256) Identity provider code from the UserIdentity
object with which this link associates the
User object.

Possible values are:

■ ext_auth - if visitor comes from social
networks like Facebook or Twitter, or
through Janrain.

■ none - if this is the identity of a system
user who opens connections internally

■ ldap - if visitor authenticates via LDAP

■ wem-db - if visitor authenticates via the
Community application plug-in which
uses WebCenter Sites assets.

cos_account_id BIGINT Identifier of a User object with which this
link associates the UserIdentity object.

Customizing CSS and Widget Templates

Customizing the Community Application’s Functionality 3-19

While the overall process is the same, customizing CSS styles for Comments and
Reviews widgets is different from customizing other widgets.

This section includes the following:

■ Section 3.2.1.1, "Customizing Comments and Reviews Widgets"

■ Section 3.2.1.2, "Customizing Other Widgets"

3.2.1.1 Customizing Comments and Reviews Widgets
For Comments and Reviews, you can download the default CSS from the widget's
"Appearance" page in the Community interface, modify it, and then upload it back.
The Community application continues to host the CSS while it is being customized, so
you can change it anytime you like.

To customize the Comments CSS:

1. Log in to the Community application as an administrator.

2. From the "Comments" menu, choose Configure, then Appearance to display the
"Comments Appearance" page.

3. In the "General" section, click Download the current CSS next to the "Upload
custom CSS" field.

Figure 3–2 Download the Current CSS

4. Open the downloaded CSS in FireFox for editing.

5. From the "View" menu, choose Firebug.

6. From the "FireBug" menu, choose Inspect Element. The CSS should look like the
CSS in Figure 3–3.

Customizing CSS and Widget Templates

3-20 Oracle WebCenter Sites Developer's Guide for the Community Application

Figure 3–3 CSS Opened in FireBug

7. The DIV element, which contains the entire Comments code, includes the
wsdk-records-record class. Search for this class in the default CSS previously
downloaded by finding the following:

.wsdk-records .wsdk-records-record
{
border-top: 1px dashed #666;
clear: both;
overflow: hidden;
margin: 5px 0px;
}
Now, let's apply some customizations, for example change the default text color
and size, and border:
.wsdk-records .wsdk-records-record
{
border-top: 2px solid orange;
color: #359AD3;
font-size:15px;
clear: both;
overflow: hidden;
margin: 10px 0px;
}
We can also find that background color is defined in the next div inside this
container div, marked with CSS class "wsdk-state-default". Let's also define a
custom background color:
.wsdk-state-default
{
background: silver;
}

Customizing CSS and Widget Templates

Customizing the Community Application’s Functionality 3-21

8. Customize the wsdk-records-record class as required (Figure 3–4), then save your
changes.

Figure 3–4 Modified CSS

9. To upload the customized CSS, go back to the Community interface.

10. From the "Comments" menu, choose Configure, then Appearance to display the
"Comments Appearance" page.

11. In the "General" section, click Browse next to the "Upload Custom CSS" field, and
select the CSS file you just customized.

12. Click Save.

13. Refresh the web page to refresh the widget, and verify if the changes you made to
the CSS reflect in the widget interface.

To customize the CSS for the Reviews widget, go to Reviews > Configure >
Appearance, then follow the procedure described above (from step 3 to step 12).

3.2.1.2 Customizing Other Widgets
For customizing widgets other than Comments and Reviews, you can use the general
approach described in this section. Depending on your use cases, you can even
customize Comments and Reviews widgets using the approach explained here.

The main difference between the approach that will be discussed in this section and
what is described for Comments and Reviews widgets is that the customized CSS for
other widgets is no longer hosted on the Community application. Typically, the
customized CSS is hosted on the web site on which comments are deployed.

Let's customize the Top Ranked Topics widget, which is an add-on to the Reviews
functionality.

■ Copy the Deployment and CSS Tags Into the Page Template

Customizing CSS and Widget Templates

3-22 Oracle WebCenter Sites Developer's Guide for the Community Application

■ Customize the CSS

Copy the Deployment and CSS Tags Into the Page Template
1. Log in to the Community application as an administrator.

2. From the "Reviews" menu, choose Deploy, then Top Ranked Topics.

Figure 3–5 Top Ranked Topics Option

3. Copy and paste into the web page template the contents of both "Tag" and "CSS
Tag" fields. Insert the contents of the "CSS Tag" field into the <head> section of
page template.

4. Deploy the code snippets. For more information about deploying CSS tags, see the
appendix "Deploying the CSS Tag" in the Oracle WebCenter Sites User’s Guide for the
Community Application.

After the page is rendered, the default look-and-feel of the top ranked topics will
be similar to Figure 3–6.

Figure 3–6 Top Ranked Topic After the Tags are Placed in the Template

Customizing CSS and Widget Templates

Customizing the Community Application’s Functionality 3-23

Customize the CSS
First, take a look at the ID and HREF attributes in the contents of the "CSS Tag" field
that you just deployed. The value of the ID attribute must remain unaffected from
customization. The HREF value will change as you will learn in the steps described in
this section.

<link
id="cos_css"
type="text/css"
rel="stylesheet" href="http://localhost:8280/cos/wsdk/skin/wsdk.topics.css?site_
id=FirstSiteII&gateway=true"
/>

Before you customize the CSS, download its contents by accessing the HREF location
via an Internet browser.

1. In the downloaded CSS, locate CSS classes for topic links. Examine the structure of
the widget in FireBug (Figure 3–7). From the "FireBug" menu, choose Inspect
Element.

Figure 3–7 CSS Opened in FireBug

2. To customize the topic headline and topic link colors, locate the respective code
snippets. Search for .fw_topics .headline and.fw_topics .topic.

3. Modify the following code based on web site design specifications:

.fw_topics .headline h1 {
color: #359AD3;
font-size: 16px;
}
.fw_topics .topic {
font-size: 14px;
padding: 5px;
font-weight: bold;
text-decoration: none;
}
.fw_topics .topic a {
 color: orange;
 font-size: 12px;
 text-decoration: none;
}

Customizing CSS and Widget Templates

3-24 Oracle WebCenter Sites Developer's Guide for the Community Application

4. To apply the CSS to the web site:

a. Copy it to the folder in which web site styles are stored.

b. In the CSS you copied to the page template earlier, replace the default location
with the new URL from which the customized CSS is accessible. For example,
if you copied it to the "skins" folder, then the HREF element should look like
this:

<link
id="cos_css"
type="text/css"
rel="stylesheet" href="http://localhost:8180/cs/skins/wsdk.topics.css"
/>

5. Reload the page which uses the widget whose CSS you just modified, and verify
that your customizations are applied (Figure 3–8).

Figure 3–8 Customization Applied to a Web Site Page

Note: The ID attribute must remain equal to cos_css because when
the Community application loads any widget, it searches on the page
for the <link> element with the cos_css ID. If this ID exists, the
application continues to render the widget. If this ID does not exist,
the application makes an explicit request for the default CSS skin and
applies it to the page. Therefore, using cos_css as the ID attribute
value prevents the Community application from overwriting the
applied customization.

Tip: When deploying Community widgets on the same page,
optimize the number of network calls by loading all of the widgets'
CSS files in a single network call. The Community application
supports this option by allowing you to specify a colon-separated list
of widget names in the <link/> tag. That is, widget names do not
need to be in separate <link/> elements. For example:

<link
id="cos_css"
type="text/css"
rel="stylesheet" href=" http://localhost:8280/cos/wsdk/skin/<widget
name #1>:<widget name #2>:<widget name #3>.css?site_
id=FirstSiteII&gateway=true "
/>

Examples of widget names are wsdk.topics and comments-summary.
You can find out the actual values for a particular widget in the "CSS
Tag" field of the corresponding deployment page.

Customizing CSS and Widget Templates

Customizing the Community Application’s Functionality 3-25

3.2.2 Customizing a Widget Template
In the case of dramatic changes (such as changing the position of action links from
bottom to top in the Comments widget), widget templates can be customized
according to project requirements.

Widget templates are rendered dynamically using JavaScript on the browser side.
These templates are based on the Google Closure Templates technology.

There is a set of template directives that can be used in customizations. For
information, visit the Google documentation web site at:
http://code.google.com/closure/templates/docs/commands.html

Ensure that you have read and understood the print, if/else, for, and foreach
statements in Google documentation before you apply the information discussed in
this section.

This section includes the following:

■ Section 3.2.2.1, "Understanding Community Widgets Templates"

■ Section 3.2.2.2, "Creating a Sample Template"

■ Section 3.2.2.3, "Loading Custom Data Sets"

3.2.2.1 Understanding Community Widgets Templates
This section describes widget template technology and syntax. It explains how you can
override attach points by translating those declared in the Community application’s
templates into corresponding WebCenter Sites template names. This section provides
information about attach points available for customization in the Community
application, and it explains how to navigate to the widget structure and locate the
necessary attach points when customizing a template.

This section includes the following:

■ Section 3.2.2.1.1, "Context Variable Access Points"

■ Section 3.2.2.1.2, "Dynamic Scripting"

■ Section 3.2.2.1.3, "Widget Sources and Templates"

■ Section 3.2.2.1.4, "Model-View-Controller Pattern"

■ Section 3.2.2.1.5, "Model-View-Controller Regions"

■ Section 3.2.2.1.6, "Nested Templates"

■ Section 3.2.2.1.7, "Customization Workflow"

■ Section 3.2.2.1.8, "Attach Points in the Widget Template Structure"

3.2.2.1.1 Context Variable Access Points To modify templates, developers need to work
with visitors’ permissions (configured in the Community interface) and variables.
Each Community application template includes a standard $stack variable that you
can use to discover these context variables and permissions. For example, you can use
the following tag to insert localizable resources into a template:

<h1>Welcome to {$stack.resources.get('label.comments')} Widget </h1>

The $stack.resources variable is an access point to all the resources declared in
cos.war/WEB-INF/classes/i18n_resources/widgets/cos.commons and
cos.war/WEB-INF/classes/i18n_resources/widgets/<widget name>.

Customizing CSS and Widget Templates

3-26 Oracle WebCenter Sites Developer's Guide for the Community Application

3.2.2.1.2 Dynamic Scripting You can build the dynamic logic in the template by using
JavaScript’s {script} directive:

{script}
var lastIndex = 10;
{/script}

Then, variables defined inside {script} are available in other closure directives with
$$ mark; for example, $$lastIndex:

{for $index in range($$lastIndex)}
For loop: Iteration #{$index + 1} of {$$lastIndex} in total

{/for}

In a scenario when the Google closure template variable needs to be accessed in the
{script} tag, the regular {$var} syntax can be used:

{for $index in range(2)}
 {script}
 alert({$index});
 {/script}
{/for}

The data produced inside {script} can be displayed on a web page in the following
ways:

■ By closing the {script} tag and printing the data previously declared using the
{$$variable}} syntax.

■ By using the system output variable provided by the Community application to
print results immediately from JavaScript using output.append(variable) inside
the {script} statement:

{script}
 var message= "Hello World!";
 output.append(message);
{/script}

3.2.2.1.3 Widget Sources and Templates The list of widget sources shipped with the
Community application is located in the cos.war/js/widgets directory. For example,
the Comments widget’s code is stored in the cos.war/js/widgets/wsdk.comments
directory. Each widget directory contains a .shtml file, the widget layout definition,
and the main entry point to the process of rendering the widget interface. For example,
the comments_layout_view.shtml file is the main entry point for the Comments
widget.

3.2.2.1.4 Model-View-Controller Pattern To build a widget interface, the Community
application uses the Model-View-Controller (MVC) pattern. Therefore, each interface
region includes three items corresponding to Model, View, and Controller. For
example:

comments_layout_action.js (Controller)
comments_layout_model.js (Model)
comments_layout_view.shtml (View)

3.2.2.1.5 Model-View-Controller Regions To build a widget interface, the Community
application works with MVC definitions instead of template (.shtml) definitions.

Customizing CSS and Widget Templates

Customizing the Community Application’s Functionality 3-27

For example, the Comments layout’s MVC region can be identified by the /comments_
layout ID in the cos.war/js/widgets/<WidgetName>/... directory. The "/" special
character signifies a relative path in the widget folder. The comments_layout MVC
prefix is used with suffixes such as _view.shtml (view contains HTML pages with
bindings) for viewing and discovering other corresponding MVC entities. So, the MVC
definition of a particular interface region is identified by its relative path in its widget
folder and the prefix of MVC entities that are used to discover a particular model,
view, or controller.

Understanding such MVC IDs is essential in building widgets interfaces because these
IDs are heavily used across templates.

3.2.2.1.6 Nested Templates When an MVC entity is processed and its template is
rendered, another MVC entity can be recursively included in the template so that
complex interfaces can be built by aggregating smaller interface pieces.

To enable nesting of templates, you can add the following tag to a template in which
you want to nest other templates. For example, nesting the Login Bar widget in the
Reviews widget.

<div attachPoint="/sample"></div>

When you include this tag in your template, the Community application searches for
the sample_action.js and sample_view.shtml files in the widget's root folder:
cos.war/js/widgets/<WidgetName>/.

In addition to the attachPoint="" syntax, the bindMvc="" directive also includes
nested templates, for example bindMvc="wsdk.ui.input". However, this directive
calls the templates that are located outside of a particular widget folder hierarchy, and
therefore, does not include templates from the current widget folder hierarchy. This
enables the reuse of components across multiple widgets in the Community
application.

3.2.2.1.7 Customization Workflow The previous section discussed how you can use
attach points to nest templates. This section describes how to customize or override
attach points via templates.

When the Community application compiles a JavaScript bundle for a widget, it
downloads from WebCenter Sites any widget template customizations that are
defined as a WebCenter Sites template, compiles them into JavaScript, and applies
them to the widget. A contract for template names, which allows to make an
association between the Community application and WebCenter Sites, is specified at
the following location: http://{host}:{port}/cs/ContentServer?pagename={site
name}/cos/{widget}/{attach point}_view.shtml&ft_ss=true. It also enables the
Community application to discover specific templates.

To customize a template, for example the /sample template, you must first create the
WebCenter Sites template asset on the production WebCenter Sites system on which
the Community application is configured.

To translate an attach point into a WebCenter Sites template name, use the following
format:

http://{host}:{port}/cs/ContentServer
?pagename={site name}/cos/{widget}/{attach point}_view.shtml
&ft_ss=true

For instance, in one of the templates of the "hello-world" widget, the
attachPoint="/sample" attach point is translated into the following HTTP request to
WebCenter Sites:

Customizing CSS and Widget Templates

3-28 Oracle WebCenter Sites Developer's Guide for the Community Application

http://{host}:{port}/cs/ContentServer
?pagename={site name}/cos/hello-world/sample_view.shtml
&ft_ss=true

For a custom Community application template, you must create a corresponding
template in WebCenter Sites by following the WebCenter Sites naming convention:
"cos/hello-world/sample_view.shtml".

The bindMvc is a set of pre-defined attach points that can be potentially used for
nesting templates. Table 3–3 lists the templates that you can nest using the bindMvc=""
attribute syntax in the template you just created. You can find the default templates in
the corresponding subfolders in the cos.war/js/widgets.commons directory in which
reusable widget code is stored.

To override a component, use the mapping (Table 3–13) for binding the MVC names to
the names of templates that you will create in WebCenter Sites.

3.2.2.1.8 Attach Points in the Widget Template Structure The interfaces and functionality of
Community widgets are built with the help of templates structured in a certain way.
Figure 3–9 shows the structure of the Comments widget. You can treat this structure
as a navigation map while you are working with customizations.

Table 3–13 Mapping for Binding MVC Names To Template Names

Bound MVC Template Name to Override

wsdk.ui.stars cos/wsdk.ui.stars/stars_view.shtml

wsdk.ui.thumbs cos/wsdk.ui.thumbs/thumbs_view.shtml

wsdk.ui.input cos/wsdk.ui.input/input_view.shtml

wsdk.ui.textarea cos/wsdk.ui.textarea/textarea_view.shtml

wsdk.ui.pagination cos/wsdk.ui.pagination/pagination_view.shtml

wsdk.ui.session cos/wsdk.ui.session/session_view.shtml

Customizing CSS and Widget Templates

Customizing the Community Application’s Functionality 3-29

Figure 3–9 Structure of the Comments Widget

The attach points that are invoked and rendered dynamically by following a visitor's
action are not referenced directly in templates. For example, the attach points that are
invoked at the time when a visitor clicks "edit" or "delete" links on a comment. The
dialog boxes for these events cannot be rendered during the initial widget load phase,
and therefore, they are loaded programmatically later.

Some examples of attach points for such dynamic dialog boxes are:

■ The "Delete" dialog box (Figure 3–10) is displayed when a visitor clicks the "delete"
link on a comment.

Customizing CSS and Widget Templates

3-30 Oracle WebCenter Sites Developer's Guide for the Community Application

Figure 3–10 Delete Dialog Box

■ The "Flag Content" dialog box (Figure 3–11) is displayed when a comment is
flagged.

Figure 3–11 Flag Content Dialog Box

For the Reviews widget, the templates and their attach points are structured as shown
in Figure 3–12. The attach points for flagging, editing, and removing a review are the
same as for comments: "/record_list/record/flag/flag", "/record_
list/record/edit/form", and "/record_list/record/remove/remove", respectively.

Customizing CSS and Widget Templates

Customizing the Community Application’s Functionality 3-31

Figure 3–12 Post a Review Page

Forms for posting comments and reviews contain the "Preview" button. Clicking this
button displays a pop-up with the rendered comment or preview (Figure 3–13).

Customizing CSS and Widget Templates

3-32 Oracle WebCenter Sites Developer's Guide for the Community Application

Figure 3–13 Preview Pop-Up Dialog Box

For both, comments and reviews, the "/record_list/record/preview/preview" attach
point creates this pop-up functionality.

3.2.2.2 Creating a Sample Template
To create a sample template using the WebCenter Sites Advanced interface:

1. Stop all Community application servers, including those on production and
management environments.

2. Start the production WebCenter Sites instance.

In the following steps, it is assumed that this server is running on the local host at
port 8080.

3. Log in to WebCenter Sites at http://localhost:8080/cs/login, then select the
site in which templates need to be customized.

4. Launch the Advanced interface application on that site.

5. To create a customizable template, click New.

Tip: The Community application loads customized templates from
the production WebCenter Sites instance. However, the production
instance may not have editorial interface to manage these templates.
Therefore, it is recommended to start with the development
environment first, and point production and management
Community application server instances to the single instance of
WebCenter Sites that has the editorial interface. Using this approach,
you can compose templates and verify their look-and-feel in the
Community application. Once you have created and tested your
templates, you can either export/import them from development
environment to production or publish your custom templates to the
desired location.

Customizing CSS and Widget Templates

Customizing the Community Application’s Functionality 3-33

Figure 3–14 WebCenter Sites Advanced Interface - New

6. In the table on the right side, click the New Template link next to "Template".

Figure 3–15 New Template Link

7. Set "Assignee" to any value as this value is not relevant here, then click Continue.

8. In the "Name" field, specify the attach point to be overridden in the form
cos/{widget}/{attach point}_view.shtml.

9. In the "For Asset Type" field, choose can apply to various asset types, then click
Continue.

10. In the "Usage" field, choose Element defines a whole HTML page and can be
called externally.

11. In the "Create Template Element?" field, click JSP.

12. In the "Element Logic" field, just before the </cs:ftcs> closing tag, enter the
content of the template. The template content must have the following statement,
as well as its essentials for invalidating templates cached in the Community
application:

<%-- Record dependencies for the Template --%>
<ics:if condition='<%=ics.GetVar("tid")!=null%>'><ics:then><render:logdep
cid='<%=ics.GetVar("tid")%>' c="Template"/></ics:then></ics:if>

13. For the content of the template, navigate to the Community application file system
and copy the default content available at cos.war/js/widgets/{widget}/{attach
point}_view.shtml.

14. Click Continue.

Customizing CSS and Widget Templates

3-34 Oracle WebCenter Sites Developer's Guide for the Community Application

15. On the "Site Entry" page, click Save.

16. To verify that the newly created template is available to the Community
application over HTTP, enter the template’s URL in a browser in the following
format:

http://{host}:{port}/cs/ContentServer?pagename={site}/cos{attach point}_
view.shtml&ft_ss=true

17. Start Community application servers, and verify that the customization has been
applied to the deployed widgets.

3.2.2.3 Loading Custom Data Sets
In some scenarios, it is necessary to load the customized project-specific data in the
existing templates. You can achieve this by exposing the data to the Community
application as a REST service, in the JSONP format.

Once you have created a REST service, invoke it from the template using the system
loader variable. To ensure that the custom data is loaded before the template is
rendered, you must include the invocation in the {script.preload} section at the
beginning of the page.

{script.preload}
 loader.loadData(url, params, key);
{/script.preload}

■ url - URL address of the JSONP endpoint that provides data.

■ params - parameters to be passed as GET parameters to the JSONP endpoint, if the
query needs to be parameterized.

■ key - result set returned with data are included in this variable so that this variable
is accessible at $stack.key.

1. As an example, create a data.jsp file which you will use as the JSONP REST
service endpoint. Include the following contents in this file:

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"
 pageEncoding="ISO-8859-1"%>
<%
out.write(request.getParameter("cosrestcallback"));
%>({ responseCode : "OK", data : ["foo","bar"]});

In this example, the response is provided in the JSON format, containing sample
data as a response code and the data array. The JSON response is wrapped up by
the callback name according to the JSONP protocol used by the Community
application.

2. Deploy the data.jsp file to the Community application’s webapp folder.

3. The Community application has a sample widget that you can use as a sandbox
for experimenting with the widget technology. Its source is located in the
cos.war/js/widget/sample.widget code. To create custom template in
WebCenter Sites with the cos/sample.widget/layout_view.shtml name, follow
the procedure described in Section 3.2.2.2, "Creating a Sample Template."

4. In the customized template, download the data given in the script.preload
section and then print it on a page.

5. Replace the Community application URL with your location.

Figure 3–1 shows the code for sample data after it is loaded.

Creating a Custom Word Filter

Customizing the Community Application’s Functionality 3-35

Example 3–1 Sample Data Loaded

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld"
%><%@ taglib prefix="asset" uri="futuretense_cs/asset.tld"
%><%@ taglib prefix="assetset" uri="futuretense_cs/assetset.tld"
%><%@ taglib prefix="commercecontext" uri="futuretense_cs/commercecontext.tld"
%><%@ taglib prefix="ics" uri="futuretense_cs/ics.tld"
%><%@ taglib prefix="listobject" uri="futuretense_cs/listobject.tld"
%><%@ taglib prefix="render" uri="futuretense_cs/render.tld"
%><%@ taglib prefix="siteplan" uri="futuretense_cs/siteplan.tld"
%><%@ taglib prefix="searchstate" uri="futuretense_cs/searchstate.tld"
%><%@ page import="COM.FutureTense.Interfaces.*,
 COM.FutureTense.Util.ftMessage,
 COM.FutureTense.Util.ftErrors"
%><cs:ftcs><%-- /cos/sample.widget/layout_view.shtml
--%>
<%-- Record dependencies for the Template --%>
<ics:if condition='<%=ics.GetVar("tid")!=null%>'><ics:then><render:logdep
cid='<%=ics.GetVar("tid")%>' c="Template"/></ics:then></ics:if>
 {script.preload}
 loader.loadData("http://localhost:8280/cos/data.jsp",{},
"customData");
 {/script.preload}
 <div>
<h1>Welcome to Sample Widget. Data Load Demo</h1>

Data loaded with response code = "{$stack.customData.responseCode}"

Custom data loaded:
{script}
 var data = {$stack.customData.data};
 for(var dataIdx in data)
 {
 var item = data[dataIdx];
 {/script}
 {$$item},
 {script}
 }
{/script}
</cs:ftcs>

3.3 Creating a Custom Word Filter
The Community application enables visitors to post their feedback on a web site on
which the Community widgets are deployed. To prevent publishing of objectionable
content, spam, or any fraudulent information on the web site, the Community
application provides a User-Generated Content (UGC) filtering sub-system for content
filtration.

The default configuration of the filtering system relies on a word filter file – a list of
prohibited words – that can be uploaded via the Community interface > Settings >
Restricted Words. Once the list of prohibited words is uploaded and auto-moderation
is enabled via the Community interface > Settings > Moderation, the Community
application examines the content posted by visitors and compares each word with
those in the list. If a posted comment or review contains any of the prohibited words,
then it is marked "Inappropriate" and is not published on the web site.

Creating a Custom Word Filter

3-36 Oracle WebCenter Sites Developer's Guide for the Community Application

There may be a need to customize the behavior of the default content filter. For
example, to integrate with third-party libraries that provide a functionality for
statistical inferences and advanced techniques for spam detection and prevention, the
Community application provides a pluggable word filter model. It allows you to
create a custom word filter from scratch.

To create a custom word filter, you must first create a Java class containing the word
filter logic, compile this class, and then assemble it as a JAR file so it can be plugged
into the Community application deployment.

1. Create a new Java project in your IDE.

2. Add a JAR library, which contains the
com.fatwire.cos.moderation.filter.WordFilter interface, to your project's
classpath. You can copy this library JAR from the Community application’s web
application at cos.war/WEB-INF/lib/cos-api-1.5.jar.

Example 3–2 provides the WordFilter interface.

Example 3–2 New Java Project

package com.fatwire.cos.moderation.filter;
import java.util.Set;
/**
 * The word filter interface that needs to be implemented
 * when developing and plugging-in a custom word filter
 * to Community Server.
 * The content is assigned to "Inappropriate" category and isn't
 * shown on web site once any of the filters registered in the system
 * reports an abuse.
 * @author e_shevchenko
 *
 * May 16, 2011
 */
public interface WordFilter
{
 /**
 * The filter method makes a decision whether content
 * specified can be shown on web site or not
 * @param text the content submitted by visitor
 * @param profanityWords the list of prohibited words uploaded on
 * "Moderation" page in the Community interface
 * @return true if an abuse detected and false if content
 * can be shown on web site
 */
 boolean filter(StringBuffer text, Set<String> profanityWords);
}

3. Create a new Java class in your project, for example, cos.demo.DemoFilter.

4. Declare that this class implements the WordFilter interface:

package cos.demo;

import java.util.Set;
import com.fatwire.cos.moderation.filter.WordFilter;

Note: To ensure that prohibited words containing special characters
are marked "Inappropriate” and not "Approved", you must create a
custom word filter with the syntax shown in Example 3–2.

Creating a Custom Word Filter

Customizing the Community Application’s Functionality 3-37

public class DemoFilter
 implements WordFilter
{
 @Override
 public boolean filter(StringBuffer text,
 Set<String> profanityWords)
 {
 // TODO add filter logic here
 return false;
 }
}

5. Add your custom implementation inside the filter method body.

The filter method takes two parameters: the source text submitted by visitors
and the list of prohibited words uploaded as a text file via the Community
interface. Based on your requirements, you can decide whether to use the existing
list of prohibited words or use a third-party database of prohibited words.

The following example shows how to verify whether user-generated content
contains the word "demo":

package cos.demo;
import java.util.Set;
import com.fatwire.cos.moderation.filter.WordFilter;
public class DemoFilter
 implements WordFilter
{
 @Override
 public boolean filter(StringBuffer text, Set<String> profanityWords)
 {
 boolean result = false;
 if(null != text)
 {
 result = text.toString().contains("demo");
 }
 return result;
 }
}

6. Implement and then compile the contents of the filter class.

7. Package the compiled class as a JAR file, filter-demo.jar.

8. To make this custom filter available to the Community application’s class loader,
copy the filter-demo.jar file to the cos.war/WEB-INF/lib directory in both,
management and production environments.

9. To enable the Community application to discover the custom filter, plug this filter
into the cos_word_filters.xml configuration file located in the
cos.war/WEB-INF/classes directory:

<?xml version="1.0" encoding="UTF-8" ?>
<word-filters>
<word-filter
className="com.fatwire.cos.records.moderation.filter.DefaultWordFilter"
/>
</word-filters>

10. Replace the default word filter. On both management and production
environments, remove the existing <word-filter/> element from the cos_word_

Creating a CAPTCHA Generator

3-38 Oracle WebCenter Sites Developer's Guide for the Community Application

filters.xml files and add a new one that contains a reference to the class you
created. The contents of the new cos_word_filters.xml files will look like the
following:

<?xml version="1.0" encoding="UTF-8" ?>
<word-filters>
 <word-filter className="cos.demo.DemoFilter"/>
</word-filters>

11. Restart the Community application servers on both, management and production
sytems.

12. To enable automatic word filtering, go to the Community application’s interface >
Settings >Moderation and select Auto-moderate against Restricted Words in the
"AUTO-MODERATION "section (Figure 3–16).

Figure 3–16 Auto Moderation Against Restricted Words

13. On the web site, post a comment or review which includes the word "demo". You
will notice that your post will be assigned to the "Inappropriate" category, and
therefore, it will not be published.

3.4 Creating a CAPTCHA Generator
CAPTCHA technology helps identify robots of automated spamming systems that
may attack a web site. The Community application provides a plug-in model for
custom implementations of CAPTCHA.

This section describes the procedure for creating a simple CAPTCHA generator and
plugging it into the Community application. This procedure is similar to the
procedure for creating a custom word filter. To create a CAPTCHA generator, you will
create a new class which implements the required interface, compile this class,
package it as a JAR file, and then deploy it to Community application server.

1. Create a new Java project, "demo-captcha" in your IDE.

2. Add a JAR library for your project to your project's classpath. You can copy the
required JAR from the Community web application directory available here:
cos.war/WEB-INF/lib/cos-api-1.5.jar.

Creating a CAPTCHA Generator

Customizing the Community Application’s Functionality 3-39

3. From the cos-api-1.5.jar file, extract the interface
com.fatwire.cos.captcha.CaptchaGenerator to be implemented. Example 3–3
shows the contents of this interface.

Example 3–3 com.fatwire.cos.captcha.CaptchaGenerator Interface

package com.fatwire.cos.captcha;
/**
 * The interface that needs to be implemented when
 * creating plug-in that generates CAPTCHA to be shown to
 * visitors when UGC is submitted.
 *
 * It's a factory that generates complex Captcha objects that are managed
 * by Community Server and utilized when CAPTCHA is rendered for visitors
 * and when it's validated on content submission
 *
 * @author alex
 *
 * Oct 17, 2011
 */
public interface CaptchaGenerator
{
 /**
 * Factory method that creates a new captcha object that consists of challenge
text
 * and challenge image to shown to visitors
 * @return
 */
 public Captcha generate();
}

4. In the "demo-captcha" project, create a new Java class called
cos.demo.DemoGenerator (Example 3–4).

Example 3–4 demo-captcha Project

package cos.demo;
import com.fatwire.cos.captcha.Captcha;
import com.fatwire.cos.captcha.CaptchaGenerator;
public class DemoGenerator
 implements CaptchaGenerator
{
 @Override
 public Captcha generate()
 {
 // TODO add implementation
 return null;
 }
}

5. Implement the CaptchaGenerator interface.

6. Implement the generate method, as shown in Example 3–5.

First, generate the challenge text, and then create the image displaying the
generated text. Once text and image are ready, package them into the Captcha
object with the help of the CaptchaFactory class. It is highly recommended that
you use this factory instead of creating a custom implementation of the Captcha
object. This is because the Captcha object built by the factory is already serializable

Creating a CAPTCHA Generator

3-40 Oracle WebCenter Sites Developer's Guide for the Community Application

and can be safely shared across cluster members. If you choose to create a custom
implementation, then make the Captcha object serializable.

Example 3–5 Generate Method

package cos.demo;
import com.fatwire.cos.captcha.Captcha;
import com.fatwire.cos.captcha.CaptchaFactory;
import com.fatwire.cos.captcha.CaptchaGenerator;
public class DemoGenerator
 implements CaptchaGenerator
{
 @Override
 public Captcha generate()
 {
 String challenge = "foo_bar";// TODO add generation
 byte[] image = generateImage(challenge); //TODO: generate image
 return CaptchaFactory.create(challenge, image);
 }
}

7. Package the compiled class into a JAR file, captcha-demo.jar.

8. To make the generator available to the Community application class loader, copy
the captcha-demo.jar file to the cos.war/WEB-INF/lib directory on both
management and production environments.

9. To enable the Community application to discover the generator, plug it into the
configuration file. Create the cos_captcha.xml file in the
cos.war/WEB-INF/classes directory with the following contents:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<captcha className="cos.demo.DemoGenerator"/>

10. Restart the Community application servers on both, management and production
systems.

11. To enable CAPTCHA for comments, go to the Community interface, select
Comments > Configure > Permissions, then select User must enter a verification
code in the "Who Can Comment?" section (Figure 3–17).

Creating a CAPTCHA Generator

Customizing the Community Application’s Functionality 3-41

Figure 3–17 Enable CAPTCHA

12. Repeat the previous step to enable CAPTCHA for reviews.

13. Deploy Comments or Reviews widgets with login bar support.

14. To verify that the field for the CAPTCHA challenge is displayed and the
CAPTCHA image is rendered, click the Register link on the web site. You can also
try to post a comment or review as a guest. CAPTCHA will be displayed in the
form.

Creating a CAPTCHA Generator

3-42 Oracle WebCenter Sites Developer's Guide for the Community Application

4

Securing the Community Application 4-1

4Securing the Community Application

This chapter describes how to enable security between the Community application
and visitor CAS application so transactions made via third-party authentication
providers are secured. This chapter includes the following sections:

■ Section 4.1, "About Security"

■ Section 4.2, "Generating Security Certificates"

■ Section 4.3, "Exporting Certificates From JKS Files"

■ Section 4.4, "Deploying Certificates to the Community Applications"

■ Section 4.5, "Configuring the Community Application"

4.1 About Security
Third-party authentication providers such as Facebook and Twitter rely on the
security features of the application through which the third-party authentication
support is enabled. These authentication providers let the application security validate
the user name and password of a visitor when a user session is starting. To prevent an
intruder from intercepting requests between the Community application and visitor
CAS, a secured bridge can be established with the help of assymetric cryptography.
The Community application comes packaged with default pre-generated RSA
certificates. While these default certifications can be used for demo purposes, the
development and QA environments must generate new certificates for production
deployments.

Both, the Community application and the visitor CAS application have the following
components:

■ A key storage (Java Key Store, JKS) each, which is packaged with its own private
and public key pair.

■ The public key (certificate) of the application to enable communication between
both Community applications.

The Community application contains its own JKS, cos.jks file and the visitor CAS
application’s public key, the cas.crt file. Similarly, the visitor CAS application

Note: Because RSA certificates are used to secure a communication
channel, it is very easy to mistake them for SSL certificates and for the
configuration which is typically performed when configuring
products to work over HTTPS. Do not mix these activities as they
serve different purposes.

Generating Security Certificates

4-2 Oracle WebCenter Sites Developer's Guide for the Community Application

contains its own JKS, the cas.jks file and the Community application’s public key, the
cos.crt file. These files are located in the WEB-INF/classes directories of both
applications.

Access to the JKS file that contains the private key is protected by a password. We
recommend changing the default password for security reasons.

4.2 Generating Security Certificates
This section describes how to generate new certificates to replace default certificates.

The keytool Java utility, which is located in the JAVA_HOME/bin directory, is used to
generate new certificates. This is a command line utility, and you need to supply a
number of arguments when running it. The notation is as follows:

keytool -genkeypair -keystore keystore -storepass storepass -alias alias -keyalg
keyalg -dname dname -keypass keypass -validity valDays

This command generates a key pair (a public key and associated private key). It wraps
the public key into an X.509 v3 self-signed certificate, which is stored as a
single-element certificate chain. This certificate chain and the private key are stored in
a new keystore entry identified by alias.

Please see the official documentation for more details:
http://docs.oracle.com/javase/6/docs/technotes/tools/windows/key
tool.html

While the keytool utility requires many arguments, the following are mandatory for
the Community application:

■ keystore keystore: The target keystore file that will be generated.

■ storepass storepass: The password to protect the integrity of the keystore. The
storepass password must be at least six characters long. This password is
required in all subsequent operations performed on keystore contents. If you do
not set the -storepass option at the time when you generate key certificates, you
will be required to supply it when prompted for it.

■ keyalg: The algorithm for generating the key pair. For the Community
application, RSA must be used.

■ dname dname: The X.500 distinguished name to be associated with alias. It is
supplied to the issuer and subject fields in the self-signed certificate. If you do not
provide a distinguished name at the time when you generate new certificates, you
will be prompted to specify it.

■ keypass keypass: The password used to protect the private key of the generated
key pair. If you do not provide a password when you generate new certificates,
you will be prompted to specify it.

■ validity valDays: The number of days for which the certificate should be
considered valid.

Sample commands may look like the following:

Note: Pressing the RETURN key at the prompt sets the same
password as that used for the keystore.

keypass must be at least six characters long.

Configuring the Community Application

Securing the Community Application 4-3

For the Community application:

keytool -genkeypair -keystore cos.jks -storepass cosstorepass -alias coskey
-keyalg RSA -dname "CN=cos, O=FatWire, C=US" -keypass coskeypass -validity 360

For the visitor CAS application:

keytool -genkeypair -keystore cas.jks -storepass casstorepass -alias caskey
-keyalg RSA -dname "CN=cas, O=FatWire, C=US" -keypass caskeypass -validity 360

4.3 Exporting Certificates From JKS Files
After generating JKS files for the Community application and the visitor CAS
application, extract the public key certificate from each file. The Community
application’s certificate is shared with the visitor CAS application, and vice versa.

To export the certificate from keystore, run the following command on the
Community application and the visitor CAS application using values appropriate to
each of these applications:

keytool -exportcert -keystore keystore.jks -storepass storepass -alias alias
-file cert_file.crt

This command reads from the keystore.jks file the certificate associated by alias and
saves it into the cert_file.crt file. When generating keystores, the -keystore and
-storepass arguments must be the same as those used in previous commands.

Continuing the examples from the previous section, the commands may look like the
following:

For the Community application:

keytool -exportcert -keystore cos.jks -storepass cosstorepass -alias coskey -file
cos.crt

For the visitor CAS application:

keytool -exportcert -keystore cas.jks -storepass casstorepass -alias caskey -file
cas.crt

4.4 Deploying Certificates to the Community Applications
Once you have generated keystores and exported public certificates to the cert_
file.crt file, replace default certificates with the newly generated certificates on the
Community application and the visitor CAS application.

■ The Community application: To replace default certificates with new, upload
cos.jks and cas.crt files to the cos.war/WEB-INF/classes directory.

■ The visitor CAS application: To replace default certificates with new, upload
cas.jks and cos.crt files to the cas.war/WEB-INF/classes directory.

4.5 Configuring the Community Application
Once you have deployed the certificates, the final step is to specify the keystore and
the certificate password along with the certificate aliases in the applications’
configuration. On the Community application and the visitor CAS application, update

Configuring the Community Application

4-4 Oracle WebCenter Sites Developer's Guide for the Community Application

the configuration in the setup_security.properties file located in the
WEB-INF/classes directories of cos.war and cas.war applications.

##
#################
Section 1: PRIVATE KEYS SETTINGS
##
#################
CoS Private Key Settings
#######################################
…
#
CoS keys storage password. Should be in the encrypted form.
#
widgets.security.cos.attrs.keystore_password=<specify your keystore password for
cos.jks>
#
CoS private key identity (alias) in the CoS keys storage (Java Key Store)
#
widgets.security.cos.attrs.privatekey_alias=<specify CoS alias, e.g. "coskey">
#
CoS private key password. Should be in the encrypted form.
#
widgets.security.cos.attrs.privatekey_password=<specify a cos key password>
CAS Private Key Settings
#######################################
…
#
CAS keys storage password. Should be in the encrypted form
#
widgets.security.cas.attrs.keystore_password=<specify keystore password for
cas.jks>
#
CAS private key identity (alias) in the CAS keys storage (Java Key Store)
#
widgets.security.cas.attrs.privatekey_alias=<specify CAS alias>
#
CAS private key password. Should be in the encrypted form
#
widgets.security.cas.attrs.privatekey_password=<specify a cas key password>

After updating the setup_security.properties file for both applications, restart the
application servers hosting cos.war and cas.war. Ensure that no security exceptions
occur in the logs of the Community application and the visitor CAS application.

Tip: As these files are identical in both applications, you can update
the setup_security.properties file for one application and then
copy it to another application’s WEB-INF/classes directory.

5

Translating the Community Application’s Functionality into Different Languages 5-1

5Translating the Community Application’s
Functionality into Different Languages

This chapter describes how to enable translation of the Community application
functionality into multiple languages.

This chapter includes the following sections:

■ Section 5.1, "About Localization"

■ Section 5.2, "Adding a New Language to the Community Application"

■ Section 5.3, "Registering the New Language in the Community Application"

5.1 About Localization
The Community application’s user interface can be translated, by default, into the
following languages: English, French, German, Italian, Japanese, Korean, Portuguese,
Spanish, Simplified Chinese, and Traditional Chinese. Moreover, you can also
customize existing labels and translations to new languages on demand.

The language pack is located in the file system of the Community application at
cos.war/WEB-INF/classes/i18n_resources.

Figure 5–1 Language Pack

The i18n_resources directory contains two subfolders, server and widgets that
include resources for the Community interface and for client-side widgets
respectively.

The server directory contains a list of Java property resource bundles that are
separated on the basis of the Community application sub-system. It contains

About Localization

5-2 Oracle WebCenter Sites Developer's Guide for the Community Application

localizations for the following sub-systems: core, cos-resources, service, shared,
and users.

The widgets directory contains a list of folders in which each folder corresponds to a
particular widget. For example, the wsdk.comments folder corresponds to the
Comments widget and the wsdk.reviews folder to the Reviews widget.

The cos.commons directory contains resources that are shared across all the widgets.

The logic of picking up a required language is different in the Community
application’s interface and in the widgets deployed on a web site. The following
sections discuss both logics in the order of priority.

Section 5.1.1, "Language Detection for the Community Interface"

■ Section 5.1.2, "Language Detection for Community Widgets"

5.1.1 Language Detection for the Community Interface
1. If a language is customized in the Web Experience Management (WEM) profile for

the logged-in business user, apply it. If not, then proceed to step 2.

2. If the locale of the browser is supported, apply this setting. If not, proceed to step
3.

3. Apply the default English locale.

5.1.2 Language Detection for Community Widgets
Language detection logic described in this section applies to all Community widgets.

The following first and second steps are based on the premise that the web site may
already have some language selection mechanism to display site content in different
languages. For example, most sites have a language icon on the top or bottom of a site
page for this purpose. If this mechanism uses cookies or JavaScript variables for
language selection, then the Community widgets can also use them after client's
consent.

Site developers customize the language selection mechanism by enabling the creation
of the cos_language cookie or the JavaScript variable with a language value. Once this
is done, the Community widgets can use the client's language selection mechanism to
display site content in different languages.

1. Use the language parameter given in a cos_language cookie that site developers
specify manually.

If no cookie is set, proceed to step 2.

2. Use the language parameter of a global JavaScript variable, cos_language that site
developers or integrators can specify manually.

If no variable is set, proceed to step 3.

3. Use the default language setting chosen by the administrator via the Community
interface > Settings > Language page (Figure 5–2).

This setting applies to all types of widgets deployed on the site.

Registering the New Language in the Community Application

Translating the Community Application’s Functionality into Different Languages 5-3

Figure 5–2 Language Setting in the Community Application

5.2 Adding a New Language to the Community Application
To add a new language:

1. List the new language in the Community application’s configuration (see
"Registering the New Language in the Community Application"), so that it
displays in the default language selector in the Community interface.

2. Upload translations for all the resources located in
cos.war/WEB-INF/classes/i18n_resources/<subfolders containing
translation files>. That is, translate all *_en.properties files located in this
directory and copy back the translated files (for example, for Russian language the
file is *_ru.properties).

5.3 Registering the New Language in the Community Application
To register a new language in the Community application configuration:

1. Navigate to the cos.war/WEB-INF/lib directory.

2. Open the cos-shared-11.1.1.6.0.jar file, then extract the cos_core_
metadata.xml file.

3. Search for the schema::cos::commons:permissions:language string. The
declaration is as follows:

<bean id="language"
class="com.fatwire.cos.metadata.core.model.MetadataDescriptorImpl">
 <property name="uid"
 value="schema::cos::commons:permissions:language"/>
 <property name="name" value="label.language"/>
 <property name="defaultValue" value="en_US"/>
 <property name="dataOptionsValue" value="[
{ name: 'label.language.english', value:'en_US'},
{ name: 'label.language.brazilian_portuguese', value:'pt_BR'},
{ name: 'label.language.chinese_simplified', value:'zh_CN'},
{ name: 'label.language.chinese_traditional', value:'zh_TW'},
{ name: 'label.language.french', value:'fr'},
{ name: 'label.language.german', value:'de'},
{ name: 'label.language.italian', value:'it'},
{ name: 'label.language.japanese', value:'ja'},
{ name: 'label.language.korean', value:'ko'},
{ name: 'label.language.spanish', value:'es'},
<ADD COMMA AND INSERT NEW LANGUAGE HERE>
]"/>
 …

Registering the New Language in the Community Application

5-4 Oracle WebCenter Sites Developer's Guide for the Community Application

</bean>

4. To the dataOptionsValue property, add a new JSON object for the new language.
For example, for Russian, the entry can be the following:

{ name: 'label.language.russian', value:'ru'}

If the entry for Russian is added, the property value will be:

<property name="dataOptionsValue" value="[
{ name: 'label.language.english', value:'en_US'},
{ name: 'label.language.brazilian_portuguese', value:'pt_BR'},
{ name: 'label.language.chinese_simplified', value:'zh_CN'},
{ name: 'label.language.chinese_traditional', value:'zh_TW'},
{ name: 'label.language.french', value:'fr'},
{ name: 'label.language.german', value:'de'},
{ name: 'label.language.italian', value:'it'},
{ name: 'label.language.japanese', value:'ja'},
{ name: 'label.language.korean', value:'ko'},
{ name: 'label.language.spanish', value:'es'}
{ name: 'label.language.russian', value:'ru_RU'}]"/>

5. Save the cos_core_metadata.xml file and include this revised file in the
cos-shared-11.1.1.6.0.jar file.

6. Navigate to the i18n_resources/server/cos-resources_<LANG>.properties
resource bundle, then add the label.langauge.russian key with value
translation for each supported language.

Each of the cos-resources files (cos-resources.properties, cos-resources_
de.properties, cos-resources_es.properties, cos-resources_fr.properties,
cos-resources_it.properties, and so on) contains a set of language labels. The
following is an example for cos-resources_en.properties:

label.language.english = English
label.language.brazilian_portuguese = Brazilian Portuguese
label.language.chinese_simplified = Simplified Chinese
label.language.chinese_traditional = Traditional Chinese
label.language.french = French
label.language.german = German
label.language.italian = Italian
label.language.japanese = Japanese
label.language.korean = Korean
label.language.spanish = Spanish

Add a new line containing the parameter name (e.g. label.langauge.russian)
and the parameter value (e.g. "Russian" - for cos-resources_en.properties):

label.langauge.russian=Russian

The cos-resources_en.properties value for label.langauge.russian is
different ("Russische" in cos-resources_de.properties or "Russe" in
cos-resources_fr.properties).

Therefore,

label.langauge.<lang_id>=<value_translation>

7. For all resource bundles that can be found recursively in the i18n_resources
directory, upload translation files in the same folder with the corresponding
language suffix. For example, in the i18n_resources/server/users.properties
directory you can find Russian translation for English pack. So, upload the

Registering the New Language in the Community Application

Translating the Community Application’s Functionality into Different Languages 5-5

translation file for Russian: users_ru_RU.properties in the i18n_
resources/server/ directory.

8. Restart the application server for the Community management application.

9. To verify that the new language is displayed, log in to the Community application
as an administrator, then choose Language from the "Settings" menu.

Registering the New Language in the Community Application

5-6 Oracle WebCenter Sites Developer's Guide for the Community Application

6

Monitoring Community Application Performance 6-1

6Monitoring Community Application
Performance

This chapter provides an overview of caching in WebCenter Sites. It explains how
content is fetched and displayed on a web site when cache is enabled or disabled. This
chapter also explains different cache modes and how they affect the performance and
data consistency of the Community application. It describes how to configure cache
and optimize the handling of user-generated content.

This chapter includes the following sections:

■ Section 6.1, "About Caching"

■ Section 6.2, "Configuring Cache in the Community Application"

■ Section 6.3, "Optimizing User-Generated Content (UGC) in the Community
Application"

6.1 About Caching
When a system receives a request, it routes it to different sub-systems that perform the
required functions to serve this request, as shown in Figure 6–1 and described later in
this section. The results of the request are compiled and then served to the client that
made the request. These results could be in the form of complete comments for a page,
comments sorted in a certain way, reviews, and so on. To improve the application’s
performance, these results can be stored in a such way that when the system receives a
similar request, it can immediately locate and reuse the stored information to serve the
new request.

When the Community application loads content from its database, it caches that
content in the in-memory cache, which is built with the help of the inCache technology
provided by WebCenter Sites. Cache is an intermediate storage (RAM) in which data
for the most popular and frequent queries is stored. The access to cache is very fast as
RAM is used as storage.

Tip: The Community application uses the WebCenter Sites data
repository and communicates with it over REST. WebCenter Sites, in
turn, translates the REST request into a database query.

About Caching

6-2 Oracle WebCenter Sites Developer's Guide for the Community Application

Figure 6–1 Cache Process Flow

Caching helps save network communication and data serialization overheads. To
improve system performance and throughput, requests should be served from cache.

Two types of events take place when cache technology is used to serve requests: cache
hit and cache miss. A cache hit occurs when the requested data already exists in the
cache, and therefore, it is immediately served from the cache to a client. A cache miss
occurs when the requested data does not exist in the cache. In this case, first the data
from the WebCenter Sites data repository is copied into the cache, and then
subsequent requests are served. For example, if a user requests the page on which
comments/reviews were posted for the first time (that is, this page was not requested
before, or cache was flushed), the Community application saves it to the cache. When
another user requests this page, the Community application retrieves it from the
cache. As a result of interaction between users and the Community application, the
application caches all the data loaded from WebCenter Sites. This cache is an
in-memory cache.

The following section explains how a system behaves with caching.

6.1.1 The Community Application With Cache
When a visitor creates, updates, or deletes an item such as a comment or review on a
web site page, the Community application:

■ modifies all the related data in WebCenter Sites

■ invalidates all the related cache entries

This way, the Community application indicates to the whole system that cached
entries are stale or no longer valid, and therefore, they should be updated based on the
user’s action. For example, when you edit an existing comment, this particular item
and the entire data collection associated with the discussion whose comment you
edited needs to be invalidated in the cache. The update of invalidated values happens
in the background for the future access.

WebCenter Sites supports remote server in which cached content is kept up-to-date by
sending invalidation requests over the REST protocol. To enable this, register the
Community application as a remote server in the SystemSatellite table. For
information, see the chapter "Installing WebCenter Sites: Community" in the Oracle
WebCenter Sites Installation Guide for the Community Application.

Once you have registered the Community application as a satellite server, it starts
receiving notifications about the modified data and invalidates its cache accordingly.

About Caching

Monitoring Community Application Performance 6-3

When the data is modified, a notification is sent to all satellites, including the
Community application’s production and management systems. Figure 6–2 shows the
process flow.

Figure 6–2 Communication between WebCenter Sites and Community Application’s
Satellite Servers

As shown in the process flow, the Community application caches results for all
requests locally in the memory and receives invalidations to keep its cache consistent.
For example, if the Community application collects, stores, and sends results for a
request, and then a similar request comes, the application responds with cached data.
However, if a visitor makes any changes between the time frame of the first and
second requests, and an invalidation request is made in the same time frame, then the
second request is served from the WebCenter Sites repository and not from the cache.
(See also, Figure 6–3, Figure 6–4, and Figure 6–5)

The two caching modes of the Community application are: regular caching and stale
caching. Both modes share the same approach to data reads. If the required data is in
the cache, it is served immediately. When the data is not in the cache, it is loaded from
the WebCenter Sites repository synchronously. Therefore, results in the user interface
are displayed for the user only after the load operation is completed and the data is
cached. However, data invalidations and cache consistency work differently in regular
caching and state caching.

6.1.1.1 Regular Caching
When the Community application receives an invalidation request for a particular
piece of data, it invalidates the cached data immediately so that all subsequent
requests for that data get cache misses and the fresh data is loaded from the
WebCenter Sites repository.

Figure 6–3 shows the process flow for the cache hit and cache miss events in the
regular caching mode.

Note: Notifications are broadcasted in a synchronous manner, and
therefore, a modification request is not completed unless all satellites
acknowledge receiving this invalidation.

About Caching

6-4 Oracle WebCenter Sites Developer's Guide for the Community Application

Figure 6–3 Cache Hit and Cache Miss in Regular Caching

In the regular caching mode the data consistency level is high, and all the changes are
immediately reflected in the interface. For example, when a user posts a new comment
and refreshes the page, the new comment is shown on the page immediately.
Similarly, content deleted from a page disappears immediately after the page is
refreshed.

6.1.1.2 Stale Caching
When the Community application receives an invalidation request, it does not
invalidate the data and purge it immediately. This is in contrast with regular caching
in which the cached data is invalidated immediately. In the stale caching mode, the
Community application just marks the data that is no longer valid with a special
invalidation mark. However, the data still remains in the cache so it can still be served
from cache memory. When a request for the invalidated data is received, a thread is
launched to update the invalidated data. This process is called regeneration cycle.

Figure 6–4 shows how invalidated data is regenerated in the background and
regenerated content is served from cache.

Figure 6–4 Regeneration Cycle in Stale Caching

About Caching

Monitoring Community Application Performance 6-5

In the stale caching mode, the performance level is high because data loads happen
seamlessly in the background. However, due to background data loads, the data
consistency level is lower than that in the regular caching mode, so visitors do not see
the actual results immediately. For example, when a comment is posted, it takes a
couple of page refreshes before the comment is displayed on the page. The following
process explains what happens in the stale caching mode:

1. Visitor posts a comment => the Community application marks the comment list
with a special invalidation mark.

2. Visitor refreshes the page for the first time => the Community application still
serves old data without the new comment from the cache, but detects the special
mark and starts the background update process.

3. Visitor refreshes the page for the second time => the background update process
is completed, the cache is updated => the new comment list containing the newly
posted entry is returned to the client.

The background update process starts with the first refresh. The second refresh
displays the updated data because cache is updated by the end of the first refresh.
too. However, it depends on network overheads and the volume of changes, so
potentially it may take more than two refreshes.

By default, the Community application uses a regular caching schema. To boost
performance, you can enable the stale caching in the cos.war/WEB-INF/classes/wsdk_
facilities.properties configuration file by setting the app_cache.stale property to
true, as shown in Example 6–1.

Example 6–1 Stale Cache Mode Enabled

#
Application cache facility configuration
+ stale parameter enables usage 'old' data on production side
#
app_cache.stale=false

When the app_cache.stale property is set to false, the regular caching schema is
used. However, certain areas in the product always need a high level of consistency,
and therefore, the Community application overrides the stale cache mode for the
following areas:

■ The Community interface. Data needs to be always consistent with production
systemfor easy management.

■ Operations on visitors’ profiles. Especially during registration when the
application needs to determine if a user with such user name already exists.

You can manage cache through the Cache Management Console, which is accessible at
http://<cos_ip>:<cos_port>/<cos_context>/cache on each Community application
instance. For example, http://mycosprod.us.oracle.com:8180/cos/cache/. For
information about cache management, see the chapter "Working with the Cache Tool"
in the Oracle WebCenter Sites User’s Guide for the Community Application.

6.1.1.3 Caching Dependencies
The following types of dependencies are associated with caching:

■ Dependencies for content modification: This type of dependency is recorded in
the "Dependencies" column of the cache entries table such as "Commons Cache",
and it contains the ID of the existing asset. The system invalidates this cache entry
whenever the associated asset changes.

About Caching

6-6 Oracle WebCenter Sites Developer's Guide for the Community Application

■ Dependencies for content creation: This type of dependency is system-specific.
The unknowndeps: <table name> type of the inCache dependency keyword is
used in such cases. Whenever a new entry is posted in the table, the cache is
invalidated. This type of caching is useful for search and count queries that are
required to be invalidated if any new content is posted.

During cache management, user operations must be constantly mapped to the
Community application logic and entries stored in the cache. For example, during
comment loading, the data structures shown in Figure 6–5 are associated with the
"Loading..." message (the Loading operation) which is displayed initially when the
Comments widget starts loading.

Figure 6–5 Data Structure Associated with the Comments Operation

The following is a step-by-step explanation of Figure 6–5. These points describe how
each operation for comments is performed and cached:

1. The CommentFeed object that aggregates the whole discussion is discovered.

2. The total number of comments is discovered. This number is used to calculate and
render the pagination interface and other comment-related features.

3. The site settings configured in the Community application are loaded. These
settings are applied to the CommentFeed object that is rendered on the page
accessed by visitors. These settings determine where the "Post Comment" form
will be shown (top or bottom) on a page, the level of commenting permissions,
and so on. After the setting IDs are discovered, the Community application
searches the cache and gets cache hits before contacting the database.

4. If site settings are not cached, they are fetched from the WebCenter Sites
repository by their IDs. Lookup by ID is used whenever possible because of the
effectiveness of the process.

5. Loading of actual comments to be displayed on the web site begins. The Comment
Feed objects and CommentRecord objects have a one-to-many relationship. First,
all the IDs of comments associated with a particular feed are discovered. After the
IDs of the comments associated with a particular feed are discovered, the IDs are
analyzed and validated against the local cache entries. The IDs that are missing in
the cache are loaded with the next request.

6. CommentRecord objects are loaded from the WebCenter Sites repository by the
IDs discovered on the previous step.

Optimizing User-Generated Content (UGC) in the Community Application

Monitoring Community Application Performance 6-7

7. The comments are examined, and the author IDs are extracted from comments
that were posted by authenticated users. Then, the visitor profile IDs for which
there are cache hits are loaded from the WebCenter Sites repository.

6.2 Configuring Cache in the Community Application
The cache configuration in the Community application is similar to the cache
configuration in WebCenter Sites because both products use the same inCache
infrastructure.

The cache configuration file, cos-cache.xml, is located in the cos-standalone-config
directory for each Community node directory.

For more information about configuration parameters in this file, see the chapter
"Configuring inCache for Page Caching" in the Oracle WebCenter Sites Administrator’s
Guide.

6.3 Optimizing User-Generated Content (UGC) in the Community
Application

There are certain peak hours when the visitor traffic and the amount of feedback are
highest in a day. In other words, there is a time during a day when the maximum
number of UGC entries are submitted to database. During these periods of peak loads,
database cannot handle the content insertion rate at the speed at which visitors submit
content entries. To address such situations, WebCenter Sites provides an option called
delayed writes. This is a simple but effective tool that uses the producer-consumer
pattern. Visitors submit content to the system in the form of comments, reviews, and
so on. The content entries are then queued up for the database. A consumer thread
picks up these entries from the queue and inserts them into the database one-by-one,
so results of these incoming requests (UGC entries) display on the web site later. Since
changes are buffered and applied in the background, there is data inconsistency, so
users cannot see their changes immediately.

The delayed writes option is available only after the administrator has configured it in
WebCenter Sites. For information about how to enable this option, see the "Buffering"
chapter in the WebCenter Sites: WEM Framework Developer's Guide.

After the delayed writes option has been configured on the WebCenter Sites instance
used by the Community application, you must also set this option in the application’s
setup_cs.properties configuration file located in the cos.war/WEB-INF/classes
directory. In this file, set the widgets.cs.production.attrs.delayed_writes property
to true:

#
Enabling "delayed writes" mechanism. CS will persist the assets asynchronously.
Default is "false"
#
widgets.cs.production.attrs.delayed_writes=true

Once the delayed writes option in enabled in the Community application, restart the
Community production and management application servers. You will notice that the
behavior of the production system will change when visitors submit content in the
form of reviews, comments, and so on. For example, when a visitor posts a comment,
the "Thank you for your submission" message will be displayed and comment will not
appear on the site unless it is processed on the server asynchronously.

Optimizing User-Generated Content (UGC) in the Community Application

6-8 Oracle WebCenter Sites Developer's Guide for the Community Application

A

Guidelines for Maintaining the Community Application A-1

AGuidelines for Maintaining the Community
Application

This appendix includes the following sections:

■ Widget Deployment Guidelines

■ Adjusting Logging Levels

■ Reporting Issues

A.1 Widget Deployment Guidelines
The deployment process can be started for the Community application widgets as
soon as the widget functionality, permissions, and appearance are configured in the
Community application. During widget deployment, when the "site settings" option is
selected, configurations made in the Community application are instantly reflected on
the deployed widgets, after the page containing the widget is reloaded. This option
enables the deployed widget to constantly monitor configuration changes in the
database. However, in the "custom settings" option, some of the configuration settings
use custom values that are embedded into the widget deployment code snippet itself.
Note that custom configuration settings are stored in the HTML/JavaScript code of the
page on which the widget is deployed, and not in the database. As a result, custom
configuration settings take priority over site settings.

When you deploy a widget with the "custom settings" option selected, the "Resource
ID" field becomes available for customization. The resource ID enables the
Community application to associate the content posted by visitors with the page on
which it is deployed. Because of the lightweight integration approach — which uses
JavaScript to deploy widget functionality to the web site — this ID is used to
determine the type of content to be shown on a page. For example, if no resource ID is
specified during deployment, md5 (a cryptographic hash function that produces a
128-bit (16-byte) hash value) is used as the resource ID automatically. In this case,
when visitors visit a page repeatedly, the same content is shown to them by the
Community application. Therefore, it is recommended that the resource ID be equal to
the page ID (if it is managed by a content management system), so the association is
straightforward and intuitive.

When the same comment feed needs to be shown on two separate pages, it is sufficient
to specify the same resource ID. For example, xyz can be used as the resource ID on
both pages, so that the same content is rendered on these pages.

A.2 Adjusting Logging Levels
This section includes the following:

Adjusting Logging Levels

A-2 Oracle WebCenter Sites Developer's Guide for the Community Application

■ Section A.2.1, "Configuring log4j Loggers"

■ Section A.2.2, "Enabling Logging for SEO Widget JAR Files"

A.2.1 Configuring log4j Loggers
Configuration and monitoring of log files is an important aspect of product
maintenance. This section describes log4j loggers that are available for
troubleshooting/monitoring.

■ The log4j-cos.properties is the main configuration file for the logging in the
system. This file is located in the <Community_
Application>\deploy\management\management_node1\ and <Community_
Application>\deploy\production\production_node1\ directories.

■ To enable all the Community application-specific logging, set the root cos logger
to debug level: log4j.logger.com.fatwire.cos = DEBUG.

■ To monitor all the requests that the Community application sends to the
WebCenter Sites data repository, enable the following logger:
log4j.logger.com.fatwire.cos.core.jpa.cmd.wem.WemCommandManager = TRACE

■ To monitor lifecycle management of CAS tickets that are used to connect to
WebCenter Sites over REST, enable the following loggers:
log4j.logger.com.fatwire.cos.core.jpa.session.wem. WemSessionManager =
TRACE

log4j.logger.com.fatwire.cos.core.sites.wem.WemManager = TRACE

■ To monitor inCache operations performed by the Community application, enable
the following logger:
log4j.logger.com.fatwire.cos.core.cache.appcache.wem.WemAppCacheFacilit
y = TRACE

■ To monitor inCache invalidations coming from WebCenter Sites, enable the
following logger:
log4j.logger.com.fatwire.cos.core.cache.appcache.wem.IncacheServlet =
TRACE

■ When troubleshooting data consistency issues and the synchronization
functionality (locking) in the system, enable the following loggers:
log4j.logger.com.fatwire.cos.cluster.CacheLockClientFacility = TRACE

log4j.logger.com.fatwire.cos.cluster.ClusterLockImpl = TRACE

A.2.2 Enabling Logging for SEO Widget JAR Files
When deploying widgets that support search engine optimization (SEO), you need to
download the cos-widget-tag.jar file containing the widget deployment and
rendering logic, and place it into the classpath of your web applications. Navigate to
Comments > Deploy > Comments, then select Custom settings and scroll down to
the "Widget Tag" field. To download the JAR file, click the link in the "Note" section.

This is a lightweight JAR file, and it is created to function independently of any
external logging libraries. However, to enable log messages provided by this library
(cos-widget-tag.jar), it is necessary to add the -Dcos.widget.tag.debug=true Java
parameter to JVM that runs the web application. This ensures that the log messages
display in the standard output stream (console).

To optimize this library for performance, it is recommended that you add the
following JVM parameters:

Reporting Issues

Guidelines for Maintaining the Community Application A-3

-Dhttp.keepAlive=true, -Dhttp.maxConnections=<Number>

The <Number> value must be aligned with the concurrency rates on the application
server on which the pages with the SEO deployment tag were deployed, as well as
with the number of processing threads available on the application server.

A.3 Reporting Issues
Before contacting the support team, compile the information required for
investigation. This will help you avoid unnecessary communication round-trips and
speed up the troubleshooting process.

The following is the recommended list of items to be provided to support for quick
and efficient troubleshooting:

Environment Details

■ Operating system name and version

■ System language, locale, and time zone

■ JVM name and version

■ Application server name and version

Configuration Details

Archive the contents of the product configuration directory and attach the archive to
the support ticket. For example, Production_node1 or Management_Node1,
configurations are saved in the <install folder>/deploy/production and <install
folder>/deploy/management directories. Other required files are: the setup_
*.properties files from the cos.war/WEB-INF/classes directory.

Logging Details

■ Log files of the Community application and its CAS

■ Log files of the WebCenter Sites application and its CAS

■ Log files of the Community application and WebCenter Sites application servers
(including the standard output and standard error consoles)

Reporting Issues

A-4 Oracle WebCenter Sites Developer's Guide for the Community Application

Index-1

Index

A
authentication plug-Ins, 2-1

C
caching in the Community application, 6-1
Community application

adding a new language, 5-3
adjusting logging levels, A-1
caching dependencies, 6-5
configuration, 4-3
configuring cache, 6-7
deploying certificates, 4-3
integrating with

Facebook, 2-1
Janrain, 2-7
Twitter, 2-5

JKS Files, 4-3
language detection, 5-2
language detection for widgets, 5-2
localization, 5-1
regular caching, 6-3
reporting issues, A-3
security, 4-1
security certificates, 4-2
stale caching, 6-4
UGC optimization, 6-7
widget deployment guidelines, A-1
widgets, 1-1

Community widget templates
attach points, 3-28
CAPTCHA generator, 3-38
context variable access points, 3-25
custom data sets, 3-34
custom word filter, 3-35
customization workflow, 3-27
dynamic scripting, 3-26
Model-View-Controller (MVC) regions, 3-26
Model-View-Controller pattern, 3-26
nested templates, 3-27
sample template, 3-32
widget sources and templates, 3-26

CSS and widget templates
color schema and skinning, 3-18
customizing Comments and Reviews

widgets, 3-19
customizing other widgets, 3-21
customizing the CSS, 3-23

customizing a widget template, 3-25
customizing the Community application, 3-1

Community Data Model overview, 3-1
CSS and widget templates, 3-18
data model

Comments, 3-3
Polls, 3-13
Ratings, 3-10
Reviews, 3-6
Topics, 3-14
Visitors, 3-16

D
data model

Comments
CommentFeed, 3-3
CommentRecord, 3-4

Ratings
RatingFeed, 3-11
RatingRecord, 3-12

Reviews
ReviewFeed, 3-7
ReviewRecord, 3-8

Visitors
User, 3-16
UserIdentity, 3-17
UserLink, 3-18

L
logging levels

configuring log4j loggers, A-2
logging for SEO widget JAR files, A-2

O
Oracle WebCenter Sites: Community, 1-1

U
user generated content (UGC) optimization, 6-7
User-Generated Content (UGC), 3-1

Index-2

W
WebSphere Application Server (WAS)

enabling social networking services, 2-14
export security certificate from Facebook, 2-15
export security certificate from Janrain, 2-17
export security certificate from Twitter, 2-16
import security certificates, 2-18

widget deployment guidelines, A-1

	Contents
	Preface
	Audience
	Related Documents
	Conventions
	Third-Party Libraries

	1 Introduction to Oracle WebCenter Sites: Community
	1.1 Technical Overview of Oracle WebCenter Sites: Community
	1.2 Prerequisites

	2 Integrating the Community Application With Social Networking Services
	2.1 About Authentication Plug-Ins
	2.2 Integrating with Facebook
	2.2.1 Create a Facebook Application for the Community Application
	2.2.2 Configure Facebook Application’s Authentication Settings on the Community Application

	2.3 Integrating with Twitter
	2.3.1 Create a Twitter Application for the Community Application
	2.3.2 Configure Twitter Application’s Authentication Settings on the Community Application

	2.4 Integrating with Janrain
	2.4.1 Create a Janrain Application for the Community Application
	2.4.2 Configure Janrain Application’s Authentication Settings on the Community Application

	2.5 Enabling Social Networking Services on WebSphere Application Server
	2.5.1 Export Security Certificate from Facebook
	2.5.2 Export Security Certificate from Twitter
	2.5.3 Export Security Certificate From Janrain
	2.5.4 Import Security Certificates into WAS

	3 Customizing the Community Application’s Functionality
	3.1 Overview of Community Data Model
	3.1.1 Comments
	3.1.1.1 CommentFeed
	3.1.1.2 CommentRecord

	3.1.2 Reviews
	3.1.2.1 ReviewFeed
	3.1.2.2 ReviewRecord

	3.1.3 Ratings
	3.1.3.1 RatingFeed
	3.1.3.2 RatingRecord

	3.1.4 Polls
	3.1.5 Topics
	3.1.6 Visitors
	3.1.6.1 User
	3.1.6.2 UserIdentity
	3.1.6.3 UserLink

	3.2 Customizing CSS and Widget Templates
	3.2.1 Customizing CSS: Color Schema and Skinning
	3.2.1.1 Customizing Comments and Reviews Widgets
	3.2.1.2 Customizing Other Widgets

	3.2.2 Customizing a Widget Template
	3.2.2.1 Understanding Community Widgets Templates
	3.2.2.1.1 Context Variable Access Points
	3.2.2.1.2 Dynamic Scripting
	3.2.2.1.3 Widget Sources and Templates
	3.2.2.1.4 Model-View-Controller Pattern
	3.2.2.1.5 Model-View-Controller Regions
	3.2.2.1.6 Nested Templates
	3.2.2.1.7 Customization Workflow
	3.2.2.1.8 Attach Points in the Widget Template Structure

	3.2.2.2 Creating a Sample Template
	3.2.2.3 Loading Custom Data Sets

	3.3 Creating a Custom Word Filter
	3.4 Creating a CAPTCHA Generator

	4 Securing the Community Application
	4.1 About Security
	4.2 Generating Security Certificates
	4.3 Exporting Certificates From JKS Files
	4.4 Deploying Certificates to the Community Applications
	4.5 Configuring the Community Application

	5 Translating the Community Application’s Functionality into Different Languages
	5.1 About Localization
	5.1.1 Language Detection for the Community Interface
	5.1.2 Language Detection for Community Widgets

	5.2 Adding a New Language to the Community Application
	5.3 Registering the New Language in the Community Application

	6 Monitoring Community Application Performance
	6.1 About Caching
	6.1.1 The Community Application With Cache
	6.1.1.1 Regular Caching
	6.1.1.2 Stale Caching
	6.1.1.3 Caching Dependencies

	6.2 Configuring Cache in the Community Application
	6.3 Optimizing User-Generated Content (UGC) in the Community Application

	A Guidelines for Maintaining the Community Application
	A.1 Widget Deployment Guidelines
	A.2 Adjusting Logging Levels
	A.2.1 Configuring log4j Loggers
	A.2.2 Enabling Logging for SEO Widget JAR Files

	A.3 Reporting Issues

	Index
	A
	C
	D
	L
	O
	U
	W

